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Abstract: Due to its unique electronic and optical properties, graphene has been used to design
tunable optical absorbers. In this paper, we propose a plasmonic absorber consisting of non-concentric
graphene nanodisk arrays, which is designed to operate in the mid-infrared spectral range and is
capable of achieving nearly perfect absorption. Two perfect absorption peaks are produced due to the
impedance of the structure, which matches that of the free space. The influences of the thicknesses of
the dielectric layer, the size of graphene nanodisk, and the incident conditions on the absorption are
studied. Moreover, the absorption intensity can be independently tuned by varying the Fermi levels
of two graphene nanodisks. Furthermore, the polarization-independent absorbance of the absorber
exceeds 95% under oblique incidence, and remains very high over a wide angle. This proposed
absorber has potential applications in optical detectors, tunable sensors, and band-pass filters.

Keywords: graphene; dual-band; metamaterial perfect absorber; surface plasmon

1. Introduction

Perfect absorbers have a lot of important applications in the domain of photodetectors,
filters, etc. [1,2]. Plasmonic metamaterials, which can support localized surface plasmons,
are promising candidates for building perfect absorbers [3]. In recent years, metamatertial
absorbers have mainly been focused on fixed-shaped noble metals [4]. However, noble
metal has higher ohmic losses, and the absorption bands cannot be tuned independently
from each other for multiple absorption peaks. Graphene, as a new ultra-thin optical
material [5,6], is a two-dimensional carbon material with a single layer of carbon atoms. It
has attracted considerable attention due to its unique optical and electronic properties [7–9],
which support surface plasmons in infrared and terahertz bands. Compared to metallic
nanoparticles, based on surface plasmons, graphene plasmons have much lower losses and
stronger field confinements. More importantly, graphene plasmons have widely tunable
electro-optical characters, and can be adjusted in real time with the external gate voltage or
the chemical doping [10–13]. Therefore, graphene provides a new opportunity for tunable
perfect absorbers.

A variety of graphene absorbers, such as ribbons, disks, and rings, have been inves-
tigated. For example, Meng et al. reported a periodically cross-shaped graphene ribbon
array, where two absorber peak wavelengths can be simultaneously adjusted by tuning
the Fermi energy of the graphene [14]. Li et al. demonstrated the periodic double-layer
graphene ribbon arrays, where the single absorption peak wavelength can be tuned by
a small change in the chemical potential of graphene [15]. Although these graphene ab-
sorbers have a tunable single or dual-band, most of them cannot be tuned independently.
Sun et al. proposed a double-layer array of graphene nanodisks and nanoholes, and the
dual-band absorption peak wavelengths can be tuned without varying the structure [16].
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Wu et al. reported a triple-band infrared absorber that sustains three absorption peaks with
independent tunability [17]. However, to date, few studies have focused on dual-band
perfect absorbers in the mid-infrared range using graphene.

Herein, a simple graphene-based plasmonic absorber has been designed. The absorber
consists of a gold mirror, dielectric layers, and dual-layer non-concentric graphene nan-
odisks. Through accurate simulations, we demonstrate two perfect absorption peaks due
to the impedance of the structure matching that of the free space. The two absorption peaks
originate from dipole resonances by the upper and lower nanodisks through the analysis
of the electric field diagram, and can be independently controlled by varying the Fermi
level and geometrical factor of the corresponding graphene layer. We further show that the
absorber has the characteristic of polarization-insensitive absorption and maintains a high
absorption over a wide range of incidence angles. This proposed absorber has potential
applications in optical detectors, tunable sensors, and band-pass filters.

2. Materials and Methods

Figure 1 shows the schematic view of the graphene-based infrared absorber. Double-
layer graphene non-concentric nanodisk arrays are on the top of an optically thick gold
layer. Arrays of graphene nanodisks with diameters of D1 = 150 nm and D2 = 180 nm
are placed on the top surface of two dielectric layers with thicknesses of H1 = 60 nm and
H2 = 1.5 µm, respectively. The periodicity P of the structure is 400 nm.
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Figure 1. (a) Sketch of the proposed graphene-based absorber. (b) Top view of lower graphene
nanodisk arrays.

The two dielectric layers are regarded as lossless, and the permittivity is 1.96 [18]. The per-
mittivity of gold follows the Drude model, with a plasma frequency of ωp = 1.37× 1016 s−1

and damping constant of ωτ = 1.23 × 1014 s−1 [19]. The conductivity of graphene includes
inter-band transition and intra-band transition, which can be approximately expressed
with the Kubo formula [20–22]

σω = 2e2kBT
π}2

i
ω+iτ−1 ln

[
2 cosh

(
EF

2kBT

)]
+

e2

4}

[
1
2 + 1
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4}

[
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] (1)

where e corresponds to the elementary charge, kB to the Boltzmann constant, } to the
reduced Planck constant, T to the temperature, EF is the Fermi level, ω is the photon
frequency in vacuum, and τ = µEF/

