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An examination of skeletal muscle 
and hepatic tissue transcriptomes 
from beef cattle divergent 
for residual feed intake
Clare McKenna1,2, Kate Keogh1, Richard K. Porter2, Sinead M. Waters1, Paul Cormican1 & 
David A. Kenny1*

The selection of cattle with enhanced feed efficiency is of importance with regard to reducing feed 
costs in the beef industry. Global transcriptome profiling was undertaken on liver and skeletal 
muscle biopsies from Simmental heifers and bulls divergent for residual feed intake (RFI), a widely 
acknowledged feed efficiency phenotype, in order to identify genes that may be associated with this 
trait. We identified 5 genes (adj. p < 0.1) to be differentially expressed in skeletal muscle between 
high and low RFI heifers with all transcripts involved in oxidative phosphorylation and mitochondrial 
homeostasis. A total of 11 genes (adj. p < 0. 1) were differentially expressed in liver tissue between high 
and low RFI bulls with differentially expressed genes related to amino and nucleotide metabolism as 
well as endoplasmic reticulum protein processing. No genes were identified as differentially expressed 
in either heifer liver or bull muscle analyses. Results from this study show that the molecular control 
of RFI in young cattle is modified according to gender, which may be attributable to differences in 
physiological maturity between heifers and bulls of the same age. Despite this we have highlighted a 
number of genes that may hold potential as molecular biomarkers for RFI cattle.

Global agriculture is currently faced with the ambitious challenge of feeding a rapidly increasing global popula-
tion, expected to peak at 9.2 billion by  20501. This necessary increase in agricultural outputs must also be achieved 
within the current confines of arable land availability, thus it is essential that animal production systems become 
more efficient for the continued sustainability of the beef production sector. Animal feed can account for up 
to 75% of the variable costs in beef production systems; hence reduction of these costs is of  importance2. Feed 
efficiency (dietary nutrient utilisation) in beef cattle is a trait of major economic  importance3. Indeed, there 
is significant phenotypic and genetic variation among beef animals in their ability to convert dietary derived 
nutrients into saleable  product4–6. Thus, by improving feed efficiency it is possible to reduce feed intake in cattle 
while still maintaining growth and skeletal muscle gain and ultimately contribute to beef production profitability 
and sustainability.

Residual feed intake (RFI), first described by Koch et al.7 is one such measure of feed efficiency, which 
can be defined as the difference between an animal’s actual versus its predicted feed intake based on average 
daily gain (ADG) and metabolic  weight8. Through measuring an animal’s inherent RFI, feed-efficient animals 
which have a low-RFI value and consume less than expected as well as feed inefficient animals which have a 
high-RFI and consume more than expected value may be  identified3,9–15. Indeed, it has been shown that grow-
ing beef cattle divergent for RFI can consume up to 20% less feed than their counterparts for the same level of 
 performance3,10,11,13–19. This coupled with a moderate heritability estimate for  RFI4 provides a feasible method for 
effective utilisation of this trait in production systems through genomic selection processes. However, although 
moderately heritable, a challenge remains to reliably and cost-effectively identify feed-efficient, low-RFI animals 
and to proliferate their genetics through animal breeding programmes. For example, the primary impediment to 
genetic progress and adoption of selection strategies based on RFI is both the large-scale logistics and expense 
of measuring individual animal feed intake and body weight.

In order to overcome the aforementioned limitations, studies have sought to uncover the underlying biology 
governing the trait, with the goal for the identification of molecular  biomarkers20. This not only provides an 
attractive alternative to direct measurement of dietary intake on large numbers of  animals6, but it also allows for 
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a better understanding of the biological mechanisms underlying RFI which is important for progressing genomic 
selection. However although results in the literature have reported roles for biological processes including lipo-
genesis and the immune system toward variation in RFI primarily through transcriptional profiling, there is a 
distinct lack of commonality of key genes contributing to RFI across these studies. This is undoubtedly due to the 
multi-faceted nature of RFI as well as the contribution of factors including breed, gender, stage of development 
as well as production management and dietary intake test period length to the  trait20. For example, a recent study 
that evaluated the molecular control of cattle divergent in RFI across three contrasting breed types, reported 
only 5 genes as commonly differentially expressed between high and low-RFI  groups21. Furthermore, of these 
5 genes only one, SCD, was differentially expressed in only one other molecular based RFI  evaluation22. This 
lack of commonality, although due to confounding experimental designs represents a major short-fall toward 
the progress of genomics selection. Equally there is a dearth of information in relation to the potential effect of 
gender on subsequent variation in RFI, particularly under similar rearing conditions. Currently it is not known 
whether the same molecular mechanisms and genes are contributing to variation in RFI in heifers and bulls 
destined for beef production. Thus, the objective of this study was to evaluate the underlying biology regulating 
RFI through transcriptome sequencing in Simmental heifers and bulls reared under the same conditions from 
birth. It is estimated that two thirds of the variation in RFI is due to variation in resting energy  expenditure5, 
with both muscle and liver representing important metabolic tissues with skeletal muscle accounting for over 
50% body  weight12 and liver accounting for 18–25% of total oxygen body  consumption23. Thus, our efforts 
were focused towards examining the transcriptional alterations of these tissues between beef heifers and bulls 
divergent for high and low-RFI.

