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Abstract 24 

The hallmark of severe COVID-19 involves systemic cytokine storm and multi-organ 25 

failure including testicular injury and germ cell depletion. The ACE2 receptor is also 26 

expressed in the resident testicular cells however, SARS-CoV-2 infection and 27 

mechanisms of testicular injury are not fully understood. The testicular injury can likely 28 

result either from direct virus infection of resident cells or by exposure to systemic 29 

inflammatory mediators or virus antigens. We here characterized SARS-CoV-2 infection 30 

in different human testicular 2D and 3D models including primary Sertoli cells, Leydig 31 

cells, mixed seminiferous tubule cells (STC), and 3D human testicular organoids (HTO). 32 

Data shows that SARS-CoV-2 does not establish a productive infection in any testicular 33 

cell types. However, exposure of STC and HTO to inflammatory supernatant from infected 34 

airway epithelial cells and COVID-19 plasma depicted a significant decrease in cell 35 

viability and death of undifferentiated spermatogonia. Further, exposure to only SARS-36 

CoV-2 envelope protein, but not Spike or nucleocapsid proteins led to cytopathic effects 37 

on testicular cells that was dependent on the TLR2 receptor. A similar trend was observed 38 

in the K18h-ACE2 mouse model which revealed gross pathology in the absence of virus 39 

replication in the testis. Collectively, data strongly indicates that the testicular injury is not 40 

due to direct infection of SARS-CoV-2 but more likely an indirect effect of exposure to 41 

systemic inflammation or SARS-CoV-2 antigens. Data also provide novel insights into the 42 

mechanism of testicular injury and could explain the clinical manifestation of testicular 43 

symptoms associated with severe COVID-19. 44 

 45 

 46 
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Introduction: 47 

SARS coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus, emerged in China in 48 

December 2019 and has since evolved into different variants and spread across the globe 49 

causing mild to severe coronavirus disease known as COVID-19. SARS-CoV-2 infects 50 

susceptible human cells by binding to Angiotensin-Converting Enzyme 2 (ACE2) and 51 

causes a range of clinical symptoms, which can progress to severe COVID-19 based on 52 

vaccination status and co-morbidities (1, 2). In addition to the acute lung injury with diffuse 53 

alveolar damage, other hallmarks of severe COVID-19 include multi-organ injury including 54 

vascular inflammation, cardiac complications, and kidney failure (3, 4). Epidemiological 55 

studies suggest that males irrespective of age and co-morbid conditions are 56 

disproportionately affected and present a higher case-to-fatality ratio than females (5).   57 

 58 

Recent pathological and clinical findings provide evidence that a large percentage of 59 

males with COVID-19 report mild orchitis (inflammation of the testis associated with pain 60 

and discomfort) as one of the symptoms (6). Further, postmortem analysis of testis from 61 

COVID-19 patients display signs of mild to severe testicular pathology, including testicular 62 

swelling, tubular injury, germ cell and LC depletion, and leukocyte infiltration in the 63 

interstitium (5, 7, 8). In addition, alterations in the male fertility parameters like reduced 64 

sperm count, reduced testosterone levels, and dysregulated ratio of testosterone to LH 65 

(T/LH) have been reported in  COVID-19 patients (9, 10). However, while the virus has 66 

not been detected in the semen in several studies (11, 12), one study reported the 67 

presence of low levels of SARS-CoV-2 RNA in the semen of 4/15 of patients at the acute 68 

stage of infection and in 2/23 patients who were recovering from COVID-19 (13). Although 69 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508904
http://creativecommons.org/licenses/by-nc-nd/4.0/


the presence of viral RNA is not direct evidence of productive infection of SARS-CoV-2 70 

in the testis, and the ability of the virus to gain access to the testis may be a rare event, 71 

these data do suggest that testicular injury is one of the complications of COVID-19.  72 

 73 

SARS-CoV-2 viral replication and pathogenesis in extra-pulmonary organs are currently 74 

not well understood. Emerging data demonstrate the presence of low-level viral RNA and 75 

virus-like particles (VLPs) in many organs like the heart, kidney, testis, intestine, and brain 76 

(8, 14–16). SARS-CoV-2 VLPs, comprised of all major structural proteins including Spike 77 

(S), Nucleocapsid (N), Membrane (M), and Envelope (E), are abundantly secreted by the 78 

infected cells and can enter cells just like  SARS-CoV-2 infectious virions (17). In addition, 79 

more recent studies detected SARS-CoV-2 proteins like S, N, and open reading frame 8 80 

(ORF8) in the plasma of infected individuals illustrating antigenemia as one of the 81 

hallmarks of SARS-CoV-2 infection (18, 19). Exposure of both S and N proteins induced 82 

pro-inflammatory cytokines including interleukin 6 (IL-6) and tumor necrosis factor-alpha 83 

(TNF-) in human macrophages (20, 21). It is not known if the E protein is also secreted 84 

in the bloodstream, but it is shown to form cation channels in the lipid bilayer and trigger 85 

the hyperinflammatory response in human macrophages and mice (22). While specific 86 

mechanisms by which SARS-CoV-2 cause testicular injury are still being characterized, 87 

the cytokine storm is considered to be the main driving factor of damage to organs other 88 

than lungs in severe COVID-19 patients (23).  The testicular inflammation can likely result 89 

either from direct virus infection of target cells or by exposure to systemic inflammatory 90 

mediators or virus antigens.  91 

 92 
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In humans, testis show a very high level of constitutive gene expression of angiotensin 93 

converting enzyme 2 (ACE2) that regulates testosterone production and interstitial fluid 94 

volume via modulating conversion of Angiotensin II to Angiotensin I (24, 25). The single-95 

cell RNA-sequencing datasets from human testes revealed high expression of ACE2 in  96 

undifferentiated spermatogonia including spermatogonia stem cells (SSC), Leydig (LC), 97 

and Sertoli cells (SC) (26). However, although transmembrane serine protease 2 98 

(TMPRSS2) is expressed in most of the cell types in the body, there are conflicting reports 99 

on its expression levels and co-expression with ACE2 in different testicular cells (27, 28). 100 