(
ev2

F
)

is the carrier relaxation time with the Fermi
velocity vF = 1 × 106 ms−1 and the DC mobility µ = 10000 cm2V−1s−1 [23]. According to
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the Pauli incompatibility principle, we only considered the contribution of the electronic
intra-band transition of graphene when the Fermi level EF >> kBT and EF >> }ω, so the
Kubo formula can be approximately simplified the following Drude formula [23,24]

σω =
e2EF

π}2
i

ω + iτ−1 (2)

The numerical simulation is calculated by mature commercial COMSOL software
(5.4, Stockholm, Sweden) based on the finite element method [25]. The absorptance can be
written as A = 1 – R − T, where R and T are the reflectivity and transmittance, respectively.
The gold substrate is thick enough so that the energy of the incident light cannot be
transmitted. Thus, the absorption can be simplified as A = 1 − R. The perfect absorption
A = 1 can be achieved when the impedance of the structure is matched with the free space
impedance [26].

3. Results

The absorption spectra of the graphene structure with the non-concentric bilayer are
shown in Figure 2a. The grey-solid, red-dashed, and blue-dashed curves correspond to
the absorption of the proposed absorber structure with the combination of two nanolayers,
only a lower nanolayer, and only an upper nanolayer, respectively. The Fermi levels of
the upper and lower nanodisks are set as 0.53 eV and 0.5 eV, respectively. It can be seen
that the absorption spectra of the designed structure have two perfect absorption peaks
at λA = 10.4 µm and λB = 13.6 µm. It can be seen the whole absorption spectra arises from
the spectral superposition of the upper and lower graphene nanodisks, evidenced by the
dashed line overlapping completely with the solid line. The physics of the structural perfect
absorption can be understood by analyzing the normalized surface impedance [26]:

Z =

√√√√ (1 + S11)
2 − S2

21

(1 − S11)
2 − S2

21

, (3)

where S11 and S21 are used to express the reflection coefficient and transmission coefficient,
respectively. Figure 2b shows the normalized impedance diagram. For the two absorption
peaks, the real part of the effective impedance is close to 1, while the imaginary part is close
to 0, which means the effective impedance of the structure can perfectly match the free
space impedance and produce perfect absorption at the two resonance wavelengths.
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Figure 2. (a) The absorption spectrogram of non−concentric graphene−based absorber, where
the red dashed line, blue dashed lines, and gray solid line represent the absorption of the upper
nano−disk, lower nano−disk, and whole structure, respectively. (b) Variation diagram of normalized
effective surface impedance with wavelength, where the gray curve and red curve are the real part
and imaginary part of impedance, respectively. The horizontal blue dotted line indicates that the
impedance value is 1, and the vertical blue dotted line is the corresponding position of absorption
peaks A and B, respectively.
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Furthermore, we drew the normalized electric-field profiles of modes A (Figure 3a,c)
and B (Figure 3b,d). Obviously, the electric field is highly symmetrically concentrated at the
edge of the nanodisks, which indicates the two absorption peaks are from the contribution
of the dipole resonance of the corresponding graphene nanodisk [27]. Furthermore, there
is no near-field coupling between the double-layer graphene, which is another important
element, giving rise to nearly perfect absorption.
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The suitable thickness of the dielectric layer is the key factor for matching the impedance
of the absorber. In order to realize efficient absorption of the incident waves, the impedance
of the absorber should be perfectly matched with the free space impedance [26]. Absorption
spectra as a function of the thickness H2 of the lower dielectric layer is studied. As can be
seen from Figure 4a, the positions of the two absorption peaks are basically unchanged with
the increase of thickness H2 of the lower dielectric layer. The reason for this is Fabry–Perot
effects in the second insulator layer with thickness H2. Figure 4b shows the relationship
between the maximum absorption of peaks A and B and the thickness H2 of the lower
dielectric layer. It is found that the maximum absorption of peaks A and B increase first
and then decrease with the increase in the thickness H2, and both reach the maximum
absorption at H2 = 1.5 µm. Thus, in this work, H2 = 1.5 µm is selected, and a lot of incident
light are absorbed because the impedance of the absorber and the free space is matched
perfectly at this thickness.
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two absorption peaks as a function of H2.

In addition, the influence of the geometric parameters of the proposed absorber is
analyzed carefully. Figure 5 shows the absorption spectrum of the proposed absorber for
different structural parameters. From Figure 5a it can be seen that the absorption peak
A has a red-shift from 9.64 µm to 11.10 µm when the diameter D1 of the upper graphene
nanodisk changes from 130 nm to 170 nm. At the same time, the absorption peak B does
not move at all. However, in Figure 5b, absorption peak B has a red-shift from 12.82 µm to
14.45 µm when the diameter D2 of the lower graphene nanodisk changes from 160 nm to
200 nm, and absorption peak A still remains unchanged. The following principles can be
used to explain the phenomenon. Plasmon resonance occurs only when the energy of a
single graphene nanodisk satisfies the following relationship [28,29]

}ωp ≈
√

2α}cL1EF

π(ε1 + ε2)D
(4)

where α = e2/4πε0}c ≈ 1/13 accounts for the fine structure constant, } is the reduced
Planck constant, and c indicates the light speed in vacuum. L1 is a constant associated with
the symmetry of plasmons; ε1 and ε2 are the permittivity of the dielectrics above and below
the graphene, respectively; and D is the diameter of the graphene nanodisk. Therefore, we
can obtain the corresponding resonance wavelength from Equation (4), as follows:

λp ≈

√
2π3c}(ε1 + ε2)D

αL1EF
(5)

Evidently, the resonant wavelength has a positive correlation with the diameter of the
graphene disk. Therefore, absorption peaks A and B will red-shift with the increase of the
diameter of the corresponding graphene nanolayers, which is in good agreement with the
simulation in Figure 5a,b.

