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Abstract

Background: Prospective memory (PM) denotes the ability to remember to perform actions in the future. It has been
argued that standard laboratory paradigms fail to capture core aspects of PM.

Methodology/Principal Findings: We combined functional MRI, virtual reality, eye-tracking and verbal reports to explore
the dynamic allocation of neurocognitive processes during a naturalistic PM task where individuals performed errands in a
realistic model of their residential town. Based on eye movement data and verbal reports, we modeled PM as an iterative
loop of five sustained and transient phases: intention maintenance before target detection (TD), TD, intention maintenance
after TD, action, and switching, the latter representing the activation of a new intention in mind. The fMRI analyses revealed
continuous engagement of a top-down fronto-parietal network throughout the entire task, likely subserving goal
maintenance in mind. In addition, a shift was observed from a perceptual (occipital) system while searching for places to go,
to a mnemonic (temporo-parietal, fronto-hippocampal) system for remembering what actions to perform after TD.
Updating of the top-down fronto-parietal network occurred at both TD and switching, the latter likely also being
characterized by frontopolar activity.

Conclusion/Significance: Taken together, these findings show how brain systems complementary interact during real-
world PM, and support a more complete model of PM that can be applied to naturalistic PM tasks and that we named
PROspective MEmory DYnamic (PROMEDY) model because of its dynamics on both multi-phase iteration and the
interactions of distinct neurocognitive networks.
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Introduction

Neuroimaging studies have yielded much information about

task-induced functional brain changes in various domains of

cognition, but this has almost exclusively been accomplished by

using laboratory paradigms that hardly capture complex real-life

behavior. Here, our objective was to study the dynamic allocation

of neurocognitive processes during a naturalistic human activity

called upon in everyday life: prospective memory (PM). PM refers

to the ability to remember to perform previously planned actions

in the future, such as doing errands [1]. PM requires multiple

cognitive processes, such as attention, executive functions, and

retrospective memory [2,3]. PM has traditionally been described

as consisting of successive phases or components such as formation

of an intention – retention interval – recognition of the retrieval

cue (e.g., the optician store) – remembering that something has to

be done (prospective component per se of PM, e.g. something has to

be done in relation to the optician store) – remembering what to

do (retrospective component of PM, e.g., check out the price of a

specific pair of glasses) – compliance [3–5]. However, a reduced

number of components have usually been studied in behavioral

experiments (e.g., prospective and retrospective components) [6],

as well as in neuroimaging protocols (e.g., cue identification and

intention retrieval) [7]. In contrast to behavioral studies [8], to

date, only artificial computer-based laboratory tasks have been

used to reveal brain areas involved in PM. Moreover, most of these

tasks focused on the role of the frontopolar cortex in attentional

processes, which has been suggested to be a key component of PM

[5,7,9–14]. Recent methodological advances make it possible to

overcome some limitations of standard laboratory tasks by using

virtual reality (VR), where the subject is immersed in a virtual

environment and interacts with it by acting on its elements. VR

has been successfully used in combination with fMRI in a handful

of experiments to address questions regarding spatial navigation

and episodic memory [15,16], and a few behavioral studies have

used VR to examine PM [17].

We combined fMRI and a VR model that simulated the center

of the residential town of the subjects and asked them to perform

real-world errands within this environment. Each errand was

conceptualized as one PM task and the subjects were free to solve a

series of tasks within distinct routes in the order they found

appropriate. This more open and thereby more realistic
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environment of the VR model comes with the cost of making it

difficult to distinguish between various PM components and

processes. The joint use of on-line eye-tracking and post-scan

verbal reports has been proven helpful in overcoming this difficulty

when using VR [18,19]. The first step of the study was to

characterize different PM phases in a detailed model. By contrast,

in previous neuroimaging experiments a limited number of

components were identified and investigated [7]. Secondly, while

previous studies used VR to explore neural substrates of

independent and specific mental events (e.g., ‘‘planning future

movements with the vehicle’’, ‘‘watching moving traffic in the

environment’’) [16], our main aim was to elaborate a more

complete and systematic functional model of PM where different

neurocognitive networks would be engaged. Such a model may

better generalize to naturalistic prospective events that occur in

everyday life.