The presence of ACE2 receptor in multiple resident cells hypothetically makes the testes 101 

a potential target for SARS-CoV-2 infection or endocytosis of VLPs. Alternatively, 102 

systemic cytokine storm may induce bystander testicular inflammation, thus explaining 103 

the orchitis symptom observed in COVID-19 patients.  Therefore, the question remains 104 

whether the gonadal injury is the direct or indirect consequence of virus infection in the 105 

testes.  106 

 107 

Here, using both 2D and 3D human multicellular testicular cell culture models, we show 108 

that SARS-CoV-2 can enter testicular cells, but cannot establish productive virus 109 

infection. Exposure of testicular cells with inflammatory media from SARS-CoV-2 infected 110 

human airway epithelial cells led to apoptotic death of undifferentiated spermatogonia. 111 

Further, only exposure to SARS-CoV-2 E protein but not S1 and N protein induced a pro-112 

inflammatory response that correlated with severe cytotoxicity. We also carefully 113 

examined and validated the bystander effect of SARS-CoV-2 infection on testicular injury 114 

using K18-hACE2 mice. Our data collectively provide the first evidence that the testicular 115 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508904
http://creativecommons.org/licenses/by-nc-nd/4.0/


injury is not due to direct infection of SARS-CoV-2 but more likely an indirect effect of 116 

exposure to systemic inflammation or SARS-CoV-2 antigens.  117 

 118 

Materials and Methods 119 

Cells, Testicular Organoids, and Virus infection:  120 

Primary human SC and LC were obtained from iXCells Biotechnologies and ScienCell 121 

Research Laboratories, respectively. Low passage SC and LC were cultured in DMEM/F-122 

12 and Leydig Cell Medium as described previously (29). The human testicular organoids 123 

(HTO) consisting of primary SC, LC, peritubular myoid cells (PMC), and undifferentiated 124 

spermatogonia (SSC) were generated from adult human testicular tissue procured 125 

through the National Disease Research Interchange (NDRI) and cultured in ultralow-126 

attachment 96-well round-bottom plates as described by us previously (30, 31). For mixed 127 

seminiferous tubule cells (STC) culture, seminiferous tubules from adult testes were 128 

digested to isolate mixed cell populations of SC, PMC, and SSC as described previously 129 

(32). SARS-CoV-2 USA-WA1/2020 strain was obtained from BEI Resources, propagated 130 

once in Vero E6 cells, and used for all in vitro experiments. Cells cultured in 6-, 24-, or 131 

96-well plates were infected with SARS-CoV-2 at MOI 1 or 10 and incubated for 1.5 hrs 132 

at 37% and 5% CO2. HTO were infected using 104 PFU SARS-CoV-2. All SARS-CoV-2 133 

manipulations were performed in the dedicated BSL3 facility at the John A. Burns School 134 

of Medicine.  135 

 136 

Virus quantitation: 137 
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SARS-CoV-2 titers in cell culture supernatants were measured by plaque assay using 138 

Vero E6 cells and expressed as PFU per mL of supernatant (33). Intracellular viral 139 

genome copies were measured in the RNA extracted from cell lysates and tissue 140 

homogenates at different time points post-infection by qRT-PCR. Forward (nCoV_IP4-141 

14059Fw: GGTAACTGGTATGATTTC G) and reverse (nCoV_IP4-14146Rv: 142 

CTGGTCAAGGTTAATATAGG) primers and probe (nCoV_IP4-14084Probe(+): 143 

TCATACAAACCACGCCAGG [5']Fam [3']BHQ-1) were used specific for SARS-CoV-2 144 

RNA-dependent RNA polymerase gene region and expressed as genome copies per μg 145 

of RNA (34).  146 

 147 

Exposure of testicular cells to inflammatory media, COVID-19 plasma, and SARS-148 

CoV-2 proteins exposure: 149 

Human airway epithelial cells (HAE) grown on the inserts were infected with SARS-CoV-150 

2 at MOI 1 as described by others (35). Media was collected from the basal and the apical 151 

side of inserts at different time points after infection. The basal side supernatant was 152 

treated with ultraviolet light (UV) for 12 min to inactivate infectious virions. Different 153 

testicular models were exposed to UV-inactivated HAE supernatant (1:1 ratio with cell 154 

culture media). SC and STC cultures were also exposed to SARS-CoV-2 E, N or S1 155 

proteins at 1 or 4 ng/μL concentration. Plasma from 5 RT-PCR+ COVID-19 patients 156 

collected during the symptomatic phase (days 4-6 of symptoms) under the UH IRB# 2020-157 

00367 and age-matched healthy controls were used in this study.  STC and HTOs were 158 

exposed to plasma (1:5 ratio with cell media) and cell viability and TUNEL staining assays 159 

were conducted after 24 hrs of exposure. The E protein was also incubated with 1X 160 
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proteinase K for 3 hrs before exposing to SC. In some experiments, E and S1 exposure 161 

were conducted in the presence or absence of neutralizing antibodies against toll-like 162 

receptor 2 and 4 (TLR2 and TLR4) antibodies (ThermoFisher Scientific Cat. #  MA5-163 

16200 and Cat # MA180122 at 1:250 and 1:500 concentration respectively).  164 

 165 

RT-PCR analysis: 166 

Total RNA was extracted from mock- and SARS-CoV-2-infected SC, LC, STC, and HTO 167 

lysates using RNeasy mini kit (Qiagen) and synthesized into cDNA, and change in mRNA 168 

transcripts of inflammatory genes was measured by qPCR, as described previously (36). 169 

Specific primer sequences are either previously described (29, 37) or shown in Table 1. 170 

The housekeeping gene GAPDH was used to normalize fold change values of antiviral 171 

genes, with respective controls used as a reference control.  172 

 173 

Cell Viability:  174 

Cell viability of different 2D cultures at different time points of infection or exposure to 175 

virus proteins or HAE supernatant was determined using the CellTiter 96 AQueous One 176 

Solution cell proliferation assay (G3582; Promega), while HTO viability was determined 177 

by the CellTiter-Glo 3D cell viability assay (Promega G9681; Promega) as described 178 

previously (29). 179 

 180 

Enzyme-Linked Immunosorbent Assays: 181 

All commercially available ELISA kits were purchased from Invitrogen Thermo Fisher 182 

Scientific and the assays were performed according to the manufacturer’s instructions. 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508904
http://creativecommons.org/licenses/by-nc-nd/4.0/


The kits used were IL-6 Human Instant ELISA Kit (Cat. # BMS213INST), IL-1β Human 184 

Instant ELISA Kit (Cat. # BMS224INST), and TNF-alpha human Instant ELISA Kit (Cat. # 185 