Results
Animal performance. Details of live weight gain, feed intake, and animal performance are presented in 
Table 1 for both bulls and heifers. Briefly, bulls and heifers had a mean ADG of 1.8 kg and 1.3 kg and dry matter 
intake (DMI) of 9.3 kg and 9.2 kg, respectively, during the RFI measurement period. Residual feed intake (kg 
DM/d) was 0.6 and − 0.7 for high RFI and low RFI bulls respectively, and 0.4 and − 0.3 for high RFI and low 
RFI heifers, respectively. Bulls and heifers ranked as high RFI consumed 10 and 15% more than their low RFI 
counterparts (p < 0.05), respectively. RFI ranking (high vs. low) did not affect (p > 0.05) initial bodyweight (BW), 
final BW or ADG, and this was consistent across gender.

RNAseq read alignment and differential gene expression. RNA sequencing data was successfully 
generated for all samples with approximately 22.4 million sequences per sample available across both tissues. 
On average approximately 85% of reads aligned to the bovine reference genome (UMD3.1) across both tissues 
analysed. The total number of genes expressed in each comparison was as follows: bull liver: 12,203 genes; bull 
muscle: 11,469 genes; heifer muscle: 10,766 genes and; heifer liver: 12,107 genes. A total of 5 genes (adj. p < 0.1) 
were identified as differentially expressed in skeletal muscle tissue between high and low RFI heifers with all 5 
transcripts being up-regulated in the low RFI phenotype (Table 2). Figure 1 provides a visual representation of 
the correlation matrix pertaining to the differentially expressed genes (DEGs) from heifer skeletal muscle tissue, 
indicating all DEGs were highly correlated with each other. A total of 11 genes (adj. p < 0.1) were identified as 
differentially expressed in hepatic tissue between high and low RFI bulls (Table 3) with 8 transcripts being up-
regulated and 3 being down-regulated in the low RFI phenotype. Figure 2 provides a visual representation of the 
correlation matrix pertaining to the DEGs from bull hepatic tissue, highlighting the most correlated genes. Cor-
relation analyses between DEGs and RFI value for each heifer and bull group, identified mostly significant asso-
ciations. For example, DEGs from the heifer skeletal muscle analysis were all significantly negatively associated 
(p < 0.05) with RFI, with the exception of cytb, which tended towards significance (p = 0.0622). Similarly within 
the liver analysis of bulls divergent for RFI, 7 of the 11 DEGs were significantly associated with RFI (p < 0.05), 
with DBP, MANF and GMPPB tending towards significance (p < 0.1). ACTA2 expression was not significantly 
associated with RFI in the liver tissue of bulls (p = 0.3078). Correlation results between DEGs and RFI value for 
each group are presented in Table 4. None of the genes detected in heifer hepatic tissue and skeletal muscle tissue 
from bulls were found to be differentially expressed.    

Differentially expressed genes and pathway analysis. Functional analysis of DEGs in hepatic tissue 
of bulls revealed amino sugar and nucleotide sugar metabolism as well as processes associated with the endo-
plasmic reticulum to be affected by divergence in RFI (Table 5). Functional analysis of heifer skeletal muscle 
DEGs indicated a role for oxidative phosphorylation and mitochondrial function towards divergence in RFI 
(Table 6). All DEG were successfully mapped to a molecular or biological pathway and/or category in the Inge-
nuity Pathway analysis (IPA) database. DEGs were analysed and separated according to their biological function 
within IPA. The top canonical pathways affected by RFI in heifer skeletal muscle tissue and hepatic tissue of bulls 
are presented in Table 7. These included enriched pathways related to mitochondrial function and oxidative 
phosphorylation in heifers and Aldosterone Signalling, GDP-mannose Biosynthesis, Nuclear factor erythroid 
2-related factor 2 (NRF2) mediated oxidative stress response, and Eukaryotic Initiation Factor 2 (EIF2) signal-
ling in bulls.
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Table 1.  Summary of phenotypic data of bulls at end of feed intake trial. 1 High RFI is inefficient and low RFI 
is efficient. 2 Metabolic  BW0.75, kg is determined as  BW0.75 in the middle of the RFI measurement period which 
was estimated from the intercept and slope of the regression line after fitting a linear regression line through all 
metabolic BW  (BW0.75) observations. 3 Back fat change is mean of the fat depth at end of intake trial—mean of 
fat depth at start of intake trial.

