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ABSTRACT

Motivation: RNA-seq experiments produce digital counts of reads

that are affected by both biological and technical variation. To distin-

guish the systematic changes in expression between conditions from

noise, the counts are frequently modeled by the Negative Binomial

distribution. However, in experiments with small sample size, the

per-gene estimates of the dispersion parameter are unreliable.

Method: We propose a simple and effective approach for estimating

the dispersions. First, we obtain the initial estimates for each gene

using the method of moments. Second, the estimates are regularized,

i.e. shrunk towards a common value that minimizes the average

squared difference between the initial estimates and the shrinkage

estimates. The approach does not require extra modeling assump-

tions, is easy to compute and is compatible with the exact test of

differential expression.

Results: We evaluated the proposed approach using 10 simulated

and experimental datasets and compared its performance with that

of currently popular packages edgeR, DESeq, baySeq, BBSeq and

SAMseq. For these datasets, sSeq performed favorably for experi-

ments with small sample size in sensitivity, specificity and computa-

tional time.
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1 INTRODUCTION

Whole transcriptome shotgun sequencing (RNA-seq) technology

(Mardis, 2008; Metzker, 2009; Wang et al., 2009) quantifies gene
expression in biological samples in counts of transcript reads

mapped to the genes. Accurate and comprehensive, it has

made a major impact on genomic research (Garber et al.,

2011; Oshlack et al., 2010; Pepke et al., 2009). One common

goal of RNA-seq experiments is to detect differentially expressed
genes, i.e. genes for which the counts of reads change between

conditions more systematically than as expected by random

chance (Oshlack et al., 2010). Statistical methods for detecting

differentially expressed genes must reflect the experimental de-
sign and appropriately account for the stochastic variation.

Moreover, many RNA-seq experiments serve as high-throughput

screens of a small number of samples with the goal of subsequent

experimental validation. Therefore, the analysis must handle a

relatively small number of biological replicates.

A variety of statistical methods and software has recently been

proposed for detecting differentially expressed genes. These in-

clude DESeq (Anders and Huber, 2010), edgeR (Robinson and

Smyth, 2007; Robinson et al., 2010), baySeq (Hardcastle and

Kelly, 2010), SAMseq (Li and Tibshirani, 2011), BBSeq(Zhou

et al., 2011). We briefly overview these methods. We further

propose a direct and effective approach for characterizing the

variation in the counts of reads, which improves the sensitivity

and specificity of detecting differentially expressed genes for ex-

periments with small sample size. We support this approach with

an open-source R-based software package sSeq.

2 BACKGROUND

2.1 The Negative Binomial distribution

The input to the statistical analysis is a set of discrete counts of

reads in each experimental run. Although the counts can be

modeled with the one-parameter Poisson or Geometric distribu-

tions (Auer and Doerge, 2011; Li et al., 2011; Marioni et al.,

2008), it is often advantageous to use the two-parameter

Negative Binomial distribution (Anders and Huber, 2010;

Hardcastle and Kelly, 2010; Robinson and Smyth, 2007;

Robinson et al., 2010). This distribution is more general and

flexible and can be viewed as a generalization of both Poisson

and Geometric distributions (Supplementary Materials). We

focus on the Negative Binomial distribution in what follows.
Denote Xgij as the random variable that expresses the counts

of reads mapped to gene g ðg ¼ 1, . . . ,GÞ in sample (or, equiva-

lently, library) j ðj ¼ 1, . . . , niÞ in condition i and denote xgij as

the observed values. For simplicity, we consider two conditions

ði ¼ A,BÞ; however, the discussion holds for pairwise compari-

sons of conditions in experiments with more complex designs.

We are particularly interested in situations where nA and nB are

small, e.g. 1–4. We consider the following parametrization:

Xgij � NBð�gi,�gÞ, where �gi � 0, �g � 0, such that

EfXgijg ¼ �gi, VarfXgijg ¼ �gi þ �
2
gi�g ð ¼

denoted
VgiÞ

ð1Þ

The dispersion parameter �g determines the extent to which

the variance Vgi exceeds the expected value �gi (Cameron and

Trivedi, 1998; McCullagh and Nelder, 1989).*To whom correspondence should be addressed.
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2.2 Motivation for the proposed approach

The estimation of VarfXgijg is the main focus of this work and is

based on the following considerations.

(1) A naı̈ve approach is to estimate VarfXgijg using the

method of moments (i.e. the per-gene sample variance).

However, it is highly variable in experiments with a

small sample size (Croarkin and Tobias, 2006).

