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pathway status revealed
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patients with distinct immune
microenvironment
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Clinical significance and biological functions of the ferroptosis pathway were

addressed in all aspect of cancer regarding multi-omics level; however, the

overall status of ferroptosis pathway alteration was hard to evaluate. The aim of

this study is to comprehensively analyze the putative biological, pathological, and

clinical functions of the ferroptosis pathway in breast cancer on a pathway level.

By adopting the bioinformatic algorithm “pathifier”, we quantified five

programmed cell death (PCD) pathways (KO04210 Apoptosis; KO04216

Ferroptosis; KO04217 Necroptosis; GO:0070269 Pyroptosis; GO:0048102

Autophagic cell death) in breast cancer patients, and we featured the clinical

characteristics and prognostic value of each pathway in breast cancer and found

significantly activated PCD in cancer patients, among which ferroptosis

demonstrated a significant correlation with the prognosis of breast cancer.

Correlation analysis between PCD pathways identified intra-tumor

heterogeneity of breast cancer. Therefore, clustering of patients based on the

status of PCD pathways was done. Comparisons between subgroups highlighted

specifically activated ferroptosis in cluster 2 patients, which showed the distinct

status of tumor immunity and microenvironment from other clusters, indicating

putative correlations with ferroptosis. NDUFA13 was identified and selected as a

putative biomarker for cluster 2 patients. Experimental validations were executed

on cellular level andNDUFA13 showed an important role in regulating ferroptosis

activation and can work as a biomarker for ferroptosis pathway status. In

conclusion, the status of the ferroptosis pathway significantly correlated with

the clinical outcomes and intra-tumor heterogeneity of breast cancer, and

NDUFA13 expression was identified as a positive biomarker for ferroptosis

pathway activation in breast cancer patients.
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Introduction

Programmed cell death (PCD) has long-demonstrated

significance in all aspect of life and keeps growing with the

discovery of new functions and identification of new

classifications (1). The newest subroutines were identified

based on the molecular characteristics including apoptosis,

necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic

cell death, parthanatos, lysosome-dependent cell death,

autophagy-dependent cell death, alkaliptosis, and oxeiptosis, of

which the molecular function and regulatory mechanism were

summarized in a review done by Tang et al. (2).

Numerous reports were seen regarding the pathological

alteration of PCD pathways in cancers. Several core genes

were identified in the regulatory network of cell death. The

caspases family plays a critical role in the regulation of cell death.

PCD can be further categorized into two groups: caspase-

dependent (e.g., apoptosis and pyroptosis) and caspase-

independent (e.g., necroptosis, ferroptosis, parthanatos,

alkaliptosis, and oxeiptosis) (3, 4). Studies focusing on the

regulatory genes of PCD gave rise to the importance of each

pathway in cancer; however, these studies can hardly reflect the

overall status alteration of pathways. Quantifications of each

pathways in patients were also rarely discussed.

The recent development of algorithms using sequencing data

can transform gene-level data into pathway-level data. With

considerations of regulatory information between genes, it can

accurately reflect the status alteration of each pathway under

different conditions and provide novel perspectives in the

integration of multi-omics data on cancer (5, 6). Compared to

R package “ssGSEA”, which was developed using the annotated

gene list of pathways, “pathifier” demonstrated better accuracy

in a context-specific manner, especially with novel pathways or

self-defined gene lists (7, 8), and was widely used in cancer

studies focusing on pathway-based evaluations of pathological

effects and identifications of testable biomarkers (6, 9, 10).

To fully understand the characteristics of ferroptosis

pathway in breast cancer, we calculated a pathway

deregulation score (PDS) of five PCD pathways by adopting

“pathifier”, a bioinformatic algorithm, using The Cancer

Genome Atlas (TCGA) data. The aim of this study is to

comprehensively analyze the putative biological, pathological,

and clinical correlations of the ferroptosis pathway in breast

cancer on a quantitative pathway level.
Materials and methods

Data accession

Expression data from TCGA breast invasive carcinoma

(BRCA) dataset by RNA sequencing (RNAseq) (ployA+
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IlluminaHiSeq, version 2017-10-13) and relative clinical

phenotype information from TCGA Pan-Cancer (PANCAN)

Clinical Data Resource (version 2019-12-06) were obtained

from UCSC Xena data hub (https://xenabrowser.net/hub/). The

expression value was shown as gene-level transcription estimates

mean-normalized (per gene) across all TCGA cohorts [PANCAN

normalized log2(norm_count+1)]. Four major clinical outcome

endpoints were used as pre-described, namely, overall survival

(OS), progression-free interval (PFI), disease-free interval (DFI),

and disease-specific survival (DSS) (11). GTEx and TCGA

PANCAN were also obtained from UCSC Xena data hub. Data

from the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) project and theMSK-IMPACT project

were downloaded from the cBioPortal for Cancer Genomics

(http://www.cbioportal.org/) and were used as independent

external validation datasets (12–14).
Generation of pathway
deregulation score

To evaluate the biological status of PCD pathways in breast

cancer, R package “pathifier” was used to transform gene-level

information into pathway-level information on the basis of

expression data, generating a compact and biologically relevant

PDS of each sample (8). PDS ranged from 0 to 1. Tumor samples

that got a higher score than the normal sample were deemed

highly deregulated, whereas tumor samples with the lower score

indicated an inactive status of a certain pathway. A gene list of

PCD pathways was extracted from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO)

database (KO04210 Apoptosis; KO04216 Ferroptosis;

KO04217 Necroptosis; GO:0070269 Pyroptosis; GO:0048102

Autophagic cell death). Each pathway was running for 1000

attempts with the minimal allowed standard deviation of 0.4.