Trait High1(SD) Low1(SD) P value

Bulls

No. of animals 5 5 ˗

DMI, kg DM/d 10.1 (0.52) 8.4 (0.47) 0.02

RFI, kg DM/d 0.6 (0.05) − 0.7 (0.04) 0.009

Metabolic  bodyweight0.75,  kg2 96.3 (5.19) 94.5 (7.82) 0.74

Initial bodyweight, kg 375.1 (32.35) 376.9 (34.44) 0.9

Final bodyweight, kg 511.8 (27.65) 496.6 (24.31) 0.62

ADG, kg/d 1.9 (0.33) 1.7 (0.29) 0.46

Backfatchange3, mm 1.5 (0.28) 1.5 (0.36) 0.63

Heifers

No. of animals 5 5 ˗

DMI, kg DM/d 9.8 (0.63) 8.6 (0.46) 0.03

RFI, kg DM/d 0.4 (0.05) − 0.3 (0.02) < 0.0001

Metabolic  bodyweight0.75,  kg2 91 (4.74) 92 (5.52) 0.89

Initial bodyweight, kg 368 (17.90) 361 (26.57) 0.73

Final bodyweight, kg 466 (18.58) 449 (27.28) 0.93

ADG, kg/d 1.3 (0.41) 1.4 (0.24) 0.59

Back fat  change3, mm 1.3 (1.32) 1.2 (0.51) 0.16

Table 2.  Differentially expressed genes in the skeletal muscle of heifers divergent for RFI. 1   Log2Fold change 
was calculated for each gene from the expression value of low-RFI compared to high-RFI.

Ensemble Gene ID Symbol Log2FC1 adj. P-value

ENSBTAG00000043561 COX1 1.531959715 0.04229038

ENSBTAG00000043563 ND5 2.05811224 0.065711452

ENSBTAG00000043546 ND6 1.893462257 0.071589115

ENSBTAG00000043550 cytb 1.621906928 0.08104623

ENSBTAG00000043560 COX3 1.333918891 0.08240735

Table 3.  Differentially expressed genes in the hepatic tissue of bulls divergent for RFI. 1   Log2Fold change was 
calculated for each gene from the expression value of low-RFI compared to high-RFI.

Ensemble Gene ID Symbol Log2FC1 adj. P-value

ENSBTAG00000007662 HSPA5 1.366758112 0.002345638

ENSBTAG00000006262 LIMS2 − 0.816790737 0.007056497

ENSBTAG00000047801 CRELD2 1.0379502 0.007056497

ENSBTAG00000010322 HYOU1 1.22672561 0.00984059

ENSBTAG00000031797 MANF 1.097562958 0.021052189

ENSBTAG00000000170 GSTT1 − 0.844108433 0.025190925

ENSBTAG00000014614 ACTA2 1.074998203 0.026112848

ENSBTAG00000003151 DNAJB11 0.910521574 0.026285489

ENSBTAG00000006754 DBP − 1.022594741 0.044902486

ENSBTAG00000032026 GMPPB 0.632308333 0.054715662

ENSBTAG00000005344 GNPNAT1 0.619902591 0.07989897
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Figure 2.  Correlogram highlighting the correlation between DEGs in skeletal muscle tissue from high and 
low RFI bulls. Visual representation of the correlation matrix highlighting the most correlated DEGs in hepatic 
tissue from high and low RFI bulls. Blue circles (correlation value 1) indicate a high correlation between DEGs 
while red circles (correlation value − 1) indicate no correlation between DEGs. Non-significant correlations are 
denoted as X. This image was generated through the use of the R (v3.4) Corrplot  package65.

Figure 1.  Correlogram highlighting the correlation between DEGs in skeletal muscle tissue from high and low 
RFI heifers. Visual representation of the correlation matrix highlighting the most correlated DEGs in skeletal 
muscle tissue from high and low RFI heifers. Blue circles (correlation value 1) indicate a high correlation 
between DEGs. Non-significant correlations are denoted as X. This image was generated through the use of the 
R (v3.4) Corrplot  package65.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8942  | https://doi.org/10.1038/s41598-021-87842-3

www.nature.com/scientificreports/

Table 4.  Correlation between DEGs and RFI value in both heifers and bulls.

Gene RFI (r) P-value

Heifer (skeletal muscle)

COX1 − 0.73599 0.0238

ND5 − 0.73766 0.0233

ND6 − 0.70876 0.0326

cytb − 0.64221 0.0622

COX3 − 0.7102 0.032

Bull (liver)

GSTT1 0.7391 0.0146

DNAJB11 − 0.8317 0.0028

GNPNAT1 − 0.95164  < 0.001

LIMS2 0.68633 0.0284

DBP 0.6169 0.0768

HSPA5 − 0.85863 0.0015

HYOU1 − 0.80702 0.0048

ACTA2 − 0.35935 0.3078

MANF − 0.62913 0.0513

GMPPB − 0.62534 0.0532

CRELD2 − 0.81414 0.0041

Table 5.  Enriched GO functions in hepatic tissue from bulls divergent for RFI.

GO term Adj. P value

Regulation of response to endoplasmic reticulum stress 0.00926

Endoplasmic reticulum chaperone complex 0.0006678

Endoplasmic reticulum lumen 0.0008020

Endoplasmic reticulum 0.001742

Protein processing in endoplasmic reticulum 0.0143

Amino sugar and nucleotide sugar metabolism 0.03819

Table 6.  Enriched GO functions in skeletal muscle from heifers divergent for RFI.

