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Abstract

We introduce a decision model that interprets the relative levels of moment-by-moment spiking 

activity from the right and left superior colliculus to distinguish relevant from irrelevant stimulus 

events. The model explains detection performance in a covert attention task, both in intact animals 

and when performance is perturbed by causal manipulations. This provides a specific example of 

how midbrain activity could support perceptual judgments during attention tasks.

Decision-making is often described by models in which an abstract decision variable crosses 

a boundary1. Interpreting neuronal activity itself as a decision variable has established a 

compelling link between boundary-crossing models and perceptual choice behavior2. 

However, efforts to test this link by causally perturbing neuronal activity and explaining the 

changes in choice behavior have been largely unsuccessful; for example, causal 

manipulation of activity in area LIP can affect reaction time but does not change perceptual 

choices3,4.

A good candidate for testing the link between boundary-crossing models and behavior is the 

primate superior colliculus (SC), a retinotopically organized midbrain structure. Neurons in 

the SC have activity related to target probability5 and comprise a “priority” or “saliency” 

map6 of the visual field. In addition, we recently found that the activity of single SC neurons 

is correlated with behavior in a covert color-change detection task7. Furthermore, 

perturbation of SC activity reliably alters perceptual choices in attention tasks: 

microstimulation causes a spatially specific increase in hits8,9, and inactivation causes both a 

decrease in hits inside the affected portion of visual field and an increase in false alarms 

outside it10,11. Thus, SC neuronal activity – intact or perturbed – might be expected to 

predict the outcome of decisions about whether a relevant (cued) or irrelevant (un-cued) 

stimulus event has occurred. To test this hypothesis, we implemented a model with a 

decision variable based on SC neuronal activity and tested whether it could account for the 
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pattern of altered choices observed during microstimulation or inactivation in a covert 

attention task.

Neuronal and behavioral data were collected while monkeys performed a covert color-

change detection task7 (figure 1a). The task required monkeys to release a joystick in 

response to subtle saturation changes at a relevant (cued) location and ignore changes at an 

irrelevant (un-cued) foil location. The detection was performed covertly – monkeys were not 

allowed to look directly at the peripheral stimuli and instead maintained central fixation 

throughout. In constructing the decision variable, we included data only from visual-

movement and visual-movement prelude units (114 in monkey 1, 37 in monkey 2), having 

previously found that the activity of these unit-types best predicts choices in our task7.

The fundamental assumption in our model is that thresholding the difference in activity of 

pooled left and right SC neurons is sufficient to account for the choice to either respond (by 

releasing a joystick) or not in the covert attention task (figure 1b). Pooled activity was the 

sum of single-trial activity from individual neurons (figure 1c). We visualized SC output as a 

“trajectory” in 2D space by plotting the pooled left SC activity against the pooled right SC 

activity (figure 1d). In this format, the trajectory lingers along the identity line when the 

difference in activity between left and right SC is small (as is evident for stimulus-onset-

evoked activity) but lunges out along one of the two axes when the difference is large, 

reaching a maximum value at one specific time-point during the phasic activity evoked by 

the stimulus change (compare time-point “d” on the figure 1c and 1d). The values of these 

maximum excursion “summary points” of single-trial SC activity are the primary inputs to 

the model.

The summary points can be represented interchangeably in 2D activity space or a 1D 

difference-of-activity space (figure 1e, see also figure S1). We consider each. In 2D space, 

the model’s choice to either respond or not in each trial was determined by whether the 

trajectory to the summary point crossed a unity-slope decision boundary (dashed diagonals 

in figure 1e). A pair of decision boundaries positioned symmetrically above and below the 

identity line allowed the model’s response to be triggered by high relative activity in either 

the right or left SC. In 1D space, the 2D summary point ‘(x, y)’ is equivalent to a 1D 

difference value ‘x - y’, and the decision depends on whether this difference exceeds a 

threshold (equivalent to the intercept of the 2D boundary). In this way, model response rates 

can be seen as either the percentage of summary points lying outside the pair of 2D decision 

boundaries or the percentage of summary point differences exceeding a 1D criterion. If the 

absolute value |x - y| is used in the 1D case, response rate calculations are reduced to a 

familiar signal detection theory style of presentation12 (figure 1e, right). While the 1D 

format is elegant and compact, the 2D “activity space” format offers an advantage over the 

1D space: it graphically illustrates how the summary points are affected by correlated 

variability between and within pools of SC neurons, which we measured and incorporated 

into our model following established methods13.