Illustration of clinical relevance was done with “pheatmap”.
Evaluation of clinical significance

Prognostic value regarding the four clinical outcome

endpoints enrolled was done using univariate and multivariate

Cox regression. For multivariate Cox regression, PDS was

enrolled and forward stepwise regression was done with the

ER/PR/HER2 status, age, and T/N/M stage treated as

confounders. R package “survival” was used for survival

analyses of PDS with best separation cutoffs selected using

“survminer”. The minimal proportion of each group was no

less than 10%. Further multivariance survival analyses and

subgroup analyses were done as described and illustrated using

“forestplot”. Hazard ratio (HR) and 95% confidence interval

(95%CI) were shown in the forest plot. The Kaplan–Meier

plotter (KMplot; http://www.kmplot.com/analysis) was used to
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evaluate the prognostic value of NDUFA13 in integrative breast

patients on both RNA and protein levels. Distance metastasis-

free survival was used as an endpoint.

To evaluate the predictive efficiency of PDS, R package

“timeROC” was used to construct time-dependent ROC

comparing survival data. Time points used include 0, 90, 180,

270, 365, 730, 1,095, 1,825, 2,920, 3,650, and 5,475 days. At each

time points included, an AUC value was generated and

compared across PCD pathways.

Decision curve analysis (DCA) was done to evaluate whether

using the PDS of PCD pathways as prognostic factors would

improve clinical decision-making for all decisions (15, 16). The

“stdca.R” function was used to conduct DCA with prediction

models compared to two default strategies: (1) assume that all

patients are tested positive and therefore treat everyone (treat-

all) or (2) assume that all patients are tested negative and offer

treatment to no one (treat-none). Curves above the treat-none

line and outdo treat-all line were deemed to gain benefit. The

further assessment focused on the usefulness of the marker to

identify patients with and without unnecessary treatment, and

the net reduction plot was used to show the intervention avoided

based on the prognostic value of the marker.
Clustering and principle components
analysis (PCA)

Correlations between the PDS of PCD pathways were

calculated and illustrated using R package “corrgram”. Each

pathway was distributed diagonally, with the correlation scatter

diagram in the lower left corner and the correlation coefficients

in the upper right corner. Further illustrations with circos plot

were done using “circlize” (17). All analyses were done using

Spearman’s correlation tests.

Clustering of PDS of each PCD pathway was done with

patients firstly being divided into “UP”, “DOWN”, and “NO

CHANGE” groups using k.means, then clustered with ward.D.

Illustrations were done using “pheatmap” and “ggplot2”. PCA

was done using “ggord” and illustrated with “yyplot”.
Function enrichment

Clinical characteristics were compared between clusters using

“pheatmap”. Differential expression analyses were done between

groups to identify genes that significantly deregulated between

clusters using limma (18, 19). For gene set enrichment analysis

(GSEA), we predefined the gene rank by expressional correlations.

The h.all.v7.4.symbols.gmt and c2.cp.kegg.v7.4.symbols.gmt subsets

were used to evaluate the relevant pathways and molecular

mechanisms. Based on the predetermined gene rank, the

minimum gene set was set to 5, the maximum gene was set to
Frontiers in Oncology 03
5000, and 1,000 times of re-sampling. P-value < 0.05 and FDR <

0.25 were considered statistically significant.
Characterizing of tumor
microenvironment

To fully present the correlation between PCD pathways and

anti-cancer immune response process, cancer immunity was

analyzed using the online tool TIP (Tracking Tumor

Immunophenotype, http://biocc.hrbmu.edu.cn/TIP/), which

integrates “ssGSEA” and “CIBERSORT” for tracking,

analyzing, and visualizing the status of the seven-step Cancer-

Immunity Cycle using RNAseq data (20). Detailed tumor-

infiltrating immune cells were further calculated and

characterized with clinical information and previously

published TCGA immune subtypes.

Immune cell clustering within subgroups was done to feature

the relationship among immune cells in a certain population.

Spearman’s correlations with P-value less than 0.0001 were left

for clustering. Both k.means and hclust were used and integrated

with recent studies to generate the final clustering results.
Selection of putative biomarkers

Exploration of putative biomarkers was first done with

differentially expressed genes (DEGs). The calculation of DEGs

was done using limma. Selection criteria were adjusted P-value <

0.05 and |log2FC| > 1. For DEGs meeting the criteria, ROC was

done to calculate the AUC, and genes were further ranged by

AUC. Top genes were illustrated in heatmap. Further

construction of selective panels was done using Lasso

regression. Internal tests were done with patients in TCGA-

BRCA 1:1 randomly assigned as a training set and a test set.