Term Adj. P-value

Oxidoreductase activity 4.571E−05

Cellular respiration 1.736E−05

Electron transport chain 2.094E−05

Oxidative Phosphorylation 0.002167

Mitochondrial membrane 9.812E−06

Mitochondrion 0.0006311

Mitochondrial protein complex 0.008394

NADH dehydrogenase activity 0.01009

Membrane protein complex 0.008394

Inner mitochondrial protein complex 0.001441

ATP metabolic process 0.01944
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Discussion
Residual feed intake is a prime feed-efficiency trait to target within beef production systems; this is not only due 
to the moderate heritability of the trait but also due to its independence from production traits used to calculate 
 it20. Furthermore, data from our own group provides evidence that RFI is a repeatable trait in beef  cattle11. How-
ever, although well suited toward genetic propagation through genomic selection, insight into the underlying 
genes governing the trait are conflicting across  studies20,24. This is undoubtedly due to the multifaceted nature 
of the trait as well as the influence of both animal and management factors toward the RFI phenotype. Addi-
tional individual experimental parameters may also be contributing to the lack of consistency across results, 
including for example, the measurement of the RFI phenotype and the length of the dietary intake test  period25. 
Furthermore, RFI calculated within a specific population, as is the case in RFI transcriptional profiling studies, 
only reflects natural variation within that specific population, thus the level of divergence may be quite variable 
across different studies. In addition to these limitations, genomic selection models do not differentiate on the 
basis of gender, thus if molecular biomarkers are to be successfully employed for a trait it is essential to deter-
mine whether biological processes and specific key genes are regulating economically important traits such as 
RFI across differing gender types. Thus again the objective of this study was to evaluate any potential effects of 
differing gender to the underlying biological mechanisms regulating variation in RFI in both Simmental heif-
ers and bulls. The animals used in the current study were from a purebred, well-characterised herd, reared as a 
contemporary group from birth with similar genetics, thus permitting a more equitable comparison of the effect 
of phenotypic RFI ranking. Our evaluations were focused towards both the liver and skeletal muscle tissue, the 
metabolic activities of which are both essential for overall body homeostasis and efficiency of an animal, with 
both organs being highly abundant in  mitochondria26. Muscle accounts for approximately 50% of body mass 
and 25% of basal metabolic activity of an animal and plays an important role in resting energy  expenditure27. 
Additionally, the liver is a highly oxidative organ accounting for 18–25% of total oxygen body consumption 
that is responsible for metabolising lipids, proteins and carbohydrates into biologically useful  molecules23. We 
hypothesised that due to the metabolic importance of these organs, that variation in feed efficiency and energy 
expenditure (measured here using RFI) is likely to be reflected in the transcriptome of tissue from these organs. 
Understanding the essential biological processes contributing to variation in RFI is critical to elucidating the 
genetic basis, for this trait.

Although the RFI values pertaining to the animals used in this study showed clear significant divergence 
between high and low-RFI groups in both heifers and bulls, we failed to identify any DEGs within the liver tissue 
of the heifers and the skeletal muscle tissue of the bulls. Similarly, other studies evaluating the molecular control 
of RFI divergence in crossbred steers reported no DEGs following correction for multiple  testing28–30. Therefore, 
the main observation of the current study is the inconsistent effect of RFI across (1) gender and (2) tissue for 
DEG profiles despite a 10% and 15% difference in DMI between high and low RFI heifers and bulls, respectively, 
with no difference in ADG in the current study. While both genders were of similar age and were reared under 
the same conditions, it is apparent that there was some divergence in the actual physiological stage of develop-
ment, as might be expected, between bulls and heifers at the time of sample collection. Similarly, in a targeted 
gene expression study, complementary to this current study, we observed a significant effect of gender on the 
expression of lipogenesis genes within the subcutaneous adipose tissue, this is despite there being no significant 
difference in subcutaneous fat  measurements31. Typically, heifers display earlier physiological maturity when 
compared to bulls of the same age, thus the identification of a gender effect in an energy storage accretion tissue 
such as adipose tissue was perhaps unsurprising, however the potential effect of physiological age and stage of 
maturity on metabolic tissues at the same age in the current study was potentially unexpected. Our results indi-
cate that it will be unlikely that the key genes derived from the tissues examined in this study will be accurate 
predictors of genetic potential for RFI across gender. However, it is possible that greater differences may have 
been apparent at the molecular level, had sample-size and sequencing depth been greater. Moreover, the low 
number of genes identified in the current study does not mean that other tissues or organs within the body may 
provide more comparable results and thus reliable biomarkers, based on animal age and not physiological age 
or stage of development. Despite this, we determined possible molecular mechanisms and biological functions 
influencing RFI in beef cattle within tissue and gender subgroups. These data highlight a relationship between 
RFI and the transcriptomic networks involved in mitochondrial function in the skeletal muscle of heifers and 

Table 7.  Canonical pathways derived from IPA analysis associated with divergence for RFI in bull hepatic 
tissue and heifer skeletal muscle tissue.

Canonical Pathway P value

Bull (liver)

Aldosterone signalling in epithelial cells 2.11E−03

GDP-mannose biosynthesis 2.54E−03

NRF2-mediated oxidative stress 2.83E−03

ILK signalling 2.92E−03

EIF2 signalling 3.70E−03

Heifer (skeletal muscle)

Mitochondrial function 3.18E−11

Oxidative Phosphorylation 3.26E−09
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evidence for a relationship between RFI and the aldosterone signalling pathway and the NRF2 mediated oxida-
tive stress pathway in hepatic tissue of bulls.