Materials and Methods

Ethics Statement
The study was approved by the ethics committee of Umeå

University. All participants gave written informed consent to

participate.

Subjects
Fourteen healthy subjects (mean age = 26.566.7 years old, 6

females), residents of the town of Umeå, Sweden, participated in

this study. All but one were right-handed and all had normal or

corrected-to-normal visual acuity. None of the subjects had a

history of neurological or psychiatric illness. None of the enrolled

individuals had any particular skill in navigation or orientation,

besides knowing their home town. Thus, we aimed at generalizing

to the general population rather than to some select population of

experts (e.g. taxi drivers).

General procedure
The day before scanning, the subjects were presented in

random order pictures of the places (taken from the VR

environment) together with their location on a map of the town

in order to confirm their knowledge of downtown Umeå and the

location of the places. They were not explicitly told that they had

to memorize them. The instructions were to observe each place

carefully because they might have to interact with it the day after

in the virtual environment. They were then led to a dummy

scanner and were familiarized with the apparatus (described

below) for a few minutes with a prospective memory task (that was

not part of the scanned session) for navigation and detection

abilities. On the next day, they were installed in the MR device.

They performed an encoding task in which they had to visualize

themselves performing the actions presented one by one in

random order (e.g., ‘‘Return a book to the library’’). Then,

following the T1-weighted MRI acquisition, they performed the

PM-VR task. A verbal protocol took place immediately after the

scanning session in another room (see below). Here we present the

results of the PM-VR experiment.

Apparatus
The virtual reality software system was based on Colosseum3D

[20], developed at VRlab, Umeå University, and was specifically

extended to handle the required devices and scenarios. The virtual

environment was based on a 3D-model of downtown Umeå, built

using AutodeskH 3ds MaxH and populated with interactive objects

to act as targets and triggers for the PM tasks. The system also

included extensive logging of every event and the possibility to

record and later play back an entire session including all available

input.

The eye-tracking system was integrated into MR-compatible

goggles (delivered by NordicNeuroLab, Bergen, Norway) mounted

on the MR head coil. The system uses an infrared light source and

a camera to produce a video signal (NTSC, 60 Hz, half frame) of

the eye that is analyzed by a computer to get the positions of the

pupil and corneal reflection. The gaze fixation point can then be

calculated at each time point, based on this data and calibration

data. Only movement of the right eye was recorded. Eye-tracking

data was incorporated directly into the logged data from the VR

environment and could therefore be projected onto the environ-

ment for later analyses.

A custom-made joystick (coupled optical 6-axis force-torque

transducer) was used (right hand) to navigate in the virtual

environment. The joystick enabled rotation and movement,

separately or as a combined maneuver, in all directions allowed

by the VR environment. A pistol-grip type of MR-compatible

button was used (left hand) to trigger each task event.

PM-VR task
The PM task was divided into five routes (Fig. 1B) and overall

there were 22 tasks to be performed, 4 or 5 per route. At the start

of each route, instructions were displayed on the screen describing

the tasks to be performed. For example, the instructions for the

first route were as follows: ‘‘Your task is to go to Rådhustorget (City

Hall Square) via Kungsgatan (name of a street) and do the following

along the way:

– Check the price of Ray-Ban glasses at Synoptik or Synsam

– Look through the window of Ljungs ur (jewelry store)

– Throw a candy wrapper in the trashcan

– Pick up a copy of today’s Metro (free newspaper)

Consider yourself as already having the items needed to complete

the tasks. Press the button with the left index finger to move on’’.

When the subject had read the tasks, he or she pressed the

button of the pistol-grip, and was enabled to navigate in the VR

environment using the joystick. When detecting a target (e.g., a

phone booth), he or she was instructed to navigate towards it and

press the button when reaching the target, representing the action

to be performed. An animation showing the action was then

automatically displayed (e.g., making a phone call). When the

participant successfully performed all tasks of one route, an ‘‘end’’

text was displayed on the screen. Before the first route, in between

the routes, and at the end of the VR task, a calibration procedure

was completed to coordinate gaze and screen location. There was

no time limit for the VR task. The subjects were free to solve the

tasks in the order they found appropriate (the tasks were not

presented in any particular order). If a subject met some difficulty

and was unable to complete a route (e.g., he or she could not find a

place, or forgot a PM task), the experimenters stopped the ongoing

route and shifted to the next one (frequency ,3% of all tasks for all

subjects).