External independent validations were done in the METABRIC

and MSK-IMPACT projects.
Cell lines

Human breast cancer cell lines MDA-MB-231, SK-BR-3,

MDA-MB-468, T-47D, ZR-75-1, and MCF-7 were obtained

from American Type Culture Collection (ATCC; Manassas,

VA, USA) and cultured in Dulbecco’s modified Eagle’s

medium (DMEM; Gibco, New York, USA) or Roswell Park

Memorial Institute 1640 (RPMI; Gibco, New York, USA), as

required, with 10% fetal bovine serum (FBS; Gibco, New York,

USA), and 1% penicillin and streptomycin (Gibco, New York,

USA). All cells were cultured in the humidified incubator at 37°C

with 5% CO2.
frontiersin.org

http://biocc.hrbmu.edu.cn/TIP/
https://doi.org/10.3389/fonc.2022.956999
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.956999
Quantitative real-time polymerase chain
reaction (qPCR)

MDA-MB-231 and ZR-75-1 cells were treated with DMSO or

RSL3 (MedChemExpress, Monmouth Junction, NJ, USA; 10 mM)

for 24 h. Total RNA was extracted through the RNA extraction kit

(Promega, Beijing, China) and taken into reverse transcription

using PrimeScript RT reagent Kit (Takara, Japan) to produce

cDNA under the manufacturer’s instructions. qPCR was

conducted with SYBR Premix Ex Taq II (Takara) and

LightCycler480 system (Roche, Switzerland). GAPDH was utilized

as reference. Primers for NDUFA13 were listed as follow: forward

primer: 5′- GGCCCATCGACTACAAACGG-3′; reversed primer:

reverse primer: 5′- CGCTCACGGTTCCACTTCATT-3′.
Reactive oxygen species evaluation

The intracellular level of reactive oxygen species (ROS) was

quantified by a Reactive Oxygen Species Assay Kit (Beyotime,

China). This kit contains 2’, 7’-dichlorofluorescein-diacetate

(DCFH-DA), which is easily oxidized to fluorescent

dichlorofluorescein (DCF) by intracellular ROS. Cells were

seeded in six-well plates, stimulated with simvastatin for 24 h,

then washed with PBS and treated with 10 mMDCFH-DA in the

dark for 30 min at 37°C. The fluorescence was observed by

fluorescence microscopy at 488-nm excitation and 525-nm

emission after being washed three times with PBS.
Statistical analysis

All analyses were performed using RStudio version 1.2.5033 (R

Core Team, Vienna, Austria) statistical software. PDS and gene data

were presented as means ± SE unless otherwise indicated. Two

group comparisons were made using Student’s t-test, whereas

multi-groups comparisons were done with one-way ANOVA.

Further comparisons of numerous data were done using chi-

square test. All analyses were done with missing sample excluded

considering the large sample size. Correlation analyses were done

using either Pearson’s test or Spearman’s test depending on

parametric or non-parametric distribution of the data. Unless

otherwise indicated, a two-sided P-value < 0.05 was considered

significant. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
Results

Clinical characteristics and prognostic
significance of PDS in breast cancer

To fully explore the clinical characteristics and prognostic

significance of PCD pathway alterations in breast cancer, PDS of
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PCD pathways (KO04210 Apoptosis; KO04216 Ferroptosis;

KO04217 Necroptosis; GO:0070269 Pyroptosis; GO:0048102

Autophagic cell death) for each patient was generated using

“pathifier” to quantify the status alteration of each pathway based

on RNAseq data from the TCGA-BRCA dataset with 1,091 tumor

sample and 113 normal sample (Figure 1A). The final status of each

PCD pathway was determined by comparing with normal samples

(Figure 1B). Intriguingly, all PCD pathways were seen

hyperactivated in tumor samples (P < 0.0001), demonstrating the

significant role of PCD in breast cancer. Clinical characterization of

PCD pathways was further explored. Among all clinical

characteristics included, apoptosis, ferroptosis, and necroptosis

pathways were activated in ER, PR-negative, and basal patients,

whereas the autophagic cell death pathway was significantly

suppressed (Figure A1A–C). Interestingly, despite no significant

alteration being seen regarding HER2 status, comparisons between

PAM50 subtypes showed significantly activated apoptosis,

ferroptosis pathways, suppressed pyroptosis, and autophagic cell

death pathway in HER2-positive subtype compared to hormone

receptor-positive patients (Figure A1C). Furthermore, correlations

between pathway alterations and vital status revealed significantly

activated apoptosis, ferroptosis, necroptosis, and autophagic cell

death pathways in living patients compared to deceased patients,

demonstrating the putative prognostic significance of PCD in breast

cancer (Figure A1D).