We first tested the ability of the model to reproduce attention task performance in control 

conditions when neuronal activity was not perturbed. One decision boundary was fit to a pair 

of hit and false alarm rates from each recording session (n = 59 in monkey 1, n = 70 in 

Herman et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



monkey 2). The fitted model reproduced each monkey’s overall hit and false alarm rates 

nicely, yielding rates that are comparable in both mean and variance (figure 1f). To 

quantitatively compare data to model we used a generalized linear model (GLM). 

Examining the significance of the GLM’s primary and interaction coefficients showed: (i) 

that monkey and model performance were indistinguishable (p = 0.99), (ii) that our model 

had done no better or worse at reproducing hits or false alarms (p = 0.89), (iii) nor had it 

done better or worse at predicting monkey 1 or monkey 2’s performance (p = 0.96).

We next examined the factors that contributed to the model’s success. Both task performance 

(hit and false alarm rates) and the SC neuronal activity used to model performance can be 

characterized by signal detection theory’s sensitivity index12: d’. The comparison of SC 

activity-d’ and behavioral-d’ illustrates how the model is constrained by the data: it cannot 

produce any arbitrary pair of hit rate (H) and false alarm rate (F) values, but only those that 

satisfy the equation activity-d’ = Z(H) – Z(F)14 (figure 1g).

What determines the activity-d’ arising from SC neuronal data? For a pair of distributions, d’ 

is the difference in their means (Δμ) divided by their average variance (σ−; figure 1e, right). 

Δμ depended simply on the averaged activity during cue and foil changes. σ−, however, was 

affected by three factors: (1) the average magnitude of trial-to-trial correlations within an SC 

pool, (2) correlations between left and right SC pools, and (3) the size of the SC pools. Since 

Δμ was fixed by the data, d’ of SC activity depended entirely on these three factors that 

determine σ−, which we now consider in turn.

Correlations within (ρw) and between (ρb) right and left SC pools have opposing effects on 

activity-d’, and the effect of adding neurons is limited to smaller pools (figure 2a). For 

uncorrelated neurons d’ increases without bound as a function of pool size, but once 

correlations are introduced activity-d’ asymptotes13,15,16 at approximately 300–1000 units 

(figure 2a). Because of this asymptotic behavior, the pool size we chose (n = 1000 each) will 

yield the same results as any other size in the asymptotic regime. For a fixed pool size, 

increasing ρw decreases activity-d’ by increasing σ− (figure 2b, top). Unlike ρw, which is 

strongly skewed to positive values, ρb can be equally positive or negative. When ρb > 0 

(right and left SC are positively correlated) variability in the difference between left and 

right SC decreases because shared variation is subtracted away, decreasing σ− and increasing 

d’. When ρb < 0, the opposite happens, σ− increases and d’ decreases (figure 2b, bottom). 

Thus even for a fixed pool size, there are an arbitrary number of possible combinations of ρw 

and ρb that will yield the same d’.

To illustrate this point, we systematically quantified how various combinations of neuronal 

correlations would be expected to influence the match between activity-d’ and behavioral-d’. 

Separately for each of the two monkeys, we considered an empirically plausible range of ρw 

values17 (0.0 – 0.2), all possible ρb values for each ρw (given the type of covariance we 

assumed), and fixed the pool size at n = 1000 (each). For each combination of ρw and ρb 

values, we computed the activity-d’ and subtracted the monkey’s behavioral-d’, plotting a 

heatmap of that difference (figure 2c). A “trough” of ρw and ρb combinations that yield the 

minimum difference between activity-d’ and behavioral-d’ are optimal for the model to 

predict monkey behavior.
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How do the model-optimal correlation values compare to those of actual neuronal data? To 

measure correlations within and between pools of SC neurons, we recorded from ensembles 

of neurons across the right and left SCs simultaneously with a pair of linear multi-contact 

probes (figure 2d). Consistent with our predictions (figure 2c), we found small positive 

average correlations within and between pools of SC neurons (figure 2e). The average 

correlation values were ρw = 0.09 within pools of SC neurons and ρb = 0.047 between pools; 

both were significantly greater than 0 (t-tests, both p << 0.01) and fell within the heatmap 

trough of optimal values (figure 2c). The bilateral recording sessions also afforded us the 

opportunity to estimate the relationship between boundary-crossing time in the model and 

the monkey’s joystick-release time (figure S3); the strong correlation we found (r = 0.74) 

lends additional support to the model.