Directly after the fMRI session, the subjects completed a

verbal report protocol session [18,21]. They were installed in an

adjacent room and first performed a number of ‘‘warm-up’’

exercises for ‘‘thinking aloud’’, such as verbalizing arithmetic

and geometric problem solutions. A movie of their own

performance during scanning was then displayed on a screen.

Their task was to describe their thoughts and actions while they

were performing the PM task in as much detail as possible. The

movie was paused or rewound when necessary to capture the full

details of the reports. The experimenter interrupted the subject’s

Prospective Memory and fMRI
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reports as little as possible, only asking follow-up questions to

clarify statements when necessary. Importantly, in order not to

influence their reports, the movie did not contain their eye-

tracking data. The verbal material was recorded and later

synchronized with the VR performance and eye-movements

recordings in order to extract the onsets of interest. The verbal

report protocol served two purposes: to identify the subject’s

intentions as they proceeded through the PM tasks and to verify

the accuracy of the fixation as representing detection of the

target (see Movie S1).

Identification of 5 PM phases
We identified five successive time-periods of interest, corre-

sponding to different PM phases (Fig. 1). The intention maintenance

phase was defined as the time from when a subject made the

decision to perform a given action until the effective realization of

that action. The detailed post-experiment reports allowed us to

split this phase into two distinct phases separated by target

detection (TD), since for most of the PM tasks active intention was

not triggered by the perception of the target but was self-initiated

during the period preceding TD (Table S1, and Movie S1 for an

Figure 1. Illustration of the virtual reality PM task and the multi-phase iterative loop of PM. (A) Each PM task (e.g., buy a hotdog) was
characterized as a loop composed of 5 phases: (1) Intention maintenance before target detection (TD): the subject is actively looking for the hotdog
stand, (2) TD: the subject detects the stand (the yellow dot represents gaze fixation via the eye-tracking system), (3) Intention maintenance after TD:
the subject is heading towards the stand with the intention of buying a hotdog, (4) Action: the subject presses the button to indicate that he or she
buys a hotdog, (5) Switching: the task is terminated and the subject activates another intention in mind; ‘‘End’’ was used instead of switching at the
end of the last task of a route performed by the subject. Note that ‘‘Roaming’’ replaced Intention maintenance before TD (phase 1) in cases where no
intention was activated by the subject but was triggered by the perception of the target. Animation occurred when the subject pressed the button to
indicate the execution of the task and displayed the action. (B) Showing of the five routes (depicted in yellow) that composed the task (zoom of
Umeå center, GoogleTM Earth, version 5.0 beta, Google, Inc.). Each route contained 4 or 5 tasks to accomplish in the order the subjects found
appropriate. For some tasks two targets were active in the virtual environment (e.g., two optician stores), the subjects being able to choose either
target, resulting in other possible routes (e.g., dotted line) and greater flexibility of the PM task. (C) The table indicates the different conditions used in
the present experiment and their characteristics. ‘‘Planning’’ occurred at the beginning of each route, where the instructions were shown to the
subject, who in turn pressed a button (‘‘Planning offset’’) to start the route.
doi:10.1371/journal.pone.0013304.g001
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example of each occurrence). Thus, there was a first intention

maintenance phase which lasted from the end of the previous task

until TD, and a second intention maintenance phase which lasted

from TD until action. While the presence of a delay before TD has

previously been considered in neuroimaging PM studies [7], a

maintenance phase between TD and action has not, despite the

fact that such occurrences are typical in real-world situations. TD

itself, which corresponds to the retrieval of the prospective

component of PM (remembering that something has to be done

in relation to a specific target), was defined as the time-point when

the gaze was positioned on the target for the first time. These time-

points were confirmed by the subjects in their verbal reports as

constituting the times when they did recognize the targets as being

prospective cues. Action, corresponding to the retrieval of the

retrospective component of PM (i.e., what has to be done in

relation to the target), was defined as the time when the subject

pressed a button to indicate that he or she was performing the task.