BMS223INST). All samples including HAE supernatant at different time points and 186 

plasma from COVID-19 patients were run in triplicate and levels were expressed as 187 

pg/mL media or plasma. 188 

 189 

Immunofluorescence and TUNEL assay:  190 

Mock and infected LC, SC, or STC grown on glass coverslips were fixed with 4% PFA, 191 

permeabilized with 0.1% Triton X-100 in PBS, and blocked with 5% bovine serum albumin 192 

in PBS. Cells were then incubated with primary antibodies against anti-Spike (GeneTex, 193 

GTX632604 at 1:500 dilution), followed by fluorophore-conjugated secondary antibody 194 

(Invitrogen Alexa Fluor 488-conjugated sheep anti-rabbit, 1:5000 dilution), and examined 195 

using an Axiocam MR camera mounted on a Zeiss Axiovert 200 microscope. TUNEL 196 

assay was performed using the Promega DeadEndTM Fluorometric TUNEL System 197 

according to the manufacturer’s instructions. Undifferentiated spermatogonia were also 198 

stained for the well-established cell-specific marker, ubiquitin carboxyl-terminal esterase 199 

L1 (UCHL1) (29) using rabbit anti-human UCHL1 (Sigma, HPA005993 at 1:1,000 200 

dilution). The secondary antibody was Alexa Fluor 594-conjugated goat anti-rabbit 201 

(Invitrogen; 1:5000 dilution). 202 

 203 

Infection of K18-hACE2 mice 204 

B6.Cg-Tg(K18-ACE2)2Prlmn/J (K18-hACE2) mice (#034860) were obtained from the 205 

Jackson Laboratory. All mouse experiments were performed according to the animal 206 
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experimental guidelines issued and approved by Institutional Animal Care and Use 207 

Committee of the University of Hawaii at Manoa. All mouse infection experiments were 208 

conducted using SARS-CoV-2 USA-HI-B.1.429 isolated from a local COVID-19 patient in 209 

2020 that is very similar to the SARS-CoV-2 CoV/USA-WA1/2020 (38) at the dedicated 210 

ABSL2/3 facility at the UH. Eight to twelve weeks old K18-hACE2 mice were inoculated 211 

with 2x104 PFU SARS-CoV-2 via the intranasal route and observed daily to record body 212 

weights and clinical symptoms and were sacrificed when weight loss greater or equal to 213 

20% was observed. The lung, heart, and testis tissues were harvested in a separate set 214 

of experiments at 3, 5, and 8 days post infection (dpi) and were either flash-frozen or fixed 215 

in 4% PFA to determine virus genome copies and histopathological changes respectively.  216 

RNA was extracted from frozen tissues as described previously (39) and virus RNA and 217 

expression of different host genes were measured by RT-PCR. Testes were also fixed in 218 

Bouin overnight, and then stored in 70% ethanol prior to embedding in paraffin wax, 219 

sectioning at 5 µm, and staining with Periodic acid Schiff and hematoxylin (PASH) to 220 

identify histopathological changes.  221 

 222 

Statistical Analysis:  223 

All data were analyzed with GraphPad Prism 9.3.1 software. Statistically significant 224 

differences between different groups were determined using unpaired t-tests. SARS-225 

CoV-2 titers and viability data are reported as means +/- standard error of the mean 226 

(SEM) from at least three or more independent experiments. Gene expression (mRNA 227 

fold change) and ELISA data are reported as means +/- standard errors of the means 228 
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(SEM)  from 3 independent experiments. A p-value of <0.05 was considered statistically 229 

significant for all analyses. 230 

 231 

Results: 232 

Human testicular cells do not support productive SARS-CoV-2 infection. We, and 233 

others, have previously shown that human testicular cells like LC and SC express ACE2 234 

(40). Therefore, we first determined the infection kinetics of SARS-CoV-2 in different 235 

testicular cell models including primary human SC and LC, 2D culture of mixed STC and 236 

3D HTOs.  Low levels of viral RNA in the range of log 2-3 genome copies were detected 237 

in all cell models, but the virus copies did not increase between 24 and 96 hrs post-238 

infection (hpi, Fig. 1A). Virus titers measured in the supernatant by plaque assay did not 239 

show the presence of infectious virions in any cell types at any time point (Fig. 1B). These 240 

data suggest that productive replication of SARS-CoV-2 did not occur in these human 241 

testicular cell models. Infection of SC and LC at higher MOI 10 also did not show any 242 

SARS-CoV-2 released in the supernatant over 96 hours (Fig. S1A-B). In addition, we 243 

were not able to detect the SARS-CoV-2 spike protein using immunofluorescence assay 244 

in infected SC and LC (Fig. 1C), further demonstrating the lack of SARS-CoV-2 replication 245 

in these primary cell cultures.  246 

 247 

Since exogenous serine proteases have been shown to facilitate SARS-CoV-2 entry and 248 

replication in other low TRMPSS2 expressing cells (41), we next assessed if TRMPSS2 249 

is expressed in LC and SC and if the presence of exogenous serine protease activity 250 

would make testicular cells susceptible to infection. We observed that there was minimal 251 
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to no TMPRSS2 staining in these cells (Fig. S1C). Assuming that this could be a factor 252 

explaining non-productive SARS-CoV-2 infection in these cell types, we analyzed virus 253 

replication in the presence of exogenous serine protease. SARS-CoV-2 infection of SC 254 

pre-incubated with 5 μg/mL trypsin, a serine protease, which at this concentration does 255 

not interfere with cell attachment and has been used by others to enhance SARS-CoV-2 256 

entry in other cell types (42), also did not result in increased intracellular virus RNA (data 257 

not shown) or infectious virions in the supernatant (Fig. 1D). To further evaluate if SARS-258 

CoV-2 entry alone can activate an inflammatory response, we measured the mRNA levels 259 

of key cytokines associated with COVID-19 in SC, LC, and HTO at 48 hpi. Consistently, 260 

gene expression of inflammatory cytokines including IL6, TNFA, and interferon beta 1 261 