If the model describes the SC’s causal contribution to task performance, it should also 

account for performance changes resulting from experimental manipulation of SC activity. 

To test this proposal, we unilaterally manipulated SC activity (in separate sessions) with 

either pharmacological inactivation or electrical microstimulation, following protocols 

known to produce behavioral effects8,11 (figure 3a). Inactivation caused decreases in hit rate 

inside the affected area of visual space and increases in false alarm rate outside it, reducing 

behavioral-d’ (mean reduction = −1.6, 95% CI = [−1.9, −1.2]) and increasing criterion (0.17, 

[0.1, 0.3]); microstimulation had the opposite effects (d’: 0.3, [0.2, 0.5]; criterion: −0.3, 

[−0.4, −0.2]).

We simulated the effects of manipulating SC activity by adding one additional parameter 

that multiplicatively scaled up or down the output activity of one SC (figure 3b).

Multiplicative scaling with no change of decision boundary allowed the model to 

successfully reproduce the behavioral effects of inactivation and microstimulation in both 

monkeys. During simulated inactivation, scaling down right SC activity compressed 

summary points horizontally in 2D activity space, moving 1D difference distributions closer 

(figure 3b); the resulting reduction in activity-d’ predicts a decreased hit rate and an 

increased false alarm rate, even without changing the decision boundary (figure 3c, left). 

Conversely during microstimulation, scaling up right SC activity horizontally spread out 

summary points, moving 1D distributions further apart, increasing activity-d’ and thereby 

predicting improvements in performance (figure 3c, right).

As alternative explanations to multiplicative scaling of the SC activity with a constant 

boundary, we also considered additive scaling (with a constant boundary), as well as 

multiplicative scaling with a variable boundary. Performance of the additive scaling model 

was significantly worse than multiplicative scaling models at simulating inactivation but 

equivalent for microstimulation, and a variable boundary offered no improvement over a 

constant boundary with multiplicative scaling (post-hoc testing with α = 0.05 following an 

ANOVA). This result indicates that multiplicative scaling of SC activity in our pooling 

model was sufficient to account for the effects of causal manipulations of SC activity (see 

also figure S4). Finally, we subjected the model to an additional test: we exploited 

idiosyncratic differences in behavior exhibited by the two monkeys during activity-

perturbation sessions to test whether model success was specifically tied to each monkey’s 
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SC activity. We repeated the process of model fitting but used the activity from monkey 1 to 

predict performance of monkey 2, and vice-versa. This “activity swap” test produced error 

distributions with significantly larger means (but similar variances) than in the un-swapped 

cases (bootstrap tests, all p < 0.01, variances: p = 0.05–0.09), showing that good fits 

provided by the model were not guaranteed or arbitrary, but instead were dependent on the 

particular SC activity recorded in each monkey.

In summary, our results illustrate the predictive relationship between SC output and 

performance in a covert detection task – both in intact animals (using a 1-parameter model) 

and during sessions where performance was altered by experimental manipulation of SC 

activity (2-parameters). The SC pooling model also explains why unilateral manipulations 

cause bilateral behavioral effects: because relevant events are detected based on the relative 

levels of activity in the right and left SC, unilateral manipulation of activity affects 

performance for events in either visual field. We acknowledge that there are other possible 

models and ways to simulate changes in SC activity that we have not considered. Our results 

are agnostic about detailed mechanisms but drive intriguing hypotheses. For example, the 

comparison of the relative levels of SC activity could be implemented as a normalization-

like computation18, allowing it to operate simultaneously over stimulus events across the 

entire visual field rather than requiring a mechanism that explicitly compares pairs of visual 

field locations.

Together, this work demonstrates a biologically plausible mechanism by which changes in 

subcortical signals for perceptual decision-making can give rise to some of the behavioral 

correlates of spatial attention. Our model shows how cue-related modulation of SC activity 

could influence perceptual choices by affecting boundary-crossing probability (figure 1e). 

For detection tasks, the signals read out from the SC alone can be sufficient to explain 

behavioral responses, as demonstrated. For discrimination tasks, because primate SC 

neurons are, at most, weakly tuned for visual features, boundary-crossing would require 

incorporating sensory information from cortex and elsewhere to correctly guide perceptual 

decisions. However, altering the probability of boundary-crossing in SC would alter 

response probability independent of the quality of additionally available sensory 

information; this explains how inactivation of SC can eliminate the effects of spatial cues on 

perceptual sensitivity19 even though SC activity does not represent the discriminated feature 

or influence the fidelity of local visual signals11,20. Our results Illustrate how decision-

making and selective attention are intertwined and highlight the importance of 

understanding how signals from the SC, as well as the cortex, are read out and interact 

during perceptual choices.