As seen from Figure 5c, the two absorption peaks have almost no major changes
with increasing H1 from 50 nm to 70 nm. The main reason for this is that the thickness of
dielectric H1 is far less than the operation wavelength of the structure, and the Fabry–Pérot
effect related to the top dielectric layer can be effectively prevented.

Figure 5d shows the effect of different periods P on the absorption spectrum. The
absorption peak A has only a tiny shift from 10.44 µm to 10.36 µm with the change of period
P from 350 nm to 500 nm. The effective dielectric constant of the insulating dielectric layer is
slightly reduced because of the increase of P at constant D2 [16]. According to Equation (5),
the absorption wavelength will blue-shift when the dielectric constant decreases. Compared
to absorption peak A, absorption peak B has a relatively obvious blue-shift from 13.76 µm
to 13.50 µm when P increases from 350 nm to 500 nm. This is because L1 is increased as
the ratio of the inner diameter to outer diameter of the ring decreases [28]. According to
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Equation (5), the resonance wavelength naturally decreases as L1 increases, thus absorption
peak B blue-shifts.
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graphene nanodisk, (b) diameters D2 of the lower graphene nanodisk, (c) thickness H1 of the upper
dielectric, and (d) the period P of the structure.

It is known that the absorption peaks of the designed absorber can be independently
tuned by varying the Fermi level of the corresponding graphene layer. Figure 6a reveals
the absorption spectra with different Fermi levels EF1. Peak A experiences a blue-shift
from 11.04 µm to 9.83 µm as the Fermi level EF1 varies from 0.47 eV to 0.59 eV, while peak
B remains unchanged. Figure 6b shows the absorption spectra changes with different
Fermi levels EF2. Contrary to Figure 6a, peak B carries out a blue-shift from 14.48 µm to
12.85 µm with the increase in the Fermi level EF2 from 0.44 eV to 0.56 eV, whereas peak
A remains constant. The absorption peaks shift to blue with the increase in the Fermi
levels of the corresponding graphene nanodisk, which can be explained as follows: The
shift of resonance frequency is determined by the imaginary part of graphene conductivity.
When the Fermi level increases, the imaginary part of graphene conductivity increases [26],
resulting in the red shift of the resonance frequency (namely resonance wavelengths shift
to blue). Moreover, the near-field coupling effect does not take place between the two
absorption peaks, and the absorption spectrum can be independently adjusted by only
changing the Fermi level of the corresponding graphene nanolayers. In addition, as can
be seen from Figure 6a,b, the two largest absorption peaks occur at EF1 = 0.56 eV and
EF2 = 0.53 eV, respectively, where the impedance of the absorber is perfectly matched with
the impedance of the free space [26]. Compared with the absorber with the metal structure,
the absorber based on graphene is capable of independently and freely adjusting the
absorption characteristics without the need for changing the structural parameters.
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Figure 6. The absorption spectra of the designed absorber with Fermi levels for (a) EF1 of the upper
graphene nanodisk and (b) EF2 of the lower graphene nanodisk.

The case of different polarized light incident obliquely is discussed in Figure 7a,b,
where we calculate the angle-resolved absorption spectra of the structure under TE and
TM polarized light, respectively. It can be intuitively seen that even if the incident angle is
large, the spectral position of the absorption peaks remains almost unchanged, and two
perfect absorption peaks can still be realized. Because the structure is highly symmetrical,
the absorption peak is not sensitive to the incident angle. The designed absorber has the
characteristics of independent adjustment, polarization independence, and wide-angle.
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Figure 7. Absorption spectra for (a) transverse electric wave (TE) polarization and (b) transverse
magnetic wave (TM) polarization as a function of the incidence angle.

4. Conclusions

A simple structure for an independently tunable dual-band perfect infrared absorber
based on non-concentric graphene nanodisk has been demonstrated. The two absorption
peaks originate from the dipole resonance mode formed by the corresponding graphene
nanodisk. Moreover, the near-unity absorption is because the impedance of the structure
matches the impedance of the free space at the wavelength corresponding to the absorption
peak. We analyzed the influence of the structural parameters on the absorption spectra. It is
shown that the absorption strength can be independently tuned by varying the Fermi levels
of graphene in the corresponding nanodisks. Furthermore, two perfect absorption peaks
can be obtained over a wide incident angle span, and are insensitive to the incident angle
for TE and TM polarizations. This proposed infrared absorber has potential applications in
optical detectors, tunable sensors, and band-pass filters.
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