(2) RNA-seq experiments simultaneously quantify the expres-

sion of many genes. The genes share aspects of biological

and technical variation, and therefore a combination of

the gene-specific estimates and of consensus estimates

can yield better estimates of variation. Such approaches

are increasingly popular with RNA-seq experiments

(Anders and Huber, 2010; Robinson and Smyth, 2007).

(3) The variance of the Negative Binomial distribution is a

known function of the expected value �gi and of the dis-

persion �g. Therefore, an accurate estimation of the dis-

persion (e.g. by combining the gene-specific and consensus

estimates, without explicitly modeling its relationship to

�gi) can lead to an accurate estimation of the variance

while preserving the mean–variance relationship.

(4) Finally, constraints of throughput sample availability or

cost may restrict the number of biological replicates.

Although experiments with little or no biological replica-

tion have poor reproducibility and are undesirable, such

under-replicated screens are the only practical option in

some situations (Malo et al., 2006; Markowetz, 2010).

They can only detect large changes in expression and re-

quire an extensive downstream validationwith complemen-

tary low-throughput experiments and large sample size. To

detect differentially expressed genes, we assume that the

majority of the genes are not differentially expressed, and

that for these genes, the samples from all conditions can be

viewed as biological replicates (Robinson and Oshlack,

2010; Robinson et al., 2010). Under this assumption, a con-

sensus estimate of dispersion helps to improve the accuracy

of gene-specific estimates of variation.

Our main concern is in how to (i) accurately define the consensus

estimate of dispersion and (ii) accurately combine the gene-spe-

cific estimates of dispersion with the consensus estimate.

2.3 Existing approaches for RNA-seq experiments

Among the existing methods, edgeR (Robinson and Smyth,

2007; Robinson et al., 2010), DESeq (Anders and Huber, 2010)

and baySeq (Hardcastle and Kelly, 2010) assume the Negative

Binomial distribution, and SAMseq (Li and Tibshirani, 2011)

and BBSeq (Zhou et al., 2011) use other flexible models. The

approaches have been extensively evaluated (Soneson and

Delorenzi, 2013) and are broadly used. Hardcastle and Kelly

(2010) found that the performance of DESeq, edgeR and

baySeq is superior to that of DEGseq (Wang et al., 2010), Li

and Tibshirani (2011) found that SAMseq improves on

PoissonSeq (Li et al., 2011). We briefly overview these

approaches in the historical order. Table 1 summarizes the

discussion.

Probability model. edgeR models the count of reads with the

Negative Binomial distribution. It includes normalization,

which accounts for the changes in read counts owing to technical

artifacts such as different sequencing depth. The normalization

factor can be the total library size (i.e. the number of reads in the

library). A more accurate normalization factor is the ‘effective’

library size mij, which multiplies the size of the library ij by a

robust estimate of the log-fold change of the total count in con-

dition i as compared with a reference run (Robinson and

Oshlack, 2010). The parameter pgi in row (b) of Table 1 is the

probability that a single read maps to gene g for a sample in

condition i. The model assumes that the dispersion parameter is

gene specific but constant across conditions. For experiments

without replication versions up to 2.4.6 assumed a common dis-

persion in all the genes. The subsequent versions discourage

unreplicated experiments. Finally, generalized linear models for

the Negative Binomial response are available.
DESeq also models the count of reads with the Negative

Binomial distribution. It normalizes the read counts by a size

factor sij (Anders and Huber, 2010).

ŝij ¼ mediang
xgijQnA

k¼1

xgAk
QnB
k¼1

xgBk

� �1=ðnAþnBÞ
ð2Þ

The size factor can be thought of as the ‘representative’ ratio of

counts in the library to the geometric mean of the counts in all

the libraries, and differs from the ‘effective’ library size in edgeR.

The parameter �gi in row (c) of Table 1 is the expected normal-

ized expression of gene g in condition i. DESeq allows specifica-

tion of separate variances for genes and conditions and models

the variances as functions of the expected values. This relation-

ship can be a flexible smooth function (local polynomial) or a

parabolic function V̂gi ¼ sij � �̂gi þ s2ij � �
2
gi � a0 þ a1=�̂gi

� �
, where

a0, a140 are constants. Alternatives based on generalized linear

models for the Negative Binomial response are also available.

The baySeq specifies the same probability model as edgeR;

however, it proposes a different Empirical Bayes characterization

of the between-library variation. The baySeq assumes that sub-

sets of the libraries share the parameters of Negative Binomial

distribution and derives an empirical prior distribution for the

corresponding parameter sets. After integrating over the empir-

ical priors, the dispersion in the integrated likelihood is constant

across conditions and different between the genes. The default

normalization parameter is the library size.
BBSeq specifies a Beta-Binomial generalized linear model.