Online Methods

General

Data were collected and analyzed from two adult male rhesus monkeys (Macaca mulatta) 

weighing 9–12 kg, and were not performed blind to the conditions of the experiments. All 

experimental protocols were approved by the National Eye Institute Animal Care and Use 

Committee and all procedures were performed in accordance with the United States Public 

Health Service policy on the humane care and use of laboratory animals.
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Task

The details of our covert color-change detection task and dynamic color stimuli have been 

described in detail previously7 (figure 1c). Briefly, each trial was initiated by the monkey 

pressing down on a joystick, which illuminated a fixation square. After fixation acquisition, 

a white cue-ring was flashed (133ms) in the periphery, followed 500ms later by stimulus 

onset. The stimuli consisted of two circularly windowed colored “checkerboards”. One 

stimulus appeared in the location previously occupied by the cue-ring (the “cued stimulus”), 

and the other was presented at an equally eccentric opposing location (the “foil stimulus”). 

A change in mean stimulus saturation was possible 1–4s after stimulus onset; if the cued 

stimulus changed, the monkey was required to release the joystick within 150–750 ms, and 

if the foil stimulus changed, the monkey was required to keep the joystick depressed. Only 

one stimulus change was possible in each trial. Each block had a ratio of 3 cued : 1 foil 

change trials, presented in pseudorandom order in each block. Color changes were 

isoluminant changes in mean saturation and were masked by luminance noise.

Single unit recordings

We recorded from 60 SC neurons in monkey 1, and 79 in monkey 2. The details of 

procedures used to record extracellular activity of SC neurons using single electrodes may 

be found in our previous paper7. Briefly, once a single unit’s waveform was well isolated, 

visual and memory guided saccade tasks were used to map the receptive field (RF) online, 

and the covert color-change task was started with either the cued stimulus or the foil 

stimulus in the unit’s RF. Data were collected with a Plexon MAP system (Plexon Inc., 

Dallas, TX), and putative spike waveforms were sorted offline with Plexon Offline Sorter.

Bilateral SC recordings

In 3 sessions in monkey 1, we recorded the activity of both the right and left SC 

simultaneously using 24-channel v-probes (50μm spacing between contacts; Plexon Inc., 

Dallas, TX). In each session, once the probes had been advanced into the intermediate / deep 

layers of each SC, threshold crossings (μ −3σ on each channel) were used during a visually 

guided saccade task to simultaneously map RFs on all 48 contacts online. Stimuli were then 

placed by hand to maximize coverage of RFs. During offline analysis, we identified and kept 

only those units that had at least 2/3 of the stimulus inside their RF envelope (border defined 

by 50% of the maximum response to saccade target onset). Unlike single unit recording 

sessions, in which cue and foil stimulus were always 180° of elevation apart, we placed the 

two stimuli at 0° and 200° of elevation to align stimulus placement with RFs; for the same 

reason, we placed the stimuli at 13° eccentricity, rather than the 9–11° that had been used 

previously. At the conclusion of each session, the monkey completed 30–50 visually guided 

and 30–50 memory guided saccades with a target placed at the center of each of the two 

covert task stimulus locations – these saccade tasks were used offline to categorize SC 

neurons.

Continuous spike channel data recorded with a Plexon Omniplex D were analyzed offline 

with Kilosort21 including manual verification and adjustment steps. Following sorting, 

single neurons were classified following criteria established previously7. Only well isolated 

units with activity during the memory guided saccade task (allowing them to be categorized) 
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were retained for further analysis. Of 131 units, 80 were either visual-movement or visual-

movement prelude, and were used to estimate correlations, as well as being added to the 

dataset of 34 single units recorded previously in monkey 1. Importantly, activity-d’ 

computed from simultaneous bilateral recordings (2.68) was comparable to the value from 

single-electrode recordings (2.59), and performance during bilateral recording sessions was 

well accounted for by a model using neuronal data from only those sessions (figure S2).