Finally, the switching phase was defined as the time-point when one

task was finished and the subject had to switch focus from the just

executed task and activate a new intention. Taken together, PM

processing was characterized in terms of iterative loops consisting

of the five successive phases, allowing the activation of the PM

tasks in a continuous manner. Other phases that were not related

to any active prospective memory processing were used as

baselines in the neuroimaging analyses. Theses phases are

described in the statistical analyses section below and in Fig. 1A

and 1C.

Neuroimaging procedure
The current fMRI study was carried out on a Philips 3.0 tesla

Achieva using an 8 channel SENSE head coil. For the functional

scanning the following parameters were used: repetition time:

1512 ms for three subjects and 1500 ms for the remaining subjects

(31 slices acquired), echo time: 30 ms, flip angle: 70 degrees, field

of view: 22622 cm, 64664 matrix and 4.65 mm slice thickness.

To avoid signals arising from progressive saturation, ten dummy

scans were performed prior to image acquisition. The PM task was

designed to be run within one session. However, 2 sessions were

needed for 5 subjects because of the limited number of scans

allowed per session by the scanner (1000) or because of minor

technical problems that did not affect the experiment; this was

smoothly done in-between 2 routes, and the second session started

with a calibration procedure to coordinate gaze and screen

location. Structural high-resolution T1 images were also acquired.

For the T1-weighted images a 3D turbo field-echo sequence was

used with the following parameters: repetition time: 10.5 ms, echo

time: 5 ms, flip angle: 8 degrees, and field of view: 24624 cm. 170

sagittal slices with a slice thickness of 1 mm were acquired in

3366332 matrices and reconstructed to 8006800 matrices. All

images were sent to a PC and converted to Analyze format.

Statistical analyses
Functional images were pre-processed and analyzed using

SPM5 (Statistical Parametric Mapping, Wellcome Trust Centre

for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) imple-

mented in Matlab 7.6 (Mathworks Inc, MA, US). After correcting

for differences in slice timing within each image volume, all images

were realigned to the first image volume acquired, then

normalized to standard anatomic space defined by the MNI atlas,

and finally spatially smoothed using an 8.0-mm full-width at half-

maximum Gaussian filter kernel.

The two ‘‘intention maintenance’’ phases of PM were modeled

as a fixed response waveform (box-car), whereas ‘‘TD’’, ‘‘action’’

and ‘‘switching’’ were modeled as delta functions. Different

baselines were used to investigate the main effect of each variable

of interest (see Fig. 1C). The two intention maintenance phases

were contrasted with periods when the participants did not have

any active intention in mind (‘‘roaming’’), which notably occurred

instead of ‘‘intention maintenance before TD’’ as indicated in

Fig. 1A (this controlled for hand movements with the joystick), as

well as the ‘‘animation’’ phase after the action was done and where

an automatic animation symbolizing this action was displayed (this

controlled for visual processing, Fig. 1A). A conjunction analysis

(conjunction null approach) [22] and a direct comparison between

the two maintenance phases were performed. ‘‘Action’’ was

contrasted with the ‘‘instructions’ offset’’, when the subjects were

ready to start a route by pressing the button (this controlled for the

button press occurring at action, Fig. 1C). Both ‘‘TD’’ and

‘‘switching’’ were contrasted with the ‘‘end’’ events (Fig. 1A and

1C), corresponding to the end of the last task of each route, where

the subject did not have any remaining intention to activate and

where an ‘‘End’’ text was displayed before a new calibration

procedure. Since eye-tracking data was not available for 2 subjects,

analysis of TD was performed on 12 subjects, as well as the direct

comparisons between the two intention maintenance phases. Also,

‘‘roaming’’ data was not available for two other subjects.

Consequently, the conjunction analysis was performed on 10

subjects. The data of all 14 subjects were included for the other

contrasts (‘‘action’’ versus ‘‘instructions’ offset’’, and ‘‘switching’’

versus ‘‘end’’). All models were convolved with a ‘‘canonical’’

hemodynamic response function as implemented in SPM5.

Covariates of no interest included the six realignment parameters

to account for signal-changes related to inadvertent head motion.