Given the status of PCD significantly altered between vital

status, Cox regression and survival analyses were done to explore

the prognostic values of PCD in breast cancer. As shown in

Figure 1C, ferroptosis and necroptosis are significantly

correlated with OS in univariate Cox regression, among which

only ferroptosis was identified as an independent prognostic

factor in multivariate analysis (HR 0.395, 95%CI 0.198–0.929,

P = 0.033). Interestingly, apoptosis significantly correlated with

DSS in multivariate analysis with the ER/PR/HER2 status, age,

and T/N/M stage was treated as confounders; however, this was

not seen in univariate Cox regression.

To validate the prognostic value of PCD, timeROCs were used

to compare at a different time point (Figure A1E). In accordance

with survival analysis, the ferroptosis pathway showed the highest

AUC regarding OS, PFI, DFI, and DSS, especially in the first 3 years,

with the highest AUC seen in the first year (OS: 0.68; PFI: 0.72; DFI:

0.66; DSS: 0.76) and declining ever after. The prognostic advantage

of the ferroptosis pathway persisted in PFI and DSS up to the fifth

year. Combined with the clinical significance seen in survival

analyses, the ferroptosis pathway has demonstrated putative

association with early recurrence and progression of breast

cancer, and a certain hypothesis gave rise to the importance of

the ferroptosis pathway in breast cancer in both pathogenetic and

clinical ways. To further address the putative functions of ferroptosis

in clinical decision-making, DCA was done comparing the

instructive value of PCD regarding PFI, DFI, and DSS in the first

3 years. Intriguingly, in accordance with timeROC analyses, PDS of

the ferroptosis pathway has shown the best efficacy as a risk score
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for the early recurrence and progression of breast cancer in the first

3 years. In the prediction of PFI, an absolute gaining of Net Benefit

(NB) in patients with a threshold probability ranged from 10% to

14%, whereas in DSS, significant gaining of NB was seen in patients

with a probability ranging from 6% to 10% (Figure A1F). Moreover,

evaluation of PDS as therapeutic indicators done in DCA also

showed a good efficacy of the ferroptosis pathway regarding PFI

and DFI. For patients with a threshold probability ranging from

9.5% to 14%, using PDS of ferroptosis as a biomarker for clinical

intervention demonstrated the best efficacy, with a net reduction of

15 per 100 patients. Comparatively, prominent improvement was

seen in ferroptosis as a biomarker for DSS in patients with a

probability over 6%, with a net reduction of more than a quarter per

100 patients (Figure A1F).
Clustering of breast cancer patients
based on PDS

Numerous works were done focusing on the crosstalk between

PCD pathways on both biological and clinical levels; however,

studies were done on the gene level, and by generating the PDS of

PCD pathways, we tried to quantify the correlation on the pathway
Frontiers in Oncology 05
level (Figure 2A). Positive correlations were found between all PCD,

except for autophagic cell death. However, scatter plots of pairwise

comparisons between apoptosis, ferroptosis, necroptosis, and

pyroptosis revealed underlying heterogeneity among breast cancer

samples with the distribution of patients exhibiting distinct clusters.

Therefore, clustering based on PDS was done. A total offive clusters

were generated as shown in Figure 2B with sample types. Normal

samples were seen mostly in cluster 1 (Normal = 88, Tumor = 13).

PCA also identified a separated distribution between cluster 1 and

other clusters (Figure 2C). Within tumor samples, PCA has seen a

good separation between clusters 2, 3, and 5; however, there is cross-

coverage between cluster 4 and other groups. For each pathway,

comparisons were made to identify featured alterations in each

cluster (Figure 2D; Table A1SF4), among which cluster 2 exhibited

significantly hyperactivated ferroptosis and necroptosis pathways

and autophagic cell death was significantly activated in cluster 3 and

cluster 5. Detailed clinical characteristics were summarized in

Table A2.

Survival analyses done in each cluster unraveled distinct results

between clusters, but good consistency within each cluster (Figure

A1G). In cluster 2, the activation of ferroptosis and autophagic cell

death significantly correlated with better clinical outcomes, whereas

cluster 5 has seen the activated PCD indicating worse clinical
B C

A

FIGURE 1

Clinical characteristics and prognostic significance of programmed cell death pathway alterations in breast cancer. (A) Heatmap illustrating
pathway deregulation score (PDS) of PCD pathways in breast cancer generated with clinical annotations from TCGA BRCA data; colors were
row-scaled and zero-centered. (B) Comparisons of PDS between sample types. (C) Univariate and multivariate Cox regression of PCD pathways
in breast cancer regarding overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS).
Hazard ratio (HR) and 95% confidence interval (95%CI) were shown in the forest plot. For multivariate Cox regression, all pathway scores were
enrolled and forward stepwise regression was done with the ER/PR/HER2 status, age, and T/N/M stage treated as confounders. P-value < 0.05
was considered significant. A two-sided P-value < 0.05 was considered significant. ****P < 0.0001.
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outcomes. However, in either cluster 2 or cluster 5, identical clinical

significance was seen regarding both OS and other outcomes. This

suggested that our clustering results successfully eliminate

heterogeneity within clusters. Among PCD pathways, ferroptosis

showed significant clinical correlations in both cluster 2 and cluster

5 regarding OS, PFI, DFI, and DSS, which supported the clinical

significance of ferroptosis in breast cancer addressed above.