Using the logit link, it connects the expected probability of a

read for gene g in condition i and sample j to the linear combin-

ations of predictors, such as indicators of conditions and other

covariates. The dispersion parameter can be independent from the

mean (freemodel) or dependent on themean (constrainedmodel).

SAMseq uses a fully non-parametric approach.

Estimation of dispersion. edgeR maximizes a weighted combin-

ation of the conditional log-likelihoods with per-gene dispersion

and of the conditional log-likelihood with common dispersion.

Conditional likelihoods generalize the restricted maximum like-

lihood estimation for a discrete response by conditioning on the

sum of the read counts per class and improve the statistical

properties of dispersion estimates. The estimation requires
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calculating pseudocounts of reads that would have been obtained

with libraries of equal size and an iterative computational opti-

mization. For experiments with few replicates, the estimates tend

to be discrete values (Lloyd-Smith, 2007; Piegorsch, 1990; Toft

et al., 2006). For experiments with many replicates, edgeR spe-

cifies a generalized linear model. As conditional likelihoods

cannot be easily extended to this case, these are further approxi-

mated by adjusted profile likelihoods (McCarthy et al., 2012).
DESeq starts by estimating per-gene means and variances of

the normalized counts in each gene and condition by the meth-

ods of moments. Next, it re-estimates them by fitting the postu-

lated relationship between the expected values and the variances.

The estimates of dispersion can be back-calculated from the es-

timates of variance as shown in row (c) of Table 1. For experi-

ments without replication, DESeq assumes that the majority of

the genes are not differentially expressed, and combines the sam-

ples across conditions to estimate the variance. The same strategy

is used with the generalized linear models.
The baySeq relies on an iterative estimation of the relative gene

expression and of the dispersion. Given an initial partition of the

libraries into subsets and an initial estimate of the relative gene

expression, it estimates the dispersion using the quasi-likelihood

approach. Given the estimates of dispersion, it re-estimates the

relative gene expression by maximizing the integrated likelihood.

This is repeated for different partitions of the libraries.
BBSeq estimates the dispersion using maximum likelihood for

the free model. For the constrained model, it uses the estimates

from the free model for all the genes, fits the postulated

relationship to the mean and re-estimates the dispersions.
SAMseq sidesteps the need to estimate the dispersion by using
a fully non-parametric approach.

Testing. For the Negative Binomial model, edgeR tests the null
hypothesis H0 : pgA ¼ pgB, and DESeq H0 : �gA ¼ �gB separ-
ately for each gene. Both edgeR and DESeq use the exact test,

which is free from asymptotic arguments and is therefore pre-
ferred. The test statistic for a gene is the total (normalized) count
of reads in all the replicates of a condition. The P-value is the

probability of the normalized read counts per group such that
under H0 their probability is same or lower than the probability
of the observed counts, conditional on the total counts equal to

the observed. With the generalized linear models, edgeR and
DESeq use the asymptotic likelihood ratio or Wald tests.
baySeq ranks the genes by their posterior probabilities of dif-

ferential expression. BBSeq tests the coefficient of the linear pre-
dictor (i.e. condition) in the generalized linear model with the
asymptotic Wald test. SAMseq uses a resampling strategy to es-

timate the distribution of the test statistic and the P-values.

3 METHODS

The proposed approach combines aspects of the existing approaches, but

is simpler, requires fewer assumptions and streamlines the computation.

It is summarized in Table 1a. More details regarding the method and its

implementation in sSeq are in Supplementary Materials.

Probability model. The model for the counts Xgij of gene g ¼ 1, . . . ,G,

replicate j ¼ 1, . . . , ni and condition i ¼ A,B is

Xgij � NBð�gi sij, �g=sijÞ, such that ð3Þ

Table 1. Existing and proposed approaches for differential analysis of RNA-seq experiments with two conditions

Probability model Estimation of dispersion Testing n¼ 1 Time

(a) sSeq (proposed)

(this manuscript)

Xgij � NB sij�gi,�g=sij
� �

�̂sSeqg ¼ �� þ ð1� �Þ�̂MM
g , where � is a

common dispersion and � is a weight

H0 : �gA ¼ �gB

Exact test

Yes min

(b) edgeR (Robinson

and Smyth, 2008)

Xgij � NB mijpgi,�g
� �

�̂edgeRg maximize linear combination of

per-gene and common-dispersion

conditional likelihoods

H0 : pgA ¼ pgB
Exact or GLM-based test

Yes* min

(c) DESeq (Anders

and Huber, 2010)