Single-subject statistical contrasts were set up using the general

linear model and group data were analyzed with a random-effects

model. Using the explicit masking option of SPM5, contrast

images obtained at the subject-level analyses were masked so as to

include only gray-matter voxels, using the binarized mean T1-

weighted image of the subjects. Statistical parametric maps were

generated voxel by voxel using t statistics to identify regions

activated according to the model. Results were considered

significant at p,.001 uncorrected for multiple comparisons. Also,

based on anatomical pre-defined hypotheses (frontopolar cortex

and medial temporal lobe (MTL)) as well as low number of

subjects and events (predictive of low statistical power), we also

used the lenient threshold of p,.005.

Results were displayed at p,.005 for illustrative purposes using

Anatomist (BrainVISA/Anatomist; http://www.brainvisa.info)

and MRIcron (http://www.sph.sc.edu/comd/rorden/mricron).

Histogram plots showing magnitude of activations (beta values)

were also displayed on figures together with brain maps. For that

purpose, using an in-house program (DataZ), mean beta values

were extracted for all subjects using a 5mm radius sphere around

activation peaks of interest.

Results

Behavioral results
All 14 subjects accomplished almost all 22 errands. Three

subjects forgot to perform one task, and four failed to find a target.

Also, one subject performed the same task twice but at two

different places. Table S1 displays further information regarding

behavior and the number of occurrences taken into account for

each condition subject by subject and time duration when

appropriate. We discarded the data for one route for subject 1

and two routes for subject 2 due to imperfect understanding of the

instructions. We also discarded from one to five ‘‘intention

maintenance before TD’’ events due to the difficulty met by some

Prospective Memory and fMRI
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subjects to find those specific targets. Behavioral analyses showed

that for most of the PM tasks intention was self-initiated by the

subjects rather than triggered by the perception of the targets.

Indeed, the difference between the number of ‘‘full PM loops’’

(including self-initiated intention, i.e. with intention maintenance

before TD) and the number of ‘‘half PM loops’’ (when the

intention was triggered by the perception of the target, i.e. without

any intention maintenance before TD) was significant [t-test

t(22) = 10.03, p,.0001].

The eye-tracking data, available for 12 subjects, allowed us to

further analyze the distance covered by the gaze during intention

maintenance before and after TD (Fig. 2). The results showed that

all subjects covered more distance with their eyes before than after

TD, regardless of time duration [paired t-test t(11) = 7.3, p,.0001],

reflecting a more exploratory visual-search behavior before TD.

Neuroimaging results
We addressed both similarities and differences between the two

intention maintenance periods, occurring before and after TD. In

order to reveal brain areas activated during both periods, we

performed a conjunction analysis across the two intention

maintenance phases that were initially contrasted with the

‘‘roaming’’ and ‘‘animation’’ phases (see Methods). This analysis

revealed sustained activity of the frontal eye fields (FEF) and the

superior parietal cortex (Fig. 2A, Table S2). These findings were

further confirmed by the main effects of the two intention

maintenance phases, where activity was found in these regions

(Table S2).

The direct contrast between intention maintenance before and

after TD showed a stronger activation of the occipital cortex

before TD (Fig. 2B, Table S2). As suggested by the eye-tracking

Figure 2. Similarities and differences in brain activity during the two intention maintenance phases. (A) A conjunction analysis showed
that both the frontal eye fields (a) and the superior parietal cortex (b) were activated during the two intention maintenance phases (peak coordinates
for activation plots correspond to those from the conjunction analysis). The comparison between these two phases showed that (B) the occipital
cortex was more activated before than after TD (subpeak of the first cluster displayed in Table S2), and the analysis of the eye-tracking data
demonstrated that the gaze covered more distance before than after TD (arbitrary units, independent of time duration); (C) the left inferior parietal
cortex (angular gyrus) was more strongly activity after than before TD (subpeak of the second cluster displayed in Table S2). Activations, displayed at
p,.005 for illustrative purposes, are overlaid on a 3-dimensional view of the MNI template. The Y-axis of the graphs (A) and (C) represents beta
values.
doi:10.1371/journal.pone.0013304.g002
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results reported above, this was likely caused by exploratory visual

search before TD, in response to the goal of detecting a specific

target in the environment.

After TD, sustained activity was more pronounced in the left

inferior parietal cortex (angular gyrus). At p,.005, additional

activity was found in the left intraparietal sulcus (Fig. 2C, Table

S2).