(IFNB1) was not altered in any of these testicular cell types (Fig. 1E). Collectively, our 262 

data strongly suggest that even though SARS-CoV-2 RNA is detected in testicular tissue 263 

from COVID-19 patients, it does not establish a productive infection in resident human 264 

testicular cells. 265 

 266 

SARS-CoV-2 infection of human airway epithelial cells is associated with loss of 267 

air-liquid barrier integrity and production of inflammatory cytokines. 268 

Several clinical studies have linked SARS-CoV-2-associated cytokine storm with injury to 269 

the kidney, heart, and brain (43–49). Therefore, we next tested if the testicular damage 270 

was an indirect effect of the inflammatory mediators derived from SARS-CoV-2 infection 271 

of other cell types.  To begin the evaluation of the bystander effect, we first infected well 272 

differentiated 2D cultures of human airway epithelial cells (HAE) grown on transwell 273 

inserts at MOI 1 and measured infectious virions released both on the apical and basal 274 
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sides of the inserts. The plaque assay demonstrated a significant increase in the virus 275 

titers at 2 days post-infection (dpi) that peaked at day 3 and subsequently declined by >2 276 

logs by 8 dpi (Fig. 2A). A similar trend was observed in intracellular virus genome copies, 277 

with peak virus replication at 4 dpi (Fig. 2B). Further, SARS-CoV-2 infection also 278 

compromised the integrity of the air-liquid barrier (Fig. 2C). The transepithelial electrical 279 

resistance (TEER) readings showed a decline starting at 3 dpi with significantly lower 280 

values at 5 and 6 dpi, suggesting a loss in the barrier integrity most likely a result of virus-281 

induced CPE. Peak virus titers also correlated with significant induction of key 282 

inflammatory cytokine genes like TNFA and IL6, and antiviral genes including interferon-283 

induced protein with tetratricopeptide repeats one (IFIT1) at 4 dpi (Fig. 2D).  284 

 285 

The production of key cytokines in the HAE supernatant was further confirmed and 286 

compared to plasma from COVID-19 patients during the acute stage of the disease (4-6 287 

days of symptom onset) using ELISA. While there was no difference in the levels of IL-288 

1, TNF-, and IL-6 in mock and infected HAE supernatant at 1 dpi (data not shown), as 289 

seen in Fig. 3A-C, their levels were significantly higher in the infected supernatant at 4 290 

dpi that correlated with peak virus titers. Further, interestingly, the levels of these 291 

cytokines were comparable to the levels seen in the plasma of COVID-19 patients (Fig. 292 

3A-C). Collectively, this data shows that supernatant from SARS-CoV-2 infected HAE 293 

mimics the profile of select cytokines observed in COVID-19 patients and can be used to 294 

evaluate the indirect effect of infection on 2D and 3D human testicular models.  295 

 296 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508904
http://creativecommons.org/licenses/by-nc-nd/4.0/


SARS-CoV-2 infection-derived inflammatory mediators cause indirect cytotoxicity 297 

on primary human testicular cells  298 

To determine the cytotoxic effects of SARS-CoV-2 infection-derived inflammatory 299 

mediators on testicular cells, we exposed STC to UV-inactivated supernatant from HAE 300 

and COVID-19 plasma and measured the cell viability. As seen in Fig. 3D, at 24hrs post-301 

exposure, the cell viability of the STC exposed to infected HAE supernatant declined by 302 

approximately 30%. In contrast, the viability of cells exposed to supernatant from mock-303 

infected HAE cells was comparable to untreated cells. Similarly, an almost 50% decrease 304 

in the viability of STC and HTO was observed when exposed to COVID-19 plasma as 305 

compared to healthy control plasma (Fig. 3E). To further understand if cell death following 306 

exposure to inflammatory plasma also triggers cytotoxic cytokines, we measured mRNA 307 

levels of IL6, IL1B, and TNFA genes. There was a significant increase in the transcripts 308 

of these cytokines as well as Bcl-2 associated protein X (BAX), a pro-apoptotic gene, in 309 

HTO exposed to COVID-19 plasma (Fig. 3G).  Interestingly, SC alone exposed to infected 310 

HAE supernatant did not exhibit any significant change in cell viability at 24 hours post-311 

exposure (Fig. 3F). We also did not observe a similar induction of cytokines and BAX in 312 

SC following exposure to HAE supernatant (Fig. 3H), suggesting that the cell death seen 313 

in our mixed 2D and 3D cultures was most likely of the delicate germ cells.  314 

 315 

To further validate that undifferentiated spermatogonia are more susceptible to cell death, 316 

we conducted a TUNEL assay on STC exposed to both UV-inactivated HAE supernatant 317 

and COVID-19 plasma for 24 hours. As seen in Fig. 4A, very few TUNEL-positive cells 318 

were detected in STC that were untreated or treated with mock HAE supernatant. 319 
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However, TUNEL positive cells increased significantly from 2% in mock to 10% in STC 320 

treated with infected supernatant for 24 hrs (Fig. 4B). Similarly, TUNEL positive cells 321 

increased from 6% in healthy control plasma-treated cells to 20% in COVID-19 plasma-322 

treated STC (Fig. 4A-B). The cells were also co-stained for UCHL1, a well-established 323 

undifferentiated spermatogonia marker, and merged pictures in Fig. 4C show that UCHL1 324 

positive cells were also TUNEL positive (yellow) in STC exposed to infected supernatant 325 

from HAE cells. However, in STC exposed to COVID-19 plasma, we observed apoptotic 326 

cell death in both UCHL1 positive and UCHL1 negative cells (white arrows).  These 327 

findings suggest that mediators derived from SARS-CoV-2 infection in the HAE 328 

supernatant and COVID-19 plasma can cause an inflammatory response in testicular 329 

cells and apoptotic cell death. 330 

 331 

SARS-CoV-2 envelope protein causes severe damage in testicular cells  332 

Virus-induced bystander cell death can be because of both, the inflammatory cytokines 333 

or viral proteins secreted by infected cells in the bloodstream, as shown in other viruses 334 

like Dengue and Ebola (50–52). As a result, we investigated whether SARS-CoV-2 S1, 335 

N, and E proteins can cause cytopathic effects in various testicular cells. The SC were 336 

exposed to recombinant SARS-CoV-2 E, N, and S1 at different concentrations (0.25, 0.5, 337 

1 and 4ng/μL) and cell viability was quantified at 24hrs post-exposure. While the S1 and 338 

N proteins did not affect the cell viability, we observed a significant reduction in the viability 339 

after exposure to the E protein in a dose-dependent manner with the most severe cell 340 

death seen in cells treated with 4 ng of E (Fig. 5A).  Further, to examine whether SC 341 

cytotoxicity was specific to envelope protein, we pre-incubated envelope protein with 342 
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proteinase K. SC death was reversed when E protein was inactivated with proteinase K 343 

indicating that E alone can cause SC death  (Fig. 5A). We then treated STC with E and 344 