Xgij � NB sij�gi,�gi
� �

�̂DESeq
gi ¼ V̂gi � �̂gi

1
ni

P
j

1
sij

 !
=�̂2

gi

V̂gi is estimated as function of the mean

H0 : �gA ¼ �gB

Exact or GLM-based test

Yes min

(d) baySeq (Hardcastle

and Kelly, 2010)

Xgij � NB Nijpgi,�g
� �

Empirical priors on sets

of parameters

�̂baySeqg maximize per-gene integrated

quasi-likelihood

H0 : pgA ¼ pgB
Posterior probability cutoff

Yes h

(e) BBSeq

(Zhou et al., 2011)

Xgij � Binom pgi,Nij

� �
pgi � Beta, logitEfpgig ¼ Z�,

VðpgiÞ ¼ EðpgiÞ ð1� EðpgiÞÞ�g

�̂BBSeqg maximize per-gene marginal

likelihood; is a free parameter or

a function of the mean

H0 : � ¼ 0 Wald test Yes h

(f) SAMseq (Li and

Tibshirani, 2011)

Non-parametric H0: same distributions A and B

Wilcoxon test & resampling

No min

(a) sij is the size factor for sample j in condition i as defined in (Anders and Huber, 2010). �gi is the expected normalized expression of gene g for a sample in condition i. �̂MM
g is

the per-gene dispersion estimate using the method of moments in Equation (6).

(b) mij is the ‘effective’ library size. pgi is the probability that a read in i maps to gene g. *Up to v2.4.6.

(c) �gi is gene- and condition-specific dispersion. �̂gi and V̂gi can be estimated by the method of moments or by the Cox-Reid corrected Maximum Likelihood.

(d) Nij is the size of the library i from condition j. pgi is as in (b).

(e) pgi is as in (b). Nij is as in (d). � is the coefficient of the linear predictor associated with an indicator Z of conditions. Column ‘Time’ is the run time for the experimental

datasets in Section 4 on a laptop computer.

Estimation of dispersion in Negative Binomial models
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EfXgijg ¼ �gi sij, and VarfXgijg ¼ �gi sij þ �
2
gi�g sij ð4Þ

We follow edgeR, DESeq and baySeq by specifying a Negative Binomial

distribution. As in experiments with a small sample size, it may be diffi-

cult to distinguish the true dependency of dispersions on expected values

from artifacts of random variation, the model specifies free gene-specific

dispersion parameters �g. As the initial versions of edgeR, we specify a

common dispersion across conditions, i.e. �gA ¼ �gB ¼
denoted

�g. As a con-

sequence, the counts of differentially expressed genes have different vari-

ances in each condition.

We follow DESeq in normalizing the counts by the size factor sij.

However, in the proposed normalization, the size factor affects not

only the expected value but also the dispersion. Equation (4) shows

that under this assumption the size factor linearly scales both EfXgijg

and VarfXgijg. Such linear scaling is consistent with the technical variation

in RNA-seq experiments, which can be characterized by the Poisson dis-

tribution (Marioni et al., 2008). As typical size factors are close to 1, the

proposed model has little practical difference from the model in DESeq.

However, as shown in Supplementary Section 2, it allows us to directly

conduct the exact test and contributes to the accuracy of the results.

Estimation of dispersion. Similarly to DESeq, we start by estimating the

dispersion parameters by the methods of moments. A conservative esti-

mate of the per-gene variance in experiments with a small sample size is

obtained by pooling the samples across conditions, i.e.

V̂g ¼

P
i

P
j

ðxgij=ŝij � �̂gÞ
2

P
i

ni � 1
, with �̂g ¼

P
i

P
j

xgij=ŝijP
i

ni
ð5Þ

and g ¼ 1, . . . ,G. The estimate of dispersion �̂MM
g is then calculated from

Equation (1), and negative values are truncated at zero

�̂MM
g ¼ max 0,

P
i

niVg � �g

P
i

P
j

1
sij

�2
g

P
i

P
j

1
sij

0
B@

1
CA ð6Þ

Unfortunately, in experiments with small sample size, �̂MM
g are unsatis-

factory owing to high variance (Bowman, 1984; Clark and Perry, 1989;

Willson et al., 1984). Next, we improve the statistical properties of these

estimates by introducing shrinkage.

Stein (1956) showed that when we estimate the expected values of three

or more independent Normal random variables with known constant

variance, shrinking the per-dimension estimates toward a target value �

produces biased estimates, but reduces the mean squared error (MSE) for

all choices of �. The shrinkage estimator by James and Stein (1961)

(Lehmann and Casella, 1998; Richards, 1999) implements this strategy.