The two intention maintenance phases were dissociated by TD,

which was associated with increased transient activity in the left

temporo-parietal junction (TPJ), occipital areas, FEF and superior

parietal cortex. A small cluster of activity was found in the right

entorhinal cortex (Fig. 3A, Table S2).

At action, transient activity was observed in several regions of

the brain, notably in the ventrolateral prefrontal cortex and the

MTL, including the hippocampus with a left-sided preference

(Fig. 3B, Table S2). Since the action phase corresponds to the

retrospective component of PM, brain areas linked to episodic

memory, such as prefrontal regions and the hippocampus, were

expected [23].

Finally, we analyzed the neuroimaging data corresponding to

the switching phase. The switching phase was defined as the time

point (event) in between two PM tasks, where the previous task

ended (end of an animation) and when a new intention would

likely be activated. Switching was characterized by transient

activity in the dorsal attentional system (FEF, superior parietal

cortex) and ventral areas notably the TPJ (Fig. 3C, Table S2). At

p,.005, additional activity was found in the right entorhinal

cortex (Table S2). Frontopolar activity (BA 10), which was strongly

expected in the present experiment, was revealed at p,.005 but

was not significant at p,.001.

Discussion

A VR-based PM task was developed to approximate real-world

experiences and allowed a more comprehensive examination of

PM compared with the laboratory tasks used in previous

neuroimaging research. Importantly, eye-tracking and post-

scanning verbal assessment proved decisive in decomposing PM

into subcomponents. We propose a neurocognitive model of PM,

the PROspective MEmory DYnamic (PROMEDY) model, shaped

as a multi-phase iterative loop, consisting of two intention

maintenance phases, TD, action and switching (Fig. 4), with these

phases involving an interactive engagement of perceptual,

attentional and mnemonic networks as well as updating as

developed below.

For most of the PM tasks, when the subjects made the decision

to accomplish a PM task, the goal was actively maintained in mind

until the effective realization of that task. Surprisingly, we did not

find the typical frontopolar PFC (BA 10) engagement as in

previous laboratory-based PM experiments, supposed to underpin

intention maintenance [12] (see also discussion below). Instead we

revealed the activation of an attentional network primarily shown

in experiments on attention: the visual top-down attentional

network (or dorsal system) [24] in which the FEF and the superior

parietal cortex constitute key regions (see Fig. 2A and Table S2,

conjunction analysis). As recently suggested, this network would

also be engaged when attention is directed towards episodic

memory retrieval (or attention to memory - AtoM) to support

maintenance of goals in mind [25]. Thus, top-down attentional

mechanisms would govern PM during almost the entire task until

the action can be realized, while other additional neurocognitive

systems were engaged, separately during each intention mainte-

nance period.

Indeed, when comparing the two maintenance periods, it

appeared that a perceptual (visual) system was more engaged

before the target of interest was found, and inferior parietal areas

were more activated in-between TD and action (Fig. 2B and 2C,

Table S2, comparisons between the two intention maintenance

phases). While the differential activation of the occipital areas is

most likely linked to the search of the target (supported by the eye

movement data, see Fig. 2B), the involvement of the inferior

parietal cortex after TD was less expected. The function of this

Figure 3. Brain areas activated at TD, action, and switching in comparison with their respective baselines. Notes: FEF = Frontal eye
fields; TPJ = Temporo-parietal junction; MTL = Medial temporal lobe; VLPFC = Ventrolateral prefrontal cortex; F pole = Frontal pole. Activations are
overlaid on a 3-dimensional view and sections of the MNI template. *These activations were significant at p,.005 but not significant at p,.001.
doi:10.1371/journal.pone.0013304.g003
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region is an ongoing matter of disagreement, and at least three

different views have been suggested [26]. First, this parietal region

could have a role in bottom-up AtoM. In contrast with top-down

AtoM, where internal attention is directed towards the external

world, attention is captured by an external cue that matches with

the mental representation of what is to be recovered [25]. Second,

it has been claimed that this region would subserve the episodic

buffer sub-system of working memory, defined as a system able to

temporarily maintain bound episodic information in working

memory [27]. Third, this region may play the role of a mnemonic

accumulator, such that it accumulates evidence until a criterion for

the decision-making of recognition is reached [28]. A point that

has been largely neglected in this debate is the exact location,

within the inferior parietal cortex, of the three suggested systems.