Furthermore, the different clinical relevance between cluster 2 and

cluster 5 draws attention to the putative biological heterogeneity

between these two clusters, which needs further exploration.
Functional enrichment between clusters

To fully explore the biological difference between clusters,

clinical characteristics were first summarized and compared in

Table A2. Clusters consist of different levels of sample type,
Frontiers in Oncology 06
histological type, ER/PR/HER2 status, M stage, marginal status,

vital status, and history of targeted therapy. To explore the different

biological characteristics between clusters, biomarkers for each

cluster were enriched (Figure A2A). Top 100 biomarkers for each

cluster were used for functional enrichments. Only specific

biomarkers were enrolled for final analysis (Figure A2B, Table

A3).Multi-group enrichments revealed common functions between

clusters (Figures A2C, D), which mainly focus on the cell cycle

pathway. Cluster-specific enrichments showed a distinct biological

background of each cluster. Comparatively, cluster 2 specifically

enriched in GO:0016579: protein deubiquitination, GO:0061756:

leukocyte adhesion to vascular endothelial cell, GO:0046854:

phosphatidylinositol phosphorylation, GO:0004842: ubiquitin-

protein transferase activity, GO:1901699: cellular response to

nitrogen compound, GO:0005667: transcription factor complex,

and GO:0019902: phosphatase binding, among which GO:0061756

indicates a putative role in the infiltration of the tumor
B

C

D

A

FIGURE 2

Clustering of breast cancer patients based on the alterations of programmed cell death pathways. (A) Correlations between PCD pathways in
breast cancer. Correlational R-values between pathways were shown in the upper right with scatter plots in the bottom left. Color was
illustrated according to the R-value. Red: R > 0, blue: R < 0. (B) Heatmap of clustering based on the PDS of PCD pathways of breast cancer
patients with sample type annotation. (C) Principle components analysis (PCA) based on the PDS of PCD pathways with clusters of breast
cancer patients illustrated with different colors. (D) Comparisons of PDS of each PCD pathways between clusters. P-value < 0.05 was
considered significant.
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microenvironment. The differentially enriched pathways provided

novel perspectives on the difference between clusters and the intra-

tumor heterogeneity, which was mainly discussed in the

tumor microenvironment.

To explore the underlying correlation mentioned above,

characterization of the microenvironment was depicted. A

comprehensive heatmap of TILs was shown with patients

scored by infiltration level of the 24 immune cells. Previously

published immune indexes were also annotated to characterize

tumor microenvironment (Figure 3A) (21). Leukocyte fraction,

stromal fraction, and intra-tumor heterogeneity were used to

quantify tumor purity. Comparisons of the overall infiltration

score between clusters showed a significantly higher level of

infiltration in cluster 2 than other clusters (P < 0.001, Figure 3B),

which, in accordance with the functional enrichments,

demonstrated an hyperactivated immune status in patients

with activated ferroptosis pathway. However, compared to

previously published immune subtypes and PAM50, cross-

links were seen between subgroups and significant consistency

was not seen (Figure 3C), which proved our clusters a novel

classification, and the highlight of cluster 2 indicates a putative

regulative role of ferroptosis in tumor immunity.

Given the theory of the seven-step Cancer-Immunity Cycle,

clarification of correlations between PCD and specific steps

contributes to the understanding of the specific underlying

mechanism. Therefore, correlations were done with each step

quantified using ssGSEA. As shown in Figure 3D, a general

relationship was seen between PDC and the seven-step Cancer-

Immunity Cycle, among which correlations were mainly found in

steps 3, 4, and 5 (Table A4). Interestingly, negative correlations were

found between pathways and trafficking of immune cells to tumors

except for apoptosis, which implies a different biological function

between apoptosis and other PCD pathways in immunity.
Distinct tumor microenvironment
between patients with activated and
inactivated ferroptosis pathway

Further exploration of the tumor microenvironment was done

focusing on the different intercellular interactions of TILs.

Correlations of each cell were calculated and clustered within

each group. With the size of each dot representing the survival

significance of each cell, cells clustered showed a comprehensive

correlation and a different distribution between cluster 2 and cluster

5 (Figure 4A). Distinct interactions were seen with TILs clustered

differently, demonstrating a distinct tumor microenvironment

between clusters 2 and 5 caused by status alteration of ferroptosis.

In summary, cluster 2 featured highly infiltrated immune cells that

demonstrated anti-tumor efficacy, while cluster 5 exhibited a higher

proportion of tumor-promoting cells.