Inactivation

We inactivated by injecting muscimol (0.5μl, 5 μg/μl), a GABAA channel agonist, in the 

intermediate/deep layers of SC10, placing the tip of our injection canula 2.5mm below SC 

surface. In each inactivation session (n = 8 and n = 10 in monkey 1 and 2, respectively), 

300–550 trials were collected “before” injection, and a similar number were collected 

“during” inactivation (within 30 to 240 minutes after injection). During inactivation, visually 

guided saccades were used to map the extent of the inactivation area as described 

previously11, and the cued stimulus was alternately presented inside and outside this area in 

successive blocks of trials.

Microstimulation

We followed previously established methods for microstimulation of SC without evoking 

saccades8. In each session (n = 7 and n = 6 in monkey 1 and 2, respectively), the 

microelectrode tip was placed at 2.5mm below SC surface. Before task data were collected, 

we first evoked 5–8 saccades by stimulating at 350Hz with biphasic current pulses of 25–

30μA, and used their average endpoint to subsequently place task stimuli so that either the 

cued or the foil stimulus was always overlapping this location. We then lowered both 

stimulation frequency and current pulse amplitude until saccades were evoked < 50% of the 

time with fixation point off and < 10% of the time with the fixation point on. Typically, these 

were achieved with a stimulation frequency of 70–85Hz and a current amplitude of 10–

15uA, consistent with previous reports22. During the attention task, microstimulation onset 

was 300ms prior to stimulus change and had a duration of 600ms. There were an equal 

number of all trial types “with” microstimulation and “without” microstimulation, and these 

were pseudorandomly intermixed.

SC output simulations

Spike data from visual-movement (n = 75) and visual movement prelude (n = 76) neurons 

was used to simulate SC output activity (for neuron classification details, see our previous 

paper7). As mentioned in the results, these classes were selected to maximize the model’s 

ability to account for behavior in our task based on previous findings13, but we cannot 

exclude the possibility that other classes of SC neurons contribute as well. Spike counts 

were binned in a sliding 100ms window (1ms increments). Each trial’s data comprised a 

portion of spike rate activity aligned on stimulus onset [−250ms, + 2000ms] concatenated 

with a portion aligned on stimulus change [−500ms, +1000ms]. In trials where the change 

occurred in the [+1000ms, +2000ms] interval, activity was truncated at change onset. After 

binning and concatenation, each neuron’s spike count data was normalized by dividing each 

binned count by the standard deviation of that neuron’s counts across trials and conditions. 

By normalizing activity, each neuron made a roughly equal contribution to performance in 
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our model; more complex weighting schemes might produce better model performance but 

would require additional assumptions.

We generated 10000 simulated “cue change on right” and 10000 “foil change on left” trials 

to estimate the statistics of SC output. Each trial included averaged activity from simulated 

left and right SC pools of 1000 neurons. For “cue change on right” trials, left SC activity 

incorporated normalized spike data from trials where the cued change was contralateral to 

the neuron, and right SC activity was from trials where the cued change was ipsilateral. 

Similarly, for “foil change on left” trials, right SC activity was from trials where the foil 

change was contralateral and left SC activity was from trials where the foil change was 

ipsilateral. A single simulated trial incorporated one trial’s worth of normalized spike count 

data from each neuron in the pool for left SC activity, and one trial’s worth for right SC 

activity (in each monkey). For example, a simulated “cue change on right” trial in monkey 1 

was built by randomly drawing and averaging 1000 “cue change contralateral” trials and 

1000 “cue change ipsilateral” trials (with replacement) from data across 114 neurons. 

Importantly, for cross-validation, we reserved some trials for training and others for testing 

(see below).

We estimated the statistics of SC output at each millisecond in a trial and incorporated 

correlations using established methods13. Separately for cue-change and foil-change trials, 

we estimated the mean and variance of the pooled right and left SC activity across trials: 

μR[t], σR[t], μL[t], σL[t]. As described in the results, a trajectory in right SC vs. left SC 

activity space will cross the decision boundary if its “summary point” (activity at time of 

maximum difference between right and left SC) lies outside the decision boundary (figure 

1e). We therefore focused our simulations of the effects of correlations on SC output at the 

time of maximum difference between left and right SC activity: tMD. Importantly, this 

approach – determining model responses based on activity at a single time-point – remains 

valid after incorporating the effects of correlations as long as the correlations don’t vary 

substantially in time; we verify this below. We incorporated the effects of within-SC 

correlations (ρw) and between-SC correlations (ρb) by constructing a 2n X 2n (n = 1000) 

covariance matrix with a specific correlation structure. The covariance matrix incorporating 

correlations (Σc) was computed from an uncorrelated covariance (Σuc) and a correlation 

matrix (P : Σc = Σuc

1
2 P Σuc

1
2 . Where:

P =

1 ρw ρw
ρw 1 ρw
ρw ρw 1

⋯

ρb ρb ρb
ρb ρb ρb
ρb ρb ρb

⋮ ⋱ ⋮
ρb ρb ρb
ρb ρb ρb
ρb ρb ρb

⋯

1 ρw ρw
ρw 1 ρw
ρw ρw 1
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Σc =

nσR
2 0 0

0 nσR
2 0

0 0 nσR
2

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮

0 0 0
0 0 0
0 0 0

⋯

nσL
2 0 0

0 nσL
2 0

0 0 nσL
2

Using identical values of ρb and ρw throughout P and identical values of σR and σL 

throughout Σuc is appropriate because of our pooling approach: variability in these 

parameters will be eliminated after averaging. Further, because our model relies only on the 

pooled (averaged) activity, and not the activity of individual units in the pool, instead of the 

2n X 2n covariance, we can directly compose an expression for the 2 X 2 covariance matrix 

of the “summary points” incorporating correlations:

Σc =
σR

2 + n − 1 * ρw * σR
2 σR * σL * ρb

σR * σL * ρb σL
2 + n − 1 * ρw * σL

2

To generate “summary points” with correlations incorporated, we drew from a distribution 

with mean (μR[tMD], μL[tMD]) and covariance Σc, setting ρw = 0.09 and ρb = 0.047, the mean 

correlation values measured in monkey 2. As mentioned above, parameters were estimated 

separately for cue change and foil change trials, meaning that generating new “summary 

points” relied on one mean + covariance for cue change and one mean + covariance for foil 

change trials (for each monkey).

In simulating the effects of varying n (pool size), ρw, and ρb on d’ (figure 2a-c), the primary 

constraint is that any valid covariance matrix (such as Σc) must be positive-semidefinite (its 

eigenvalues must be non-negative). From this, it follows that the average correlation among 

a set of m random variables has lower bound: ρ > −1/(m-1)23; we considered ρw ∈ [0, 0.2]. 

In all simulations, we computed Σc and or Σc by first fixing ρw and then finding the range of 

ρb values that keep Σc and or Σc positive-semidefinite: (ρw*(n-1) + 1)/n ≥ ρb ≥ -(ρw*(n-1) 

+ 1)/n. Intuitively, ρb can be more negative than −1/(n-1) because it is the correlation of a 

subset (n2) of all possible 2n
2  pairs (2n = n right + n left SC neurons).

The local minimum “trough” in figure 2c can be characterized by closed-form expressions 

for the slope “m” and intercept “b” of the isoclines of d’ that can be derived from Σc:
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m =
2 ⋅ σcuex

2 + σcuey
2 + σfoilx

2 + σfoily
2

σcuex
⋅ σcuey

+ σfoilx
⋅ σfoilx

b = 2 ⋅ Δμ2
d′ ⋅ 1

σcuex
⋅ σcuey

+ σfoilx
⋅ σfoilx

Using these expressions, the slope and intercept of the trough are (m = 0.8, b = 0.06) in 

monkey 1, and (0.84, 0.06) in monkey 2. Since the slopes are non-unity the relative 

difference in correlations (ρw – ρb) is not constant along the trough; this is noteworthy 

because previous pooling models have been shown to be insensitive to absolute changes in 

ρw and ρb, caring only about the relative difference ρw – ρb
24, we are unaware of any 

examples that have shown the type of sensitivity we here demonstrate.

Correlation measurements

We measured within-SC (ρw) and between-SC (ρb) correlations at the time during the trial 

when they would affect activity-d’ - when the difference between right and left SC activity 

was maximal (tMD). In each of the 3 bilateral SC recording sessions, we examined 4 trial 

conditions: (1) cue-change on left, (2) cue-change on right, (3) foil-change on left, (4) foil-

change on right. Stimulus saturation and luminance were i.i.d. across trials and conditions at 

the time correlations were measured, but the precise values varied from trial to trial (see our 

previous work for statistical details13). Spike counts were binned in a 100ms sliding window 