S1 at concentrations 1 and 4 ng/well and measured cell death at 4 and 24hrs post-345 

exposure  and demonstrated a 30-40% decrease in cell viability only in E-treated STCs 346 

(Fig. 5B). Similarly, E protein treated HTO showed a 40% reduction in cell viability at 347 

24hrs post-exposure (Fig. 5C). To further validate if the cell death associated with the E 348 

protein is associated with cytokine induction, we measured the levels of cytotoxic 349 

cytokines like IL-6, TNF-, and IL-1 in the supernatant of STC exposed to E and S1 350 

proteins using ELISA. As seen in Fig. 5D-F, these cytokines were either absent or 351 

detected at very low levels in mock and S1-treated STC. However, their levels were 352 

significantly increased by E protein as early as 4hrs post-exposure and further increased 353 

at 24hrs post-exposure. The induction of IL-6, TNF-α, and IL-1β was also validated at the 354 

transcript level (Fig. 5G), and the fold-increase of these cytokines at 24 hrs post-exposure 355 

to E protein correlated well with the ELISA data. Moreover, we also observed a > 20-fold 356 

increase in the transcripts of the pro-apoptotic gene BAX (Fig. 5G).  357 

 358 

Secretory virus proteins can activate inflammatory pathways following binding to cell 359 

surface receptors including TLR2 and/or 4 (50, 53). Therefore, to examine the 360 

involvement of TLR2 and 4 in the cytopathic effects associated with E, we exposed STC 361 

to E protein in the presence or absence of neutralizing antibodies against TLR2 and TLR4. 362 

As seen in Fig. 5H, while the presence of neutralizing TLR4 antibody did not affect the 363 

cell viability outcome, there was a nearly complete reversal in the cell death caused by E 364 

protein in the presence of anti-TLR2. Similarly, there was a reversal in the cell death 365 
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induced by E protein in SC in the presence of anti-TLR2 (data not shown) suggesting that 366 

the downstream response of the E protein involves activation of the TLR2 receptor 367 

signaling. 368 

 369 

To further determine if the cellular uptake of E protein is required for the cytopathic effects, 370 

we visualized STC exposed to E and S1 proteins conjugated with fluorophore AF488 371 

using confocal microscopy. As seen in Fig. 6A-B, E protein was internalized efficiently by 372 

STC after 12hrs of exposure and was detected mainly in the cytoplasm of these cells 373 

(white arrows). The intensity of the staining for Phalloidin, a marker for actin filaments, 374 

was significantly reduced in E protein-treated STC (Fig. 6C-D) indicating that the 375 

cytoskeleton was degraded. Further, the DNA (blue arrows) was ejected from the nuclei 376 

of E protein-positive cells (Fig. 6A), suggesting significant disruption of STC homeostasis. 377 

In contrast, it appeared that the internalization of S1 protein was significantly lower than 378 

E protein and did not lead to disruption of the cytoskeleton or overall morphology (Fig. 379 

6C-D).  Collectively, these data firmly establish that the SARS-CoV-2 E protein can be 380 

efficiently internalized by testicular cells and causes severe cell death that is dependent 381 

on TLR2 and is accompanied by an increase in the production of inflammatory cytokines. 382 

 383 

SARS CoV-2 infection of K18-hACE2 mice leads to testicular inflammation and 384 

injury. 385 

To characterize the effect of SARS-CoV-2 infection on the testis in vivo, we utilized the 386 

transgenic K18-hACE2 mouse model that expresses high levels of human ACE2 in the 387 

lung, low levels in the brain, and none in other epithelial cells like GI and liver (54). 388 
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Compared to other animal models like hamsters, ferrets, and primates, the K18-hACE2 389 

mouse model best mimics different aspects of COVID-19 including severe disease, 390 

systemic cytokine storm, and tissue injury (55–57). Since testicular injury is most 391 

commonly seen in moderate to severe COVID-19 patients, these mice are best suited for 392 

studying the indirect effects of SARS-CoV-2 infection on the testis.  Intranasal inoculation 393 

of K18-hACE2 mice with 2x104 PFU of SARS-CoV-2 led to almost 70-80% mortality (Fig. 394 

7A) that replicated outcomes of similar studies (58, 59). Virus genome copies in the lungs 395 

peaked at 3 dpi and remained high at 5 dpi (Fig. 7B) and were almost cleared by 8 dpi. 396 

However, virus mRNA was either found at very low levels in the heart in 50% of mice (Fig. 397 

7B) or not detected at all in other peripheral tissues like the kidney and spleen (data not 398 

shown). Interestingly, we also did not detect virus RNA in any of the testes at any time 399 

point (Fig. 7B). Further, plaque assay of the tissue lysates demonstrated high virus titers 400 

present only in the lung lysates at 3 and 5 dpi but not in heart and testis lysates (Fig. 7C). 401 

We next assessed if inflammation markers are induced by the virus in the testes 402 

independent of active virus replication. As expected IL6 and TNFA were upregulated in 403 

the lungs and correlated with viral titers. Interestingly, despite no viral RNA, we found that 404 

the transcripts of these inflammatory cytokines were significantly increased in the testes 405 

at 5 and 8 dpi.  406 

 407 

To further assess if there is an indirect effect of SARS-CoV-2 infection on the testes, we 408 

conducted a histopathological assessment of PAS-H-stained sections of the testes. The 409 

uninfected control males had normal testis and tubular organization (Fig. 7E, i-ii). 410 

Seminiferous tubules were well-developed and tightly packed, with limited interstitial 411 
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space. Tubular basal and adluminal compartments were tightly connected, and germ cells 412 

were properly organized, with spermatogonia, spermatocytes, and round spermatids 413 

visible at successively higher levels within the epithelium. Leydig cells in the interstitium 414 

and Sertoli cells and germ cells within tubules were normal and healthy. However, after 415 