More recently, Hansen extended the approach of James and Stein with a

generalized shrinkage estimator, (Hansen, 2008). Hansen’s shrinkage can

be used with any per-dimension estimator with an arbitrary sampling

distribution (not necessarily Normal), for which the Central Limit

Theorem holds. Specifically, it requires that the true parameter lies in a

neighborhood of the restricted parameter space, and that the estimator is

asymptotically Normal with a consistent variance. Estimators by the

method of moments satisfy these criteria. Applied to the estimation of

�g, and assuming that the per-gene estimates are independent, the gen-

eralized shrinkage estimator is

�̂sSeqg ¼ ð1� �Þ�̂MM
g þ � � � ¼ � þ 1� �ð Þð�̂MM

g � �Þ ð7Þ

�̂sSeqg is a linear combination of the pre-defined target � and of the per-

gene methods of moment estimates. The weight � is defined as

� ¼

P
g

�̂MM
g � �̂

MM
� �2

=ðG� 1Þ

P
g
ð�̂MM

g � �Þ2=ðG� 2Þ
, and

�̂
�
MM
¼

1

G

X
g

�̂MM
g ð8Þ

As
P
g

�̂MM
g �

�̂
�
MM

� �2
�
P
g
ð�̂MM

g � �Þ2, the weight � 2 ð0, 1Þ. Larger

values of � shrink the estimates closer to the pre-defined target �.

We use the Hansen’s generalized shrinkage estimator �̂sSeqg in conjunc-

tion with the Negative Binomial distribution to test genes for differential

expression. Although the assumption of �̂MM
g being independent variables

is simplistic, it is a suitable approximation for experiments with a small

sample size. A similar assumption is made, e.g. by DESeq when modeling

the variance as function of the mean. Although the asymptotic argument

cannot be justified in this context, we show empirically in Section 5 that

�̂sSeqg performs well in practice.

Hansen showed that the estimator in Equations (7) and (8) reduces the

asymptotic MSE for all choices of targets �. However, a good practice is

to select a value for � that maximizes this reduction. To this end, we

approximate the MSE ¼ Ef
PG
g¼1

ð�̂sSeqg � �gÞ
2
g using the average squared

difference (ASD) between �̂sSeqg and �̂MM
g

ASD ¼
1

G

XG
g¼1

ð�̂sSeqg � �̂MM
g Þ

2
ð9Þ

Equation (9) substitutes �g with �̂
MM
g and divides MSE by the constant G

for numeric stability. It is shown that

ASDð�Þ ¼
constantPG

g¼1

ð�̂MM
g � �Þ2

ð10Þ

Figure 1a visualizes the functional form of ASDð�Þ for a simulation in

Section 4 and shows that the tail of the curve flattens for large �.

Therefore, we can also minimize the bias by minimizing � while enforcing

the constraint that ASDð�Þ is comparably small. In practice, sSeq esti-

mates �̂ by calculating the slope of ASDð�Þ and setting

�̂ ¼ argmin� ��5slopeðASDð�ÞÞ50
� 	

ð11Þ

for a small constant � such as � ¼ 0:05. The selected value is shown by the

vertical line in Figure 1a.

Figure 1b illustrates the fact that the proposed shrinkage estimator is a

linear transformation of �̂MM
g . The slope of the transformation is

ð1� �Þ 2 ð0, 1Þ, and the fixed point is the shrinkage target �. The shrink-

age increases the per-gene estimates of dispersion that are smaller than �
and decreases the values that are larger than �. From our experience with

multiple datasets, �̂ is often around the 95.5th quantile of �̂MM
g . In other

words, it biases the majority of the estimates towards conservative values.

The proposed estimate of dispersion has analogies in methods de-

veloped for other high-throughput technologies. For example, it is similar

in spirit to the moderated variance estimator in the package Limma

(Smyth, 2004, 2005), which is also a linear combination of per-gene

and consensus estimates.

Testing.We follow edgeR and DESeq by testingH0 : �gA ¼ �gB per gene

with the exact test. The test statistic is Xgi�, i.e. the sum of the read counts

in each condition. Under H0, the P-values are calculated with respect to

the reference distribution Xgi� �
H0
NB

�P
j

sij � �g, �g=
P
j

sij

�
and are ad-

justed to control the false discovery rate (FDR) (Benjamini and

Hochberg, 1995). See Supplementary Materials for more details.

Extensions to experiments with complex designs. The proposed approach

can be extended to pairwise comparisons of conditions in experiments with

more complex designs without recurring to a generalized linear model and

without additional assumptions. See Supplementary Materials for details.