Given the putative regulatory function of PCD mainly

focuses on the immune infiltration process, comparisons of 24
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tumor-infiltrating immune cells were done between cluster 2 and

cluster 5 (Figure 4B), in which a lower level of type 1 regulatory

T cells (Tr1), natural regulatory T cells (nTreg), induced

regulatory T cells (iTreg), T helper cells 1 (TH1), IL-17–

producing effector T helper cells (TH17), central memory T

cell (Tcm), and effector memory T cell (Tem) were seen in cluster

2, whereas cytotoxic T cells (Tc), exhausted T cells (Tex), natural

killer T cells (NKT), follicular helper T cells (Tfh), NK cells,

gammadelta T cells (gdT/Tgd), and CD8+ T cells (CD8T) are

highly infiltrated. The different levels of tumor-infiltrating

immune cells indicate a distinct microenvironment between

clusters 2 and 5 that may affect the biological functions of PCD.

Except for a significantly hyperactivated level of ferroptosis

pathway, patients in cluster 2 showed a significantly higher

proportion of ILC subtype, basal patients, and more metastasis

(P < 0.001) compared to cluster 5 (Figure 4C). Functional

enrichments were done between clusters 2 and 5 to explore

the putative mechanism altered. PDS of all KEGG pathways was

calculated and compared between clusters 2 and 5, among which

the adipocytokine signaling pathway, T-cell receptor signaling

pathway, TGF-beta signaling pathway, and leukocyte trans-

endothelial migration pathway were found hyperactivated in

cluster 2, whereas basal transcription factor pathway was

significantly suppressed. For further validation, DEGs were

calculated (Figure A3A) and used as an input for GSEA

analyses of both GO and KEGG. The top 40 KEGG pathways

and biological functions in GO were shown in Figures A3B, C.

Intersect ions of the functional enrichments found

immunological functions significantly altered between patients

in clusters 2 and 5. In cluster 2, immune-related functions like

antigen processing and presentation viaMHC class Ib (NE: 0.97,

NES: 1.46, P-value = 0.016), positive regulation of T-cell–

mediated cytotoxicity (NE: 0.96, NES: 1.52, P-value = 0.010),

and regulation of T-cell apoptotic process (NE: 0.93, NES: 1.49,

P-value = 0.023) were significantly activated. This indicates that

patients in cluster 2 are more immune-active compared to

patients in cluster 5.

Given the opposed clinical significance of ferroptosis found in

clusters 2 and 5, we hypothesized that ferroptosis may have a

regulatory function on immunity. Therefore, correlations between

ferroptosis pathway and tumor-infiltrating immune cells were

explored in both cluster 2 and cluster 5, respectively. In cluster 2,

Tgd, iTreg, B cell, Tcm, and macrophage were found significantly

correlated with ferroptosis (Figure 4D), whereas in cluster 5,

significant correlations were seen in NKT, B cell, Tex, iTreg, TH17,

nTreg, CD8.naive, DC, TH1, and Tgd. Among cells that significantly

correlated with ferroptosis in both clusters, reversed correlations

were seen in Tgd, B cell, and iTreg between the two clusters (Tgd:

Rc2 = 0.25, Rc5 = −0.12; B cell: Rc2 = −0.18, Rc5 = 0.34; iTreg: Rc2 =

−0.23, Rc5 = 0.24). These results suggested that the different

regulatory mechanisms of activated and inactivated ferroptosis

between cluster 2 and cluster 5 mainly affect the infiltration, but

not the function of immune cells.
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Selection of putative biomarker for
ferroptosis-activated patients

Given the results presented above, patients in cluster 2 are

characterized with the hyperactivated ferroptosis pathway and

higher immune infiltration. Additional analyses were done to
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explore putative biomarker genes between the two clusters.

DEGs were calculated between C2 and other patients and

analyzed using ROC. Only the top 20 DEGs with the highest

AUC were left for further comparison (Table A5), among which

only three genes were significantly overexpressed in cluster 2

(namely, GADD45GIP1, NDUFA11, and NDUFA13; Figure 5A)
B C

A

D

FIGURE 3

Comparisons of tumor microenvironment between clusters. (A) Heatmap of tumor-infiltrating immune cells between clusters with previously
categorized immune subtypes information. (B) Comparisons of infiltration scores were done between clusters. (C) Correlations between clusters
and immune subtypes, PAM50, and infiltration levels. (D) Correlations of PCD pathways and the seven-step Cancer-Immunity Cycle in all
samples. A two-sided P-value < 0.05 was considered significant. **P < 0.01.
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and may work as putative biomarkers. A three-gene predictive

model was generated by Lasso regression among the top 20

DEGs. Intriguingly, the predictive model constructed by Lasso

only contains the three over-expressed genes. Evaluation of the

three-gene index found stable and consistent predictive efficacy

between the training cohort and test cohort [Train AUC: 0.929

(0.892−0.961); Test AUC: 0.936 (0.908−0.959); P = 0.810].