SARS-CoV-2 infection, various testicular abnormalities were noted in both the interstitium 416 

and seminiferous tubules at 5 and 8 dpi. Interstitial edema of varying severity levels was 417 

observed in some areas, either as increased interstitial space between adjacent 418 

seminiferous tubules (Fig. 7E, iii at 5 dpi) or with red-stained fluid filling the interstitial 419 

space (Fig. 7E, v at 5 dpi). Leydig and Sertoli cells, as well as most germ cells, appeared 420 

healthy. However, in some areas within seminiferous tubules, germ cells were severely 421 

disorganized, in extreme cases, randomly occupied space throughout the tubule (Fig. 7E, 422 

iii, d5). In some areas, the tubules were found to be congested with evidence of 423 

prematurely sloughed germ cells in the lumen (Fig. 7E, v at 5 dpi). These results validate 424 

our in vitro data and collectively demonstrate that despite no active replication, SARS-425 

CoV-2 infection results in interstitial and tubular abnormalities in the testis of hACE2 mice.  426 

These injury markers are similar to what has been observed in humans (7, 60, 61)  427 

suggesting that these mice can be used as a model to systematically delineate the indirect 428 

effect of SARS-CoV-2 on different aspects of male reproductive health.  429 

 430 

Discussion: 431 

Emerging clinical studies highlight that SARS-CoV-2 infection-associated testicular pain, 432 

reduced testosterone levels and altered sperm counts are more common in COVID-19 433 

patients than previously thought (5, 7, 8). Further, postmortem studies have 434 
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characterized several features of testicular injury including the detachment of SC, 435 

apoptosis of undifferentiated spermatogonia, and infiltration of leukocytes in the 436 

interstitium.  However, the association of these injury markers with virus infection 437 

kinetics is not clear.  Here, we used different 2D and 3D culture models of primary 438 

human testicular cells to show that (i) While SARS-CoV-2 can enter LC and different 439 

seminiferous tubular cells, it cannot establish a productive infection in any of these cell 440 

types (ii) Inflammatory media from infected airway epithelial cells and plasma from 441 

COVID-19 can trigger inflammatory cytokines production and cytotoxicity in testicular 442 

cells (iii) Exposure of testicular cells to SARS-CoV-2 E protein increases expression of 443 

inflammatory cytokines and induce severe cytotoxicity that is dependent on TLR2 and 444 

(iv) intranasal inoculation of K18-hACE2 mice depicted leads to testicular damage in the 445 

absence of any replicating virus, thus overall supporting the fact that testicular damage 446 

is a bystander effect of SARS-CoV-2 infection. 447 

 448 

Susceptibility to SARS-CoV-2 infection is highly cell type-specific and dependent on the 449 

presence of entry receptors like ACE2 and serine protease, TMPRSS2 (41). While 450 

robust infection of lung alveolar type II epithelial cells is linked to high ACE2 expression, 451 

the absence of this receptor and serine proteases is the main reason for the human 452 

macrophages, natural killer (NK) cells, dendritic cells, and vascular endothelial cells not 453 

being susceptible to SARS-CoV-2 (26, 62). Enterocytes in the gastrointestinal (GI) tract 454 

that express very high levels of ACE2 and TMPRSS2 are susceptible to SARS-CoV-2, 455 

but the virions produced are very low compared to alveolar type II cells (63, 64) 456 

suggesting that just the presence of receptors alone is not enough to establish 457 
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productive viral infection. Although several groups, including ours, have reported high 458 

levels of ACE2 and TMPRSS2 in the human testes including LC, SC, and 459 

undifferentiated spermatogonia (26, 28), direct evidence of infection of human testicular 460 

cells is lacking. The presence of SARS-CoV-2 RNA in the human postmortem testes 461 

tissue is not a common observation and is limited to RT-PCR detection of very low 462 

levels of viral genome copies (7).  Even in the animal models, subgenomic SARS-CoV-463 

2 RNA was detected only in the intratesticular inoculated hamsters (65). Further, the 464 

suggestion that SARS-CoV-2 can infect testes of the rhesus macaques by Madden and 465 

colleagues was based on the staining of Spike protein (66) and does not confirm if testis 466 

can support active replication of the virus. Therefore, taken together, our data showing 467 

the total absence of SARS-CoV-2 virions in the media and no cell death in infected 468 

cells, provide direct evidence that SARS-CoV-2 cannot establish productive replication 469 

in different testicular cells in vitro.  Since virus replication is directly associated with 470 

robust inflammatory response, the absence of the induction of the key cytokines in 471 

infected cells again supports our notion that none of our in vitro testicular cell models 472 

supported virus replication. We speculate this can be either due to the absence of co-473 

localization of TMPRSS2 and ACE2 in the same cell type or the lack of specific host 474 

components required for virus replication.  475 

 476 

However, robust data now exists suggesting that COVID-19 leads to severe testicular 477 

injury and affects testis function (7). In the absence of active virus replication, tissue 478 

injury can be mediated by cytokines storm or exposure to virus proteins (67–69). Mild 479 

and severe COVID-19 patients exhibit systemic cytokine profiles similar to other 480 
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infectious diseases such as Ebola virus disease (EVD) (70). The elevated levels of 481 

TNF, IL6, IL1, IFN, and monocyte chemoattractant protein  1 (MCP1) reported in 482 

severe EVD are associated with severe damage to the kidney and vascular system 483 

(71). Similarly, dengue nonstructural protein (NS1) shed during acute infection acts as a 484 

viral pathogen-associated molecular pattern that activates TLR4 on leukocytes and 485 

endothelial cells leading to inflammation and endothelial dysfunction (52). Therefore, we 486 

next focused on addressing our alternative hypothesis that testicular injury results from 487 

the bystander effect of systemic cytokines. The key cytokines induced by SARS-CoV-2 488 

infected HAE cells support findings from previous studies (72, 73). Our observation of 489 

the comparable levels of cytokines in HAE media and COVID-19 plasma is encouraging 490 

and supports the notion that inflammatory HAE supernatant can be used to study 491 

bystander effects of SARS-CoV-2 associated cytokine storm. Transmigration of SARS-492 

CoV-2 from the apical to the basal side of the inserts has been reported previously, but 493 

our data is the first to correlate virus replication with the induction of key inflammatory 494 

cytokines in the supernatant of this 2D model. Interestingly, both STC and HTOs 495 

exhibited significantly higher cytotoxicity post-exposure to inflammatory media from 496 

infected HAE and plasma from COVID-19 patients compared to SC (Fig. 3). Our 497 

speculation that this difference is most likely because of the presence of delicate 498 

undifferentiated spermatogonia in the STC and HTO was confirmed by the TUNEL 499 

assay and agrees with germ cell depletion seen in the testis from COVID-19 patients 500 