4 DATASETS

We evaluated the proposed approach using 10 simulated and

experimental datasets. The first five datasets had an external
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‘gold standard’ of differential expression, and the last two had

experimental designs more complex than a two-group compari-

son. See Supplementary Materials for more details.
Simulation1, Simulation2 and Simulation3 each generated

G ¼ 20 000 genes in conditions A and B, nA ¼ nB ¼ 2. Thirty

percent of the genes were simulated as differentially expressed.

Size factors were sampled from the Uniform distribution

sij�Uniformð0:5, 1:7Þ.
Simulation1 assumed a constant dispersion parameter across

all genes and is favorable to sSeq. Simulation2 assumed that �g is
a non-linear function of �g, i.e. �g ¼ 1=ð100þ �gÞ and as such is

favorable to DESeq. Simulation3 is most realistic. From the

dataset by Bottomly et al. (2011) (Frazee et al., 2011), the largest

experimental dataset in this manuscript, we selected a subset of

non-differentially expressed genes (as determined by a consensus

of sSeq, edgeR and DESeq) and sampled pairs ð�̂MM
gA , �̂MM

g Þ from

this subset as the true parameters for simulating read counts.
MAQC (Shi et al., 2006) is the dataset from the MicroArray

Quality Control (MAQC) consortium, comparing three libraries

from Ambion human brain reference RNA against two libraries

from Stratagene human universal reference RNA. The libraries

were sequenced with the Illumina platform, resulting in 19 580

genes. A subset of the genes from four of the libraries was assayed

by real-time reverse-transcription PCR (Shi et al., 2006; Zhining

et al., 2010). We used the 323 differential genes and 85 non-differ-

entially expressed genes determined by real-time reverse-transcrip-

tion PCR as the ‘gold standard’. Although the dataset only has

technical replicates, it has been used extensively as the benchmark

in the past (Arikawa et al., 2008; Bullard et al., 2010; Patterson

et al., 2006).

Griffith et al. (2010) compared fluorouracil (5-FU)-resistant

human colorectal cancer cell lines MIP101 against their non-

resistant counterpart MIP/5-FU24. One library from each con-

dition was quantified with the paired-end Illumina platform,

resulting in 27 145 genes. In all, 197 of these genes from the

same samples were assayed by quantitative PCR. We used 12

truly differential genes and 19 truly non-differentially expressed

genes as determined by quantitative PCR as the ‘gold standard’

for method comparison.
Brooks et al. (2011) compared untreated cells of Drosophila

melanogaster against cells cultured in presence of Pasilla, the

homologue of the mammalian Nova-1 and Nova-2 protein.

Two biological samples per condition were sequenced with the

paired-end Illumina platform, resulting in 14470 genes.
Sultan et al. (2008) (Frazee et al., 2011) compared two biolo-

gical replicates of human cell lines Ramos B and HEK293T with

the Illumina platform, yielding 6 573643 uniquely aligned reads.
Bottomly et al. (2011) (Frazee et al., 2011) compared brain

tissues of two inbred mouse strains, C57BL/6J (B6) and DBA/

2J (D2), using the Illumina platform. The analysis of 10 and 11

biological samples per condition resulted in 13 932 genes.

Hammer et al. (2010) (Frazee et al., 2011) compared gene ex-

pression in rat strains Sprague Dawley and L5 SNL Sprague

Dawley 2, at two times (2 weeks and 2 months) in a factorial

design. Two distinct biological libraries per condition and per

time slot were quantified using the Illumina platform, resulting

in 18635 genes.
Tuch et al. (2010) compared the expression of genes in normal

human tissues and in tissues with oral squamous cell carcinoma.

The experiment compared pairs of normal and tumor samples

(a) Simulation1,ni=2 (c) Simulation1,ni=2: Proposed (e) Simulation1,ni=2: edgeR (g) Simulation1,ni=2: DESeq

(b) Simulation1,ni=2 (d) Simulation1,ni=2: Proposed (f) Simulation1,ni=2: edgeR (h) Simulation1,ni=2: DESeq

Fig. 1. Dispersion and variance estimation in Simulation1. Similar plots for other datasets are shown in Supplementary Materials. (a) ASD versus

shrinkage target �. ASD is maximized at � ¼
�̂
�
MM

(solid horizontal line). The dashed lines are the selected target �̂ and its ASD. (b) The proposed

shrinkage estimator is a linear transformation of �̂MM
g , with the slope ð1� �Þ ¼ 0:69 and the fixed point �̂ ¼ 0:354. All �̂MM

g � 0 are transformed to

�� ¼ 0:11. (c, e and g) Dispersion estimates by sSeq, edgeR and DESeq versus the per-gene mean read counts across conditions. Gray smooth scatter are

�̂MM
g (same on all the plots). Black dots are �̂g estimated by each method. Gray lines indicate the true dispersion parameters. (d, f and h) Same as above,

but for the variances of the read counts
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from three patients. The six libraries were sequenced using the

SOLiD platform, resulting in 10 453 genes.