External validations were done in the METABRIC and MSK-

IMPACT projects. The alterations of PCD were first quantified

in both validation cohorts. Patients were clustered under the

same criteria and the cluster 2 subset of patients was identified

manually. The predictive efficacy of the three-gene predictive

model was presented as ROC, and in both validation cohorts, the

three-gene panel showed a good efficacy [validation 1: AUC

0.915 (0.889−0.942); validation 2: AUC 0.915 (0.893−0.935)]

(Figure 5B). Furthermore, NDUFA13 demonstrated good

efficacy compared to the three-gene predictive model
Frontiers in Oncology frontiersin.org09
(Figure 5B, AUC 0.919 (0.901−0.934) P = 0.101), suggesting that

NDUFA13 can work as a single-gene biomarker for the selection

of cluster 2 patients. Moreover, the correlation between

NDUFA13 and ferroptosis pathway alteration was shown in

Figure 5C with patients ranged by the expression of NDUFA13.

Based on the results presented, overexpression of NDUFA13

strongly correlated with the status of ferroptosis (R = 0.53,

P < 0.0001).

Given the positive correlation identified in our study, putative

biological functions between NDUFA13 and ferroptosis may need

further demonstration. Firstly, expression analysis revealed over-

expression of NDUFA13 in breast cancer and several other cancers

(Figure 5D), indicating putative oncogenic functions of NDUFA13

in tumors. Then, functional enrichments were done using GSEA,

among which TOP 5 significantly enriched KEGG pathways and

cancer hallmarks were shown in Figure 5E. Positive regulations of

oxidative phosphorylation was enriched in both KEGG and
B

C D

A

FIGURE 4

Comparisons of tumor-infiltrating immune cells between cluster 2 and cluster 5. (A) Clustering and correlations between tumor-infiltrating
immune cells in cluster 2 (left) and cluster 5 (right). Red: positive correlation, blue: negative correlation. (B) Comparisons of tumor-infiltrating
immune cells between cluster 2 and cluster 5. (C). Heatmap of KEGG_FERROPTOSIS pathway alteration and clinical characteristics between
clusters 2 and 5. (D) Correlations between KEGG_FERROPTOSIS and tumor-infiltrating immune cells between cluster 2 (left) and cluster 5
(right). A two-sided P-value < 0.05 was considered significant. *P < 0.05; **P < 0.01; ***P < 0.001.

https://doi.org/10.3389/fonc.2022.956999
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.956999
hallmark dataset (KEGG: ES = 0.6660, P = 0; HALLMARK: ES =

0.5831, P = 0). In the hallmark dataset, NDUFA13 was found

positively correlated with ROS pathway (ES =0.5672, P = 0.001),

adipogenesis (ES = 0.4835, P = 0), and fatty acid metabolism (ES =

−0.3690,NES = −1.7, P = 0.1650), which were demonstrated factors

associated with the occurrence of ferroptosis, indicating a biological

correlation between NDUFA13 and ferroptosis. The KMplot was

utilized to assess the prognostic effect of NDUFA13 on both mRNA

and protein levels. A total of 2,765 breast cancer cases were available

for distant metastasis-free survival (DMFS) analysis by mRNA and

126 cases by protein. Our study showed that the overexpression of

NDUFA13 was correlated with a significant increase in the DMFS

of breast cancer patients (Figure 5F, mRNA: P < 0.001, Protein:

P = 0.085).
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Validation of NDUFA13 as putative
biomarker for ferroptosis

To fully validate the correlation between NDUFA13 and

ferroptosis, the cellular expression level of NDUFA13 mRNA was

first evaluated in order to provide the basic level of expression

between subtypes. Comparatively, SK-BR-3 and MCF-7 exhibit a

higher level of NDUFA13; nevertheless, a similar expression pattern

was seen between cell lines (Figure 6A). MDA-MB-231 and ZR-75-

1 were selected for further experimental demonstration considering

the similar basic expression level and the molecular subtypes. After

ferroptosis induced by 24-h incubation of RSL3 (10 mM), both cells

showed significantly elevated levels of NDUFA13 compared to

DMSO-treated groups (Figure 6B, P < 0.01).
B

C D

E F

A

FIGURE 5

Selection of putative biomarker for cluster 2 patients. (A) Heatmap of the top 20 putative biomarkers between cluster 2 and other breast cancer
patients. DEGs were calculated using limma; DEGs with adjusted P-value < 0.05 and |log2FC| > 1 were selected for ROC analysis. DEGs were
ranged according to the AUC and only top 20 genes were illustrated. (B) ROC plot comparing the predictive value of the three over-expressed
genes as biomarkers of cluster 2 patients. A three-gene index was generated using Lasso regression. The predicted value of the three-gene
index generated was estimated with TCGA-BRCA patients divided equally into the training cohort and test cohort. Further validations were done
using data from the METABRIC (validation 1) and MSK-IMPACT projects (validation 2). (C) Scatter plot showing the expression of NDUFA13 (red)
and the PDS of ferroptosis pathway (blue) with patients annotated to cluster 2 or others. Patients were ranged by the expression of NDUFA13.
(D) Pan-cancer expression analysis of NDUFA13 in 27 cancer types using TCGA PANCAN and GTEx dataset. (E) GSEA plots of NDUFA13-related
pathways and cancer hallmarks. (F) Kaplan–Meier survival plots for NDUFA13 expression in breast cancer. Distant metastasis-free survival (DMFS)
was used as an endpoint. A two-sided P-value < 0.05 was considered significant. **P < 0.01; ****P < 0.0001.
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We then tested the intracellular level of ROS in MDA-MB-

231 and ZR-75-1 after knocking down NDUFA13 (Figure 6C).