We identified 5 genes that were statistically differentially expressed in skeletal muscle of high and low 
RFI heifers. Although we did not identify large numbers of DEGs, the level of transcriptional differences are 
consistent with the findings of other previously published RFI based  studies32–34. Among the 5 DEGs, all 5, 
COX1 (cytochrome c oxidase subunit 1), ND5 (NADH-dehydrogenase 5), ND6 (NADH-dehydrogenase 6), CYTB 
(cytochrome b), and COX3 (cytochrome c oxidase subunit 3), were up-regulated in low RFI heifers compared 
to their high RFI counterparts. Additionally, all of these genes were significantly associated with RFI, with the 
exception of cytb, which only tended towards a significant association, further indicating a role for these genes 
to RFI variation in the skeletal muscle tissue of heifers. Interestingly all of these genes are components of the 
electron transport chain (ETC) in the mitochondrial inner membrane and are of major importance to overall 
energetic efficiency. ND5 and ND6 are subunits of the enzyme complex NADH dehydrogenase (ubiquinone) or 
complex I of the ETC. CYTB is the main subunit of coenzyme Q: cytochrome c–oxidoreductase or complex III of 
the ETC. COX1 is the main subunit of cytochrome c oxidase or otherwise known as complex IV of the ETC and 
COX3 is a transmembrane subunit of this same complex. Previous transcriptomic experiments have reported a 
relationship between DEGs related to the complexes of ETC and  RFI12,35. For example, increased levels of COXII 
(complex IV) and NADH dehydrogenase subunits have been shown to be associated with efficient animals at both 
the protein and transcriptome  level12,35–38. However, although genes of the ETC have previously been reported 
in relation to variation in RFI, this is the first report of an up-regulation of COX1, ND5, ND6, CYTB and COX3 
in skeletal muscle tissue of cattle of low vs. high RFI. The lack of commonality of specific key genes underlying 
processes such as ETC to RFI phenotype may be due to the differences in breed types employed across studies, 
with Simmental cattle utilised in the current study. For example, in a study examining the effect of various breeds 
on the molecular control of RFI in liver tissue, Mukiibi et al.21 recorded only 5 genes as commonly differentially 
expressed across three differing breed types, however an evaluation of the biological processes showed a clear 
commonality for the underlying biological control of RFI irrespective of breed, but with different key genes 
dependent on the breed  type21.

Using gene ontology (GO) enrichment analysis, we identified important processes underlying feed efficiency 
variation in skeletal muscle of heifers. These included functions related to mitochondrial metabolism, in particu-
lar oxidative phosphorylation. Similarly, the top canonical pathways identified by IPA were mitochondrial func-
tion and oxidative phosphorylation. Taken together, these analyses highlight a greater capacity for mitochondrial 
function in the low RFI animals. The relationship between mitochondria and RFI has been addressed previously 
and mitochondrial dysfunction and oxidative stress have been implicated as contributing to variation in feed 
efficiency across varying  species12,35,39–42. Mitochondria are highly dynamic organelles that are responsible for 
90% of the energy production in the body and are major reactive oxygen species (ROS)  regulators43. It seems 
likely that variation in mitochondrial function could contribute to variation in energy utilisation. Furthermore, 
it has been demonstrated that feed efficient animals exhibit greater capacity to modulate conditions of oxida-
tive  stress44. Feed efficient animals have been shown to have a higher activity of all enzymes of the ETC across 
multiple species including broilers and  lambs39,40,42 and the present study focused on cattle is in agreement with 
this. The DEG in the current study encode proteins involved in Complexes I, III and IV of the ETC indicating 
an impaired oxidative phosphorylation system in the skeletal muscle of the less efficient heifers. These results 
complement previous research suggesting an association between decreased respiration capacity and increased 
ROS production in less efficient  animals40,45. Moreover, the results of the present study are reinforced by the 
observation of Kong et al.38 in which the mitoproteome was skewed towards high feed efficiency birds despite 
no difference in mitochondrial DNA between phenotypes, suggesting an increase in mitochondrial activity in 
the high feed efficiency  phenotype38.