(1ms increments), and each neuron’s data was normalized by dividing its binned counts by 

the standard deviation of that neuron’s counts across trials and conditions. We restricted our 

analysis to a portion of activity aligned on stimulus onset [−250ms, + 2000ms] concatenated 

with a portion aligned on stimulus change [−500ms, +1000ms]. Over the 100ms sliding 

window, we computed the pairwise correlation between spike counts of each pair of neurons 

within right or left SC (n = 1084), or between right and left SC (n = 1022) at each 

millisecond in the trial. However, we also computed correlations at the time of maximum 

difference between right and left SC in each trial (tMD
i ). To find tMD

i , we computed the 

difference of the average normalized activity of all right SC neurons and all left SC neurons 

in each trial and identified when that difference was maximal. For each neuron, we extracted 

the normalized count at tMD
i  in each trial and then computed the trial-by-trial Pearson 

correlation between pairs of neurons.

Next we sought to determine whether there was significant variation in ρw (1) over time, (2) 

depending on trial condition, or (3) depending on side (i.e. contralateral or ipsilateral to the 

stimulus change). We performed a repeated measures ANOVA (rmANOVA) on ρw values in 

a window surrounding the average time of maximal difference between left and right SC 

activity (tMD). We included correlation values for each time bin from tMD - 150ms to tMD

+ 150ms, and also included the ρw values tMD
i  as an additional time-point. The factors 
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included were trial condition (cue change or foil change), and side (whether the ρw value 

was from a pair within the right SC or the left SC). We found no significant variation over 

time (p = 0.42, df = 300, F = 1.01), depending on trial condition (p = 0.9, df = 900, F = 

0.89), or depending on side (p = 0.62, df = 300, F = 0.97). A similar rmANOVA on ρb values 

(with only the trial condition factor since between-SC pairs have no “side” per se) also 

revealed no significant variation depending on time (p = 0.42, df = 300, F = 1.01) or trial 

condition (p = 0.61, df = 300, F = 0.98). The lack of variation in ρw and ρb over time 

validates our approach to incorporating the effects of measured correlations into our model 

(i.e. applying measured correlations to “summary points”). The lack of variation in 

correlation values over trial condition, side, or time, suggests that it is appropriate to 

incorporate the same ρw and ρb values in all conditions.

Cross Validation

We cross validated our model’s predictions by using a training set of spike count data to fit 

the model’s decision boundary and a test set of data to calculate the model’s hit and false 

alarm rate predictions. More specifically, we used the training set to generate “summary 

points” (n = 10000) incorporating correlations as described above and fit the decision 

boundary using these (see below for details of boundary fitting). We then generated a new 

set of “testing summary points” (n = 10000) using the reserved test set of trials and used the 

fitted boundary to compute a hit and false alarm rate.

To parse the data into training and test sets of simulated trials, we divided each neuron’s 

trials equally within each trial type (cue change on left, cue change on right, foil change on 

left, foil change on right). After dividing, in each monkey, there were > 1000 trials in each 

trial-type-grouping, across neurons.

Model fitting

We fit the model to hit and false alarm rates from each recording session (n = 59 in monkey 

1 and n = 70 in monkey 2), each inactivation session (n = 8 in monkey 1, n = 10 in monkey 

2), and each microstimulation session (n = 7 in monkey 1, n = 6 in monkey 2). The model 

had 1 parameter (the intercept) that defined a pair of boundaries that were mirror-symmetric 

across the identity line (figure 1e): one boundary was defined by the line “y = x + a” and the 

other by “y = x – a”, where “a” is the fitted parameter. The parameter was estimated by 

minimizing a cost function in MATLAB (The Mathworks, Inc.): the sum of the negative log 

likelihoods of the model-predicted hit and false alarm rates (ha and fa), given the monkey’s 

hit and false alarm rates (hm and fm):

− log P ha hm + log P fa fm where P x|y = n
k * x * 1 − x n − k, y = k

n .

Fitting inactivation and microstimulation session performance additionally incorporated an 

additional parameter that scaled SC activity, and reflected the structure of those experimental 

sessions. For inactivation sessions the boundary was fit to “before” hit and false alarm rates, 

and was then fixed while the scaling parameter was fit to “during” rates. For 

microstimulation sessions (in which trials “with” and “without” stimulation were 
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interleaved), the boundary was fit simultaneously using hit and false alarm rates from “with” 

and “without’ stimulation trials. All fitting again used the “training” set of reconstructed 

trials and relied on minimizing negative log likelihood, with the multiplicative scaling 

parameter initialized at 1 and the additive scaling parameter (when used) initialized at 0.