The fact that the angular gyrus and, less strongly, the intraparietal

cortex were activated in a sustained manner between TD and

action indicates that they may serve as memory buffers and/or

accumulators rather than bottom-up AtoM, the latter being more

likely to intervene in a transient manner. Regarding the episodic

buffer hypothesis, a meta-analysis [29] showed that it is partly

located in the angular gyrus. Concerning the mnemonic

accumulator hypothesis, a review of the literature showed evidence

that the intraparietal sulcus was mainly implicated [28]. Thus, the

episodic buffer, underpinned by the angular gyrus, would mainly

be involved during intention maintenance after TD, allowing

maintenance of episodic information in relation to the target until

the action can be performed. Although the activity of the

intraparietal sulcus was revealed at a lenient threshold and would

thus need further investigation, its function of information

accumulation would fit well within the present construct of PM.

This shift between the perceptual and mnemonic-like systems

occurred when the target of interest was recognized, as determined

by both the eye-tracking system and the verbal protocol. The most

significant activity at TD appeared in the left TPJ. The occipital

cortex was also activated, and less strongly the entorhinal/perirhinal

cortex (see Fig. 3A, Table S2, contrast between TD and End events).

At this time point, one can reasonably argue that the recognition of

the target is based on the direct and automatic match between the

mental set of what has to be retrieved and the present information in

the environment. This cognitive mechanism corresponds to the

definition of bottom-up AtoM, where information is transmitted

from the occipital cortex and the MTL to the inferior parietal cortex

[25]. While the AtoM model did not specify any precise location of

bottom-up mechanisms within the inferior parietal lobe, according

to the attentional theory [24], the TPJ is supposed to respond when

a target is detected, although that theory suggests strong

lateralization to the right hemisphere. In contrast, a meta-analysis

revealed that this structure is related to successful episodic retrieval,

but in the left hemisphere [30]. Thus, our findings corroborate this

distinction between the attentional and AtoM models, with a

process-based hemispheric asymmetry where the left TPJ would be

engaged in attention directed toward memory [31]. In addition, at

this time-point transient activation was observed in the FEF and the

superior parietal cortex (Fig. 3A, Table S2), indicating interactions

between the dorsal and ventral systems, where the goal-content of

the dorsal system would be modulated via an updating mechanism

supported by the TPJ [24,25,32], likely signaling that a part of the

goal (find the target) has been accomplished (Fig. 5).

When the subjects had detected and arrived close enough to the

target, they were enabled to execute the task. Despite the fact that

Figure 4. PROMEDY (PROspective MEmory DYnamic) model. The multi-phase iterative loop represents the phases involved while performing
a PM task. To each phase we assigned one or more cognitive systems with their associated brain regions. The present experiment revealed that most
of the PM intentions were self-initiated, resulting in an active intention maintenance phase before target detection; however it should be noted that a
few intentions were triggered by the perception of the targets, characterized then by the absence of the first intention maintenance period.
doi:10.1371/journal.pone.0013304.g004
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the action phase was reduced to a single button press (a feature of

the task that should be improved in future experiments), brain

areas known to be involved in episodic memory retrieval were

activated, notably the ventrolateral prefrontal cortex and regions

of the medial temporal lobe (MTL) including the hippocampus

(see Fig. 3B and Table S2, contrast between Action and Planning

offset) [23]. The hippocampus has been strongly related to spatial

memory, in humans and non-humans. Cellular recordings in the

hippocampus in relation to spatial memory while rodents are

freely moving in natural-like environments such as mazes have

revealed insights into complex brain-behavior relations [33,34].

VR studies in epileptic patients along with cellular recordings

showed hippocampal neuronal firing for specific places [35]. We,

too, observed hippocampal activity when subjects were located at

specific places, but the current PM model indicates that in

humans, hippocampal activity does not only reflect spatial

information processing but the use of such information for

episodic retrieval [36]. Activity in the hippocampus was mainly

left-sided, which may indicate and further support the dissociation

between the left episodic hippocampus and right spatial hippocam-

pus [37]. The assumption that episodic memory was involved at

Action is further supported by the fact that in the encoding phase,

the subjects had to visualize themselves performing the tasks,

elaborating then a representation for each action that was likely re-

activated in the PM-VR experiment, and more particularly at

Action.