5 RESULTS

In addition to sSeq, the following versions of the existing packages

were used: edgeR v3.0.8 (January 2013), DESeq v1.10.1 (October

2012), baySeq v1.12.0 (October 2012), BBSeq v1.0 (March 2011),

SAMSeq as part of the R package samr v2.0 (June 2011).
For sSeq, all the datasets were analyzed with the exact test,

and analyses of the Hammer and the Tuch datasets accounted

for their experimental designs. For edgeR and DESeq, the data-

sets with two-group comparisons were analyzed with the exact

test, and Hammer and Tuch datasets were analyzed with the

glm-based approaches. For edgeR, the estimateCommonDisp

function in an older version of edgeR package (v2.4.6) was

used to analyze unreplicated datasets. For DESeq, the option

fitType¼‘local’ was used to estimate the per-group variance.

The default parameters were used otherwise. See Supplementary

Materials for details and representative R scripts.

5.1 sSeq accurately estimates the variation

As the proposed approach shares most similarities with edgeR

and DESeq, we compared their estimates of dispersions and vari-

ances in more details. Figure 1c, e and g use the simplest case of

Simulation1 to illustrate the estimates by the method of moments

and by the three approaches. As expected, �̂MM
g have a high

variance, which increases with the mean. Also as expected, esti-

mates by �̂sSeqg are biased towards larger values but have smaller

deviations from the true values as compared to �̂MM
g . Estimates

by the other two methods fit the pattern of �̂MM
g .

Figure 1d, f and h show that despite the differences in disper-

sion estimation, the estimates of variance by the three methods

are less different. This is due to the fact that the values of the

dispersions are small as compared with the means, and that the

variances in Equation (1) are highly influenced by the expected

values. As a result, the bias in the estimation of the dispersion

has a low impact on the overall estimation of variation.

Supplementary Materials provide plots for the other datasets.
The first two columns of Table 2 show that the bias also has

little impact on the performance of detecting differentially ex-

pressed genes, as the performance of sSeq, edgeR and DESeq

are relatively similar. sSeq has a slightly higher area under the

ROC curves.
Figure 1d, f and h also provide an insight into why shrinking

the method of moments estimates of dispersion is more beneficial

than shrinking the method of moments estimates of variance. On

the log scale the relationship between the mean and the variance

in the Negative Binomial distribution is roughly linear for large

mean counts. Mathematically, from Equation (1)

logðVgiÞ ¼ logð�gi þ �
2
gi�gÞ ¼ logð�giÞ þ logð�gi�g þ 1Þ

logðVgiÞ �
large �gi

2 � logð�giÞ þ logð�gÞ
ð12Þ

A shrinkage of the variance estimates would multiply them by

ð1� �Þ � 1 and would distort the slope of the mean–variance

relationship in Equation (1) away from Equation (2). The shrink-

age of the dispersion parameter, on the other hand, preserves this

nominal mean–variance relationship. Our results (shown in

Supplementary Materials) confirmed that shrinking the variance

leads to inferior performance.
To further investigate the usefulness of multiple shrinkage tar-

gets, we partitioned the genes into 10 groups according to the

ranges of �̂MM
g and applied the shrinkage separately to each

group. Our results (not shown here) indicated that there is no

advantage in specifying multiple shrinkage targets.

5.2 sSeq accurately detects differential expression

Five datasets with an external ‘gold standard’ were used to evalu-

ate the sensitivity and the specificity of detecting differentially

expressed genes. For each method, the genes were ranked by

FDR-adjusted P-value of posterior probability and termed ‘sig-

nificant’ for varying cutoffs. The sensitivity and the specificity of

differential expression was compared with the ‘gold standard’

and summarized with ROC curves. Table 2 shows that the pro-

posed approach consistently had a similar or a higher accuracy

as compared with the existing methods.
Five datasets without an external ‘gold standard’ were used to

evaluate the sensitivity and the specificity less formally, as dis-

cussed in (Anders and Huber, 2010). First, comparisons of two

conditions (‘AvsB’) had some truly differentially expressed genes.

Therefore, methods with higher sensitivity should have higher

areas under the empirical cumulative distribution functions

(ECDF) of the P-values defined as F̂ðpÞ ¼ 1
G

PG
g¼1

Ifp�valueg�pg.