(6). 501 

 502 
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While the secretion of E protein by infected cells in COVID-19 patients is not yet 503 

determined, two recent studies have shown the presence of SARS-CoV-2 S1 and N 504 

proteins in the plasma of 64% of COVID-19 patients in the range of 5-10,000 pg/mL 505 

plasma (74). Other studies also report the presence of S1 in the urine and saliva of 506 

COVID-19 patients (75) suggesting that the shedding of different SARS-CoV-2 proteins 507 

is an outcome of infection and might be an event associated with severe disease. 508 

Additionally, the presence of VLPs in different tissues including the testes and the brain 509 

is also commonly reported (16, 17).  Both S1 and N proteins have been shown to induce 510 

inflammation and cell death in macrophages (20, 21), suggesting the potential of these 511 

proteins to independently cause cytopathic effects. On the other hand, Zheng and 512 

colleagues reported that exposure to S1 did not induce any inflammatory response 513 

compared to E in bone marrow-derived macrophages (BMDMs) (76). Therefore, although 514 

it was surprising that S1 did not induce any cytopathy in SC and STC, we believe this 515 

might be because S1 was not efficiently internalized in these cells (Fig. 6) compared to 516 

more phagocytic macrophages. Our data, however, agrees with previous in vitro and in 517 

vivo studies that also showed induction of cytokine response, cell death, and lung 518 

pathology by SARS-CoV-2 E protein and dependence on the TLR2 pathway (76, 77). 519 

There is a consensus view that E, a glycosylated transmembrane protein with ion channel 520 

activity, plays an important role not only in viral replication and virion assembly but also 521 

in pathogenicity including induction of cytokines and cell death (69). These studies and 522 

our data collectively suggest that E protein can trigger an inflammatory response and 523 

cause cytopathic effects in the testicular cells independent of SARS-CoV-2 replication. 524 

 525 
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An important highlight of our study is the validation of the in vitro data in the K18-hACE2 526 

mouse model. Since high expression of hACE2 is mainly in the lungs, as expected very 527 

high viral replication was detected in this organ leading to high mouse mortality. Elevated 528 

levels of inflammatory cytokines have been reported before not only in the lungs but also 529 

in the plasma of these mice (78). Therefore, we believe that the K18-hACE2 mouse model 530 

is an appropriate model for studying the bystander effect of SARS-CoV-2 infection. Our 531 

data provide the first evidence that the testicular pathological events similar to what is 532 

reported in postmortem testis tissue from COVID-19 patients (7) manifest in the K18 533 

hACE2 mice.  Seminiferous tubule disorganization, germ cell sloughing, and germ cell 534 

apoptosis that we observed in mouse testis sections are well-characterized hallmarks of 535 

testicular injury thus establishing K18-hACE2 mice as a tool that would allow to 536 

systematically delineate underlying mechanisms at the molecular level in future studies.  537 

 538 

Although gross alterations in male reproductive health including lower testosterone levels 539 

and decreased sperm count have been well established, our understanding of the 540 

mechanisms of SARS-CoV-2 infection-associated testis injury is limited. Few studies 541 

have reported presence of viral antigens and/or VLPs in the testis by immunostaining, 542 

based on which it has been proposed that testicular injury is the result of direct SARS-543 

CoV-2 infection (79, 80). However, our data present direct evidence that despite the 544 

expression of ACE2, human testicular cells do not support productive infection of SARS-545 

CoV-2. Our study also greatly improves our understanding of the indirect effect of virus 546 

infection on testicular injury.  Collective data suggest that during peak infection, exposure 547 

of testicular cells to both cytokine storm and viral antigens may trigger pathological 548 
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pathways and apoptotic death of germ cells that may be responsible for orchitis symptoms 549 

and lower sperm counts reported in COVID-19 patients. However, further investigations 550 

are warranted to characterize the testicular injury’s short- and long-term effects on fertility 551 

markers like testosterone levels, and the specific pathways associated with pathological 552 

events. Finally, our findings presented herein suggest the need for long-term follow-up of 553 

male reproductive health markers in moderate to severe male COVID-19 patients 554 

following recovery.  555 
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 562 

Figure legends 563 

Figure 1. Lack of SARS-CoV-2 does not establish a productive infection in human 564 

testicular cells. (A) Primary SC, LC, STC and HTO were infected with SARS-CoV-2 at 565 

MOI 1 and intracellular virus levels were determined at 24, 48 and 96 hrs post-infection 566 

(hpi) using qRT-PCR. (B) SARS-CoV-2 titers in the supernatant from infected Vero E6, 567 

SC, LC, STC and HTO at MOI 1 were measured using plaque assay. (C) 568 

Representative images of SARS-CoV-2 (MOI 1) infected SC, LC and Vero E6 cells 569 

stained for SARS-CoV-2 using anti-Spike (green) at 48 hpi. (D) SARS-CoV-2 progeny 570 

titers measured by plaque assay in the supernatant from infected SC and LC pre-571 
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incubated with 5μg/mL of exogenous serine protease. (E) The mRNA fold change of 572 

TNFA, IL6, and IFNB1 measured in infected SC, LC, and HTO (MOI 1) using qRT-PCR 573 

at 48 hpi. The error bars represent the +SEM of at least 4 independent infections.  574 

 575 

Figure 2. Human airway epithelial cells are highly permissive to SARS-CoV-2 576 

infection and produce inflammatory cytokines. (A) Fully differentiated primary HAE 577 

grown on inserts were infected with SARS-CoV-2 (MOI 1) and infectious virions 578 

released on the apical and basal side were quantified using plaque assay (B) SARS-579 

CoV-2 RNA measured in HAE at days (D) 1, 2, 4 and 8 post-infection using qRT-PCR 580 

(C) The transepithelial electrical resistance (TEER) was used to measure the integrity of 581 

the air-liquid barrier of HAE inserts at different days post-infection (MOI 1), and 582 

expressed in Ohm*cm2 (Ωcm2). (D) The mRNA fold-change of TNFA, IL6, IFIT1 and 583 

IFNB1 genes was measured in infected HAE at MOI 1 using qRT-PCR. Error bars 584 

represent +SEM of at least 3 independent infections. **p<0.01; ****p<0.0001. 585 

 586 

Figure 3. Bystander effect of SARS-CoV-2 on different testicular cells. (A-C) IL6, 587 