In the neuroimaging literature, switching (or shifting) has been

the second most present process together with intention mainte-

nance in non-naturalistic PM experiments [38]. Indeed, in such

tasks, and in contrast to the present experiment, PM is structured

as a task to do instead of another task (the so-called ongoing task) and

where the subjects have to immediately inhibit the ongoing activity

in order to respond to a predefined prospective cue when it

appears, resulting in i) the absence of an intention maintenance

phase in between TD and action that is however frequent in real

life, ii) the possible confound of target detection, execution and

switching mechanism per se, which has made difficult the

interpretation of BA 10 involvement in PM. In the current task

(and most real-world PM tasks), switching is one phase of PM that

makes possible the deactivation of a just-performed task and the

activation of a new intention in mind. Interestingly, this was the

only time point of the task where a frontopolar (BA 10) area was

detected, however at a lenient threshold, which needs to be

confirmed with other experiments (see Fig. 3C and Table S2,

contrast between Switching and End events). Its hypothesized

presence would nonetheless be supportive of its specific role in

‘‘branching’’ control, allowing attention shifting between tasks

[39]. The TPJ and superior parietal cortex were also activated at

switching (Fig. 3C and Table S2), indicating an updating process

as for TD (Fig. 5), such that information that the task has been

successfully accomplished is transmitted to the dorsal system,

updating its content and likely inducing the activation of a new

goal.

The combination of virtual reality fMRI, eye-tracking, and post-

scanning verbal assessment were decisive in elaborating a more

complete and realistic neuro-functional model of PM, PRO-

MEDY (Fig. 4), defined as a multi-phase iterative loop with

engagement of top-down attention throughout one PM task,

allowing maintenance of a goal in mind, and a shift between

perceptual processing (visual search) and mnemonic systems

(episodic memory, episodic buffer in working memory) when the

target was recognized. As for naturalistic studies of retrospective

episodic memory (autobiographical memory), spatial navigation,

and future thinking, using a combination of methods allowed us to

Figure 5. Activity of the temporo-parietal junction and
superior parietal cortex. Peak coordinates corresponding to the
temporo-parietal junction were taken from the contrast ‘‘TD versus End
events’’. Peak coordinates corresponding to the superior parietal cortex
were taken from the conjunction analysis. In both ROIs, activity was
significantly higher at TD and switching than action (paired t-tests,
superior parietal regions: TD versus action t(11) = 2.48, p = .03, and
switching versus action t(13) = 2.25, p = .04; TPJ: TD versus action
t(11) = 3.02, p = .01, and switching versus action t(13) = 4.21, p = .001).
The Y-axis represents the difference in activity (measured in beta values)
between the condition of interest and its baseline.
doi:10.1371/journal.pone.0013304.g005
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contribute to the understanding of how the brain dynamically

guides PM functioning in real-life. The proposed model may

constitute a basis for future studies on normal and impaired PM, as

we believe it can be applied to most real-world activity-based

prospective events. This model is flexible and is prone to

adjustments and improvements.

Supporting Information

Table S1 Subject-by-subject behavioral results.

Found at: doi:10.1371/journal.pone.0013304.s001 (0.07 MB

DOC)

Table S2 Activations during the PM phases.

Found at: doi:10.1371/journal.pone.0013304.s002 (0.17 MB

DOC)

Movie S1 Overlay of 1) the VR environment in which a subject

is performing two PM tasks (‘‘Check the restaurant Rost’’, and

‘‘Buy a hotdog’’), 2) the eye-tracking data (yellow dot; the movie

has intentionally been suspended for 5 seconds at both target

detections), 3) the verbal reports from the subject in Swedish

(subtitled in English), and 4) a movie of the brain areas activated at

each PM phase (FEF = frontal eye fields, F pole = frontal pole (BA

10), HCP = hippocampus, IPS = intra-parietal sulcus, Lat Tem-

p. = lateral temporal cortex, Occ. = occipital cortex, Paracing. = -

paracingulate cortex, Sup Par. = superior parietal cortex,

TPJ = temporo-parietal junction, VLPFC = ventrolateral prefron-

tal cortex).

Found at: doi:10.1371/journal.pone.0013304.s003 (12.92 MB

MOV)
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