Table 2. Areas under the ROC curves of detecting differentially expressed genes for the datasets with an external ‘gold standard’ while varying the FDR-

adjusted P-value or posterior probability cutoff

Methods Simulation1 Simulation2 Simulation3 MAQC Project Griffith et al.

ni ¼ 1 ni ¼ 2 ni ¼ 1 ni ¼ 2 ni ¼ 1 ni ¼ 2 ni ¼ 1 nA ¼ 3, nB ¼ 2 ni ¼ 1

Proposed sSeq 0.947 0.962 0.951 0.967 0.856 0.888 0.585 0.911 0.689

Existing edgeR 0.918 0.948 0.938 0.951 0.840 0.833 0.558 0.850 0.557

DESeq 0.932 0.940 0.937 0.949 0.842 0.816 0.577 0.867 0.596

baySeq 0.568 0.711 0.548 0.714 0.558 0.628 0.551 0.852 0.702

BBSeq 0.675 0.672 0.669 0.674 0.578 0.619 0.560 0.617 0.544

SAMseq 0.964 0.968 0.882 0.563

Sub-columns are subsets of the data with one randomly selected replicate per condition and the full datasets. Values closer to 1 indicate higher sensitivity and specificity.
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Second, comparisons of replicates of a same condition (‘AvsA’)

had no differentially expressed genes. Therefore, methods with

higher specificity should have ECDF curves at or below the 45

degree line. For baySeq, we expect similar patterns of the ECDF

curves based on the posterior probability cutoff. Figure 2 sum-

marizes the curves for the five datasets. It shows that sSeq pro-

duced most consistently the expected pattern and had a similar

or a higher accuracy as compared with the existing methods.
The effect of sample size and of size factors on the accuracy

was investigated using the three simulated datasets. Supplemen-

tary Section 4.4 and 4.5 indicate that sSeq is particularly advan-

tageous for experiments when n � 4.

6 DISCUSSION

In this manuscript, we advocated a model that specifies free per-

gene dispersion parameters in the Negative Binomial model for

counts of RNA-seq reads. We also advocated a biased estimation

of these parameters, which can reduce the variance of the esti-

mates and minimize the overall MSE. Biased estimation is dif-

ferent from specifying a probability model (such as in DESeq)

that assumes a true systematic relationship of the true variance

and the true mean. It is particularly useful for experiments with a

small sample size, where the systematic relationship may be dif-

ficult to evaluate. The shrinkage estimates are easy to compute,

avoid iterative estimation, minimize the potential for overfitting

and do not require extra computation time. They are compatible

with the exact test of differential expression. For the datasets in

this manuscript, sSeq consistently had a similar or a higher sen-

sitivity and specificity of detecting differential expression than

the existing methods. The approach can be generalized to express

the dependence of the dispersions on the expected value or on

other covariates such as guanine-cytosine (GC) content or Gene

Ontology annotations.

(1) sSeq (2) edgeR (3) DESeq (4) baySeq (5) BBSeq

(a) Brooks

E
C

D
F—– nA1=nA2=1

· · · nA=nB=1
- - - nA=nB=2

(b) Sultan
E

C
D

F—– nA1=nA2=1
· · · nA=nB=1
- - - nA=nB=2

(c) Bottomly

E
C

D
F—– nA1=nA2=1

· · · nA=nB=1
- - - nA=10,nB=11

(d) Hammer

E
C

D
F—– nA1=nA2=1

· · · nA=nB=1
– · – Full dataset

(e) Tuch

E
C

D
F—– nA1=nA2=1

· · · nA=nB=1
– · – Full dataset

p-value p-value p-value 1-post. prob. p-value

Fig. 2. The ECDF curves of detecting differential expression for the datasets with no external ‘gold standard’. Y-axis: ECDF, function of the gene rank.

x-axis: P-value or 1 minus posterior probability. Solid line: two randomly selected replicates from a same condition (AvsA). Dotted line: one randomly

selected replicate from each condition (unreplicated AvsB). Dashed line: AvsB on the full dataset for two-group designs. Dashed-dotted line: AvsB on the

full dataset for more complex designs. Gray line: 45 degree. SAMseq is not applicable to unreplicated experiments and is excluded. The desired patterns

are high areas under the AvsB curves, and AvsA curves that are at or below the 45 degree line
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sSeq can produce meaningful results in under-replicated RNA-

seq screens. However, we stress that RNA-seq screens do not

eliminate the biological variation in gene expression Equation

(12). As evidenced by Table 2 and Figure 2, the under-replicated

screens have lower reproducibility as compared with the repli-

cated studies. Multiple biological replicates are necessary to ad-

equately assess the full extent of the variation in the biological

system. Therefore, the under-replicated screens can only be con-

ducted when followed by a rigorous experimental validation with

complementary technologies and adequate sample size.
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