IL1 and TNF levels were measured by ELISA in the mock and UV-inactivated 588 

supernatant from infected HAE cells (Inf) (4 dpi), and control (healthy donor) and 589 

COVID-19 plasma. (D) Percent cell viability assessed in STC at 24 hrs following 590 

exposure to UV-inactivated HAE infected (Inf Sup) or control supernatant (Mock Sup), 591 

(E) Percent viability of STC and HTO exposed to control (Cont) or COVID-19 plasma for 592 

24 hrs post-exposure calculated by comparing to corresponding untreated cells (F) 593 

Viability of SC exposed to UV inactivated HAE infected (Inf Sup) or control (Mock Sup) 594 
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supernatant at 24hrs post-exposure.  (G) The fold-change of IL6, IL1B, TNFA, and BAX 595 

transcripts in HTO exposed to control and COVID-19 plasma was measured using qRT-596 

PCR (error bar represents +SEM of 4 data points and each data point is a pool of RNA 597 

from 10 HTO). (H) The effect of exposure of HAE supernatant on the mRNA expression 598 

of IL6, IL1B, TNFA and BAX in SC was determined by RT-PCR. Error bars represent 599 

+SEM of at least 3 independent exposures. *p<0.05; **p<0.01; ***p<0.001; 600 

****p<0.0001 601 

 602 

Figure 4. SARS-CoV-2 infection-derived factors promote apoptotic cell death of 603 

undifferentiated spermatogonia. (A) Representative TUNEL staining in STC exposed 604 

to supernatant from mock (HAE Sup-Mock) and infected HAE cells (HAE Sup-Inf), and 605 

to control and COVID-19 plasma for 24 hrs. The green fluorescence depicts TUNEL+ 606 

cells. (B) Quantification of percent TUNEL positive cells and mean fluorescence 607 

intensity in each group. Data represents the average of at least six fields per coverslip 608 

from 3 independent experiments captured using Image J. Error bars represent +SEM. 609 

(C) STC exposed to UV-inactivated HAE supernatant and COVID-19 plasma were co-610 

stained with TUNEL and UCHL1, a marker for undifferentiated spermatogonia including 611 

spermatogonia stem cells (SSC). Co-localization was evaluated by merging TUNEL and 612 

UCHL1 and white arrows indicate overlapping green and red staining (yellow). 613 

***p<0.001; ****p<0.0001 614 

 615 

Figure 5. SARS-CoV-2 Envelope protein triggers cell death and inflammation via 616 

TLR2. (A) SC cell viability was assessed 24 hrs after exposure to recombinant SARS-617 
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CoV-2 spike subunit 1 (S1), nucleocapsid (N) and envelope (E) proteins at 0.25, 0.5, 1 618 

and 4ng/μL media in 96-well plates. Exposure of E protein was also conducted in the 619 

presence of proteinase K enzyme (B) STC were exposed to S1 and E protein at 1 and 620 

4ng/μL media and the percent change in cell viability was calculated after 24 hrs. (C) 621 

Percent change in the cell viability of HTO was evaluated 24 hrs after exposure to 622 

recombinant SARS-CoV-2 E and S1 at 4ng. (D-F) TNF, IL6 and IL1 levels in the 623 

supernatant STC were measured using ELISA after exposure to recombinant E and S1 624 

proteins. (G) mRNA fold change of IL6, IL1B, TNFA and BAX in STC exposed to 4ng/μL 625 

of E and S1 proteins was measured at 24 hrs post-exposure using qRT-PCR. (H) SC 626 

were treated with E protein (4ng) in the presence or absence of TLR2 and TLR4 627 

neutralizing antibodies and percent cell viability was measured after 24 hrs of exposure. 628 

Error bars represent an average of at least 3-5 independent exposures (+SEM). 629 

**p<0.01; ***p<0.001; ****p<0.0001.   630 

 631 

Figure 6. The uptake of SARS-CoV-2 envelope protein disrupts the morphology of 632 

the seminiferous tubule cells. STC were exposed to green fluorophore-conjugated E 633 

and S1 proteins (4ng) and the uptake was evaluated after 24 hrs by detecting 634 

intracellular virus antigens (green) following staining with DAPI and Phalloidin (red), a 635 

marker for actin filaments.  (A) Representative confocal microscopy image show E 636 

protein localization in the cytoplasm (white arrows) and dramatic loss of actin filaments. 637 

High-power magnification pictures depict dramatic disruption of the nuclear 638 

compartment with genetic material being ejected from the nucleus (blue arrows). (B) 639 

The mean fluorescence intensity (MFI) of intracellular E and S1 proteins, and (C) actin 640 
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filament length and (D) MFI were assessed using Image J in 3 different fields from at 641 

least 2 independent experiments. *p<0.05; **p<0.01; ****p<0.0001.  642 

 643 

Figure 7. SARS-CoV-2 infection in K18-hACE2 mice exhibits severe testicular 644 

pathology. (A) Eight to twelve weeks old male and female K18-hACE2-transgenic mice 645 

were inoculated via the intranasal route with 104 PFU SARS-CoV-2. Survival was 646 

monitored for 14 days (n=15). (B) Viral RNA in the lung, heart, and testis at days 3, 5, 647 

and 8 post-infection (dpi) measured by RT-qPCR. The dotted horizontal line indicates 648 

the limit of detection. (C) Plaque assay was used to determine SARS-CoV-2 titers in the 649 

lung, heart, and testis tissue homogenates. (D) Fold change in the gene expression of 650 

inflammatory genes IL6 and TNFA was determined in the lung and testis homogenates 651 

using qRT-PCR (two independent experiments; n = 4-6 males per time point). (E) PAS-652 

staining of testis sections from K18-hACE2 mice following mock (i-ii) or SARS-CoV-2 653 

infection at 5 (iii, v) and 8 (iv) dpi. Images show seminiferous tubules from control mice 654 

with normal tubular morphology and healthy Leydig (black arrows) and Sertoli cells 655 

(white arrows). Insets show healthy round and elongated spermatids typical of the 656 

stage. In sections from SARS-CoV-2 infected mice noted abnormalities were interstitial 657 

edema (IE) (iii and vi), lack of lumen and overall cell disorganization (iii), separation of 658 

germ cell layers from the basal membrane (iv), sloughing of healthy and apoptotic germ 659 

cells into the lumen (v, arrowhead and inset). Insets, 3x magnification. Scale, 100 µm. 660 

  661 
 662 

 663 

 664 
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