Within the hepatic tissue of bulls we identified 11 DEGs, 8 of which were up-regulated in the low RFI ani-
mals. These included; HSPA5 (78 kDa glucose –regulated protein precursor), CRELD2 (cysteine rich with EGF like 
domains 2), HYOU1 (hypoxia up-regulated protein 1 precursor), MANF (mesencephalic astrocyte derived neuro-
trophic factor), ACTA2 (actin, alpha2, smooth skeletal muscle, aorta), ENSBTAG00000003151 (DNAJ heatshock 
protein family (Hsp40) member B11, GMPPB (GDP-mannose pyrophosphorylase B), GNPNAT1 (glucosamine-
phosphate N-acetyltransferase 1). Three genes were down-regulated in the low RFI bulls. These included; LIMS2 
(LIM zinc finger domain containing 2), GSTT1 (glutathione S-transferase theta 1), DBP (D-box binding PAR bzip 
transcription factor). HSPA5, CRELD2, HYOU1, ACTA2, DBP, MANF, and GSTT1 have previously been impli-
cated in variation in feed  efficiency21–23,33,35,44,46–49 and are potential candidate biomarkers for this complex trait. 
Furthermore, HSPA5, CRELD2, HYOU1 and GSTT1 were all significantly associated and MANF tended towards 
a significant association with RFI phenotype further implicating the importance of these key genes to RFI, not 
only to the bulls used in the current study but to other cohorts of cattle divergent for RFI status. Gene ontology 
analysis of hepatic tissue in bulls identified terms including those related to amino sugar and nucleotide sugar 
metabolism as well as others related to endoplasmic reticulum protein processing as significantly enriched. 
Additionally, Ingenuity pathway analysis identified Aldosterone Signalling in Epithelial cells, GDP-mannose 
Biosynthesis, NRF2 mediated Oxidative Stress Response and EIF2 Signalling as the top canonical pathways 
related to RFI in bull hepatic tissue. The results of the GO enrichment and IPA analysis indicate that oxidative 
response, protein processing and cell signalling in the liver are likely to be processes that are influencing varia-
tion in feed efficiency.

The aldosterone signalling pathway was identified by IPA as the top canonical pathway due to the up-reg-
ulation of the genes HSPA5 and DNAJB11 in the hepatic tissue of low RFI bulls. Aldosterone is secreted by the 
adrenal glands and has a major role in electrolyte and fluid homeostasis. The aldosterone signalling pathway has 
been implicated in feed efficiency previously in the spleen of inefficient  animals30 and, interestingly, a GWAS 
analysis with cattle identified this pathway to be associated with variation in feed conversion  ratio50. The protein 
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encoded by HSPA5 is a member of the HSP70 family and as this protein interacts with many endoplasmic reticu-
lum (ER) proteins it is likely to be important in monitoring protein transport through the  cell51. DNAJB11 as a 
member of the DNA-J family of proteins is involved in the correct folding of  proteins52. Specifically DNAJB11 is 
involved in protein processing and metabolism of proteins and serves as a co-chaperone for HSPA5 in the  ER49. 
One of the many functions of this family of proteins is to stabilize new proteins by ensuring correct folding or 
by helping refold proteins that have already been damaged by cellular stress. Both DNAJB11 and HSPA5 have 
been implicated with feed efficiency  previously23,30,44,53. In agreement with the current study, other work from 
our  group54 observed that animals undergoing compensatory growth with concomitant improvements in feed 
efficiency have a higher hepatic transcript abundance of DNAJB11 and HSPA5. Similarly, an up-regulation of 
HSPA5 was observed in the hepatic tissue of low RFI animals by Paradis et al.33. Taken together these results are 
indicative of a greater capacity in controlling cellular function and organisation as well as protein metabolism 
in more feed efficient animals.

NRF2 mediated oxidative stress response was also observed to be an overrepresented pathway in the hepatic 
tissue of high RFI bulls in the current study due to the up-regulation of the genes GSTT1 and DBP. NRF2 is a 
member of the cap ‘n’ collar basic region leucine zipper (cnc bZip) group of transcription  factors55. This tran-
scription factor is ubiquitously expressed in tissues but is only activated in response to a range of oxidative and 
electrophilic stimuli including ROS, antioxidants, glucose induced oxidative damage, heavy metals, and certain 
disease  processes55–57. This canonical pathway has previously been associated with feed efficiency in a number 
of  studies28,48,49,53,58. GSTT1 is a member of the glutathione S-transferase family and is involved in metabolism 
of xenobiotics and in catalysing reactions between the antioxidant glutathione and a host of potentially toxic 
compounds, highlighting it as an important homeostatic  molecule59. The glutathione S-transferase family has 
previously been implicated in feed efficiency in various  species28,48,49,53,58. In agreement with the current study, 
Chen et al.49 and Lindholm-Perry et al.28 observed an up-regulation of these genes in feed inefficient cattle. 
DBP is a protein coding gene and amongst its cited functions is activation of circadian gene expression. Gene 
ontology annotations related to this gene include transcription factor activity, sequence-specific DNA binding 
and transcriptional activator activity and RNA polymerase II core promoter proximal region sequence-specific 
 binding60. Additionally, DBP was also implicated as contributing to variation in RFI phenotype through the 
network analysis reported by Weber et al.22. Similarly, it has been shown that mice with increased FE have a 
lower expression of DBP61 which is in agreement with the present study. Taken together, our work and that of the 
aforementioned authors, suggest that less efficient animals are exhibiting an increased oxidative stress, reflected 
in their increased anti-oxidation activities.

The differential expression and significant association of HSPA5, CRELD2, HYOU1, GSTT1 and MANF with 
RFI in the present study are also noteworthy as all six genes have been previously observed as differentially 
expressed in relation to feed efficiency in  cattle21,22,44,49,62. While the biological significance of these genes in 
relation to feed efficiency remains unclear, due to their consistent presence in the literature, they should not be 
ruled out as potential biomarkers for this trait.