Both cells showed a reduction of ROS in NDUFA13 knockdown

(KD) groups compared with NC after treating with RSL3. These

results indicated that NDUFA13 had a positive correlation with

ferroptosis (Figure 6D).
Discussion

By adopting the bioinformatic algorithm “pathifier”, we

quantified five PCD pathways in breast cancer patients, so as to

comprehensively analyze the putative biological, pathological, and

clinical significance of PCD pathways in breast cancer on a pathway

level. Given the results presented in our study, we found

significantly activated PCD in cancer patients, among which

ferroptosis demonstrated a significant correlation with the

progression of breast cancer. Correlation analysis between PCD

identified intra-tumor heterogeneity of breast cancer. Therefore,

clustering of patients based on the PDS was done. Comparisons

between subgroups highlighted specifically activated ferroptosis in

cluster 2. Functional enrichment identified the distinct status of

immunity and tumor microenvironment between patients with

activated and inactivated ferroptosis pathways. To fulfill the clinical

significance of ferroptosis, NDUFA13 was identified as a selective
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biomarker of ferroptosis activation and further demonstrated

putative biological functions in the regulation of ferroptosis.

Previous works focusing on the pathway alterations in cancer

were first seen in works done by Wang et al. regarding the Hippo

signaling pathway (22). A comprehensive PANCAN analysis of 19

Hippo core genes across 33 cancer types using multi-omics data

from TCGA was done and a YAP/TAZ transcriptional target

signature of 22 genes was developed to characterize Hippo

pathway activity. Another research focusing on the oncogenic

pathways in human cancer was done by Li et al. (23). By

reviewing literature published and further explored with TCGA

data, multi-omics features of oncogenic pathways were summarized

and restored as an online database. Despite the inspiring work done,

all the discussion remained on the gene level, which hardly reflects

the status of each pathway. Therefore, we used PDS generated by

“pathifier” to reflect the pathway activity and further explore the

clinical significance on a pathway level, which demonstrated more

accurate efficacy than other methods.

Crosstalk between PCDpathways and immunity was previously

summarized in a review done by Tang et al. (2), in which cell death

was categorized into two kinds: immunogenic cell death (ICD) that

alerts and triggers immunity against dead-cell antigens, including

ferroptosis, necroptosis, pyroptosis, and autophagic cell death and

tolerogenic cell death (TCD) that actively inhibits immune responses

(24–27). Apoptosis was considered TCD mostly but grew an
B C
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FIGURE 6

Validations of NDUFA13 as a biomarker for ferroptosis. (A) Expression of NDUFA13 in human breast cancer cell lines. (B) Expression of NDUFA13
mRNA in human breast cancer cell lines treated with DMSO or RSL3 (10 mM) for 24 h. (C) Efficiency test of NDUFA13 siRNA knockdown (KD).
(D) Intracellular level of reactive oxygen species (ROS) in breast cancer cells treating with DMSO or RSL3 (10 mM) followed by NDUFA13 KD. A
two-sided P-value < 0.05 was considered significant. *P < 0.05; **P < 0.01.
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importance in the activation of tumor immunity under certain

conditions. The correlation between the ferroptosis pathway and

tumor immunity identified in our study was previously

demonstrated on a cellular level. Recent results done by Wang

et al. reveal that CD8+ T cells drive ferroptosis in tumor cells and

the tumor suppressive function of interferon (IFN)-gamma secreted

by CD8+ T cells in response to immune checkpoint blockade

meditated by ferroptosis, suggesting that the immune system may

function in part through ferroptosis to prevent tumorigenesis, and

ferroptosismay hold the key to tumor immunotherapy response (28,

29). Despite numerous works done, the immunological function of

ferroptosis remained underestimated considering the result

presented in our study. Intra-tumor heterogeneity contributes to

the differential alteration of tumor immunity caused by ferroptosis.

Here, we characterized a subset of breast cancer patients with

hyperactivated status of ferroptosis and necroptosis pathway and

overexpressed NDUFA13, in which activation of ferroptosis

promoting the infiltration of anti-tumor cells like Tgd, therefore,

might correlate with better responsiveness of immunotherapy in

breast cancer. Previously reported biological functions of NDUFA13

mainly involved in the IFN/all-trans-retinoic acid (IFN/RA)–

induced cell death and transfer of electrons from NADH to the

respiratory chain, therefore, impacted themitochondrial and cellular

ROS production.

In conclusion, we quantified the status alteration of PCD

pathways and highlighted the significant correlation of ferroptosis

with early recurrence and progression of breast cancer. Intra-tumor

heterogeneity of breast cancer was detected based on the status of

the ferroptosis pathway. Mechanism analyses further revealed

distinct tumor microenvironment and immunological function of

ferroptosis between patients. NDUFA13 expression was identified

as a positive biomarker for ferroptosis pathway activation in breast

cancer patients.
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