Conclusion
The present study contributes to the published knowledge base regarding the transcriptomic regulation of varia-
tion in feed efficiency. Our work, in combination with that of others as previously mentioned, highlights common 
genes underpinning feed efficiency in cattle, as measured by RFI, regardless of breed or genetic background. 
RNA-seq analysis is an exploratory approach that provides new hypotheses to be further investigated by other 
complementary approaches including global proteomics and ultimately, potential variation in the genes identi-
fied in this study may provide a basis for the selection of candidate biomarkers for the RFI trait and, following 
appropriate validation, contribute to genomic selection breeding programmes to improve feed efficiency in beef 
cattle. However, the key message from this work highlights the inconsistency in gene expression profiles across 
genders of the same genetic merit. While this inconsistency may be explained by the differences in physiologi-
cal maturity of the two genders, it indicates that extensive further investigation is required before biomarker 
selection for RFI can be adopted.

Methods
All procedures involving animals in this study were conducted under an experimental licence from the Health 
Products Regulatory Authority in accordance with the cruelty to Animals Act 1876 and the European Com-
munities (Amendment of Cruelty to Animals Act 1876) Regulation 2002 and 2005.

Animal model. The animals used in this study were derived from a purebred herd of Simmental cattle origi-
nally established to examine various aspects of the biological control of the RFI trait and which has been well 
characterised to date in the published  literature13–19. Briefly, purebred Simmental beef cattle derived from a herd 
phenotypically ranked on RFI were used for the current  study31. Based on RFI phenotype the highest (n = 20) 
and lowest (n = 20) ranking cows and heifers were bred to pedigree Simmental sires with estimated breeding 
values for high and low RFI (see Crowley et al.4), respectively, through artificial insemination and multiple ovu-
lation/embryo recovery technologies. There was no crossover of sires used across both cohorts of donor females. 
Resultant embryos were transferred to crossbred beef heifer recipients and the resulting calves (bulls, n = 16; 
heifers n = 18) were used for the current study. Pregnant heifers were managed under standard protocols and 
following calving were allowed to suckle their calves for a period of up to 7 days. In order to standardise rearing, 
calves were then abruptly weaned and were subsequently reared on an electronic calf feeder. Briefly calves were 
offered milk replacer (MR; Blossom Easymix; Volac, Co. Cavan, Ireland) and concentrate in pelleted form using 
an electronic feeding system (Vario; Foster-Tecknik, Engen, Germany), which recorded all feed-related events 
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including intake of both MR and concentrate, drinking speed, as well as number of rewarded (when calves 
receive milk) and unrewarded (no milk dispensed) visits to the machine. Calves were subsequently weaned 
at 10 weeks of age and were offered concentrate and hay on a 50:50 dry matter basis until turnout to pasture 
at approximately six months of age. At approximately 15 months of age all cattle (n = 34) were housed within 
pens of between 5–7 animals/pen in a slatted floor shed. Cattle were fed once daily (0800 h) and were offered 
ad libitum concentrate (860 g/kg rolled barley, 60 g/kg soya bean meal, 60 g/kg molasses and 20 g/kg minerals/
vitamins) and 3 kg grass silage to retain ruminal function. The animals had an acclimatisation period of 14 days 
to the ad libitum regime and test facilities before the experimental recoding period commenced. Feed intake was 
recorded daily and BW was recorded twice weekly. The recording period lasted 70 days. Concentrates and silage 
offered were sampled three times weekly and samples were stored at − 20 °C pending laboratory analysis. Sam-
ples of concentrates and silage were subsequently pooled on a weekly basis for DM determination. Concentrate 
samples were dried in an oven with forced-air circulation at 98 °C for 16 h for DM determination and forage 
samples dried at 40° for 48 h.

Statistical analysis. Average daily live weight gain during the RFI measurement period for each animal 
was computed as the coefficient of the linear regression of BW (kg) on time (d) by using the GLM procedure 
of SAS 9.1 (SAS Inst. INC., Cary, NC). Mid-test metabolic BW (MBW) was represented as  BW0.75 35 d before 
the end of the test which was estimated from the intercept and slope of the regression line. Residual feed intake 
was calculated for each animal as the difference between actual DMI and expected DMI. Expected DMI was 
computed for each animal using a multiple regression model, regressing DMI on MBW, ADG and mean lumbar 
BF change. Animals were ranked within gender and following a power analysis utilising RFI phenotype data 
previously generated by our  group13–19, a total of 5 animals per group was required for statistical analysis, thus 
the most extreme animals for high RFI (n = 5) and low RFI (n = 5) in each heifer and bull group were selected 
for further analysis.

Biopsy sample collection. M.longissimus thoracis et lumborum (skeletal muscle) biopsies were harvested 
as described by Kelly et al.12 and hepatic tissue was collected by percutaneous punch biopsy as described by 
McCarthy et al.63 from animals deemed high and low RFI under local anaesthetic (5 mL Adrenacaine, Norbrook 
Laboratories (Ireland) Ltd.) at the end of the RFI measurement period. All surgical instruments used for tissue 
collection were sterilised and treated with 70% Ethanol and RNaseZap (Ambion, Applera Ireland, Dublin, Ire-
land). M.longissimus thoracis et lumborum biopsies were snap frozen in liquid nitrogen directly after collection 
and hepatic tissue biopsies were washed in sterile phosphate buffered saline and snap frozen in liquid nitrogen. 
All samples were subsequently stored at − 80 °C for long-term storage pending further processing.

RNA isolation and purification. Total RNA was isolated from 50 mg of biopsy samples using QIAzol 
(Qiagen, UK). Tissue samples were homogenised in 1 mL of QIAzol reagent using a rotor-strator tissue lyser 
(Qiagen, UK) and chloroform (Sigma-Aldrich Ireland, Dublin, Ireland). RNA was subsequently precipitated and 
purified using the RNeasy plus Universal kit (Qiagen, UK) according to the manufacturer’s guidelines, which 
included a step to remove any contaminating genomic DNA. The quantity of the RNA isolated was determined 
by measuring the absorbance at 260 nm using a Nanordrop spectrophotometer ND-1000 (Nanodrop Technolo-
gies, Wilmington, DE, USA). RNA quality was assessed on the Agilent Bioanalyser 2100 using the RNA 6000 
Nano Lab Chip kit (Agilent Technologies Ireland Ltd., Dublin, Ireland). RNA quality was also verified by ensur-
ing all RNA samples had an absorbance (A260/280) of between 1.8 and 2.0 and RIN (RNA integrity number) 
values of between 8 and 10 were deemed high quality. Any samples that had an (A260/280) absorbance of less 
than 1.8 were cleaned using Zymo Research RNA clean & concentrator kit (Cambridge Biosciences, UK). High 
quality RNA samples were selected for cDNA synthesis.

cDNA library preparation and sequencing. cDNA libraries were prepared from high quality RNA fol-
lowing the manufacturer’s instructions using the Illumina TruSeq mRNA sample prep kit (Illumina, San Diego, 
CA, USA). For each sample, 1 μg of RNA was used for cDNA library preparation. Resultant cDNA libraries 
were validated on the Agilent Bioanalyser 2100 using the DNA 1000 Nano Lab Chip kit. cDNA concentration 
was assessed using Nanordrop spectrophotometer ND-1000 (Nanodrop Technologies, Wilmington, DE, USA) 
and samples with > 25 ng/μl were deemed suitable for further analysis. Following quality control procedures, 
individual RNAseq libraries were pooled based on their respective sample-specific 6 bp adaptors and sequenced 
at 100  bp/sequence single-end read using and Illumina HiSeq 2500 sequencer. Approximately 22.4 million 
sequences per sample were generated.

RNAseq data analysis. FASTQC software (v0.11.5) was used to check the quality of the raw sequencing 
reads. Input reads were then aligned to the bovine reference genome (UMD3.1) using STAR (v2.5.1). HTSeq 
(v0.6.1p2) software was used to calculate the number of sequenced fragments overlapping all protein-coding 
genes from the ENSEMBLv88 annotation of the bovine genome. The number of counts of reads mapping to each 
annotated gene from HTSeq was then collated into a single file and used for subsequent differential gene expres-
sion. The R (v3.4) Bioconductor package, EdgeR (v3.5)64, which uses a negative binomial distribution model to 
account for both biological and technical variability, was applied to identify statistically significant DEGs. The 
analysis was undertaken using moderated tagwise dispersion. An adjusted p value < 0.1 (Benjamini–Hochberg 
adjustment) was applied as a threshold to call genes with differential expression levels. The R (v3.4) Corrplot 
 package65 was used to visualise the correlation matrices pertaining to the DEGs passing multiple correction 
for each comparison. Gene expression results for DEGs identified through transcriptional profiling were also 
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correlated with RFI value, to determine potential associations between the DEGs and RFI. Correlations were 
undertaken using the CORR procedure in SAS 9.1 (SAS Inst. INC., Cary, NC).

Gene ontology and pathway analyses. Biological processes, cellular components and molecular func-
tions that were associated with the DEGs were identified using the g:Profiler GO enrichment  tool66. The gene 
name and associated p-value were used as input for gene ontology and pathway analyses. Fisher’s exact test was 
used to determine the enrichment of the GO terms. P-values associated with each annotation term inside each 
cluster are Fisher Exact/EASE Scores. To examine the molecular functions and genetic networks; the RNAseq 
data was further interrogated using IPA (Ingenuity Systems, Redwood City, CA; http:// www. ingen uity. com), a 
web based software application that enables identification of over-represented biological mechanisms, pathways 
and functions most relevant to experimental datasets or genes of  interest67. Data were imported in a flexible 
format using the gene symbol as the identifier.

Ethics declarations. All procedures involving animals in this study were conducted under an experimental 
licence from the Health Products Regulatory Authority in accordance with the cruelty to Animals Act 1876 and 
the European Communities (Amendment of Cruelty to Animals Act 1876) Regulation 2002 and 2005. All pro-
cedures described in this study were carried out in compliance with the ARRIVE guidelines.

Data availability
The datasets generated and analysed during the current study are available in the National Centre for Biotech-
nology Information (NCBI), Gene Expression Omnibus repository, and are accessible through GEO accession 
number GSE112793 [https:// www. ncbi. nlm. nih. gov/ geo/] under accession number.
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