To determine whether activity scaling alone suffices to account for performance during 

inactivation / with microstimulation, we fit a model that featured both scaling and 2 separate 

decision boundaries (1 before inactivation / without microstimulation, and 1 during 

inactivation / with microstimulation). We fit this 3 parameter model (1 scaling value, 2 

decision boundary intercepts) by first fitting 1 decision boundary to a single session’s before 

inactivation / without microstimulation hit and false alarm rate, then simultaneously fitting 1 

scaling value and 1 decision boundary to during the inactivation / with microstimulation hit 

and false alarm rate. We quantified the performance of each model by computing absolute 

prediction errors for hit and false alarm rates in the perturbation conditions (during 

inactivation or with microstimulation) because in the no-perturbation conditions there is no 

scaling.

Statistics

To compare model performance to monkey performance during recording sessions (figure 

1f), we used a generalized linear model (GLM) using MATLAB. All monkey and model hit 

and false alarm rates (response counts and trial counts) were combined into a single 

response variable (rates; n = 504 observations). There were 3 categorical predictors: (1) 

monkey or model (MM), (2) hit or false alarm (HF), (3) monkey 1 or monkey 2 (M12). 

Responses were assumed to follow a binomial distribution (though this was not formally 

tested), and a logistic link function was used. In Wilkinson notation, the model formula was: 

logit(rates) ~ 1 + MM*HF*M12 meaning that the model included a constant term to capture 

bias, individual terms for each of the predictors, as well as terms for interactions amongst 

the predictors (m = 497 error degrees of freedom).

To compare models accounting for performance changes during inactivation or 

microstimulation, we used a 3 factor ANOVA: (1) monkey (1 or 2), (2) model (multiplicative 

scaling, additive scaling, or multiplicative scaling with variable boundary), and (3) 

perturbation condition (inactivation or microstimulation). Data were hit and false alarm rate 

errors (monkey – model) during inactivation or with microstimulation only. There were 185 

degrees of freedom, and 172 error degrees of freedom. Only the “model” factor and 

“model:condition” interaction terms were significant (p << 0.01; model df = 2, F = 11.76, 

model:condition df = 2, F = 14.76). Post-hoc Tukey-Kramer testing with α = 0.05 showed 

that the additive model had significantly larger error than the multiplicative models for 

inactivation data; for microstimulation data, the errors were equivalent. The same post-hoc 

testing showed that the multiplicative model with variable boundary had statistically 

indistinguishable errors compared to the multiplicative model with constant boundary.

To test whether model success depended on a unique relationship between monkey 

performance and its own SC activity we compared the means and variances of model errors 

in the default “unswapped” case (using monkey 1’s SC activity to predict monkey 1’s 

inactivation / microstimulation performance, and using monkey 2’s activity to predict 
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monkey 2’s performance), to the “swapped” case (using monkey 1’s SC activity to predict 

monkey 2’s performance and vice-versa) by bootstrapping. Model errors were the absolute 

value of the difference between the model predicted rate and the monkey’s actual rate (e.g. |

monkey 1 hit rate - model predicted hit rate|). To test whether the “unswapped” and 

“swapped” model errors had the same or different means / variances, we pooled 

“unswapped” and “swapped” errors, resampled 10000 times with replacement to generate a 

test statistic distribution, and compared the actual value (difference between “unswapped” 

and “swapped”) to the bootstrapped distribution to obtain a p-value.

One-sample t-tests on measured between-SC and within-SC correlation values tested the 

null hypothesis that those values were normally distributed with zero mean and unknown 

variance. Between-SC values t-statistic = 8.8621, df = 1083; within-SC values t-statistic = 

14.1342, df = 1021.

The details of a repeated measures ANOVA (rmANOVA) on measured correlations can be 

found in the Correlations subsection of the Methods section.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications25,26. The use of t-tests and ANOVAs 

assumes data distributions were normal but this was not formally tested.

Life Sciences Reporting Summary.

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Code availability

The code used in the current study is available from the corresponding author(s) on 

reasonable request.

Data availability

The datasets generated and/or analyzed during the current study are available from the 

corresponding author(s) on reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task, model, and performance predictions. (a) The monkey was required to maintain central 

fixation and hold down a joystick throughout each trial, releasing the joystick to indicate that 

the cued stimulus had changed. Only one stimulus changed per trial. Dashed white cue-ring 

was not visible to the monkey. (b) Single-trial activity from simulated pools of right and left 

SC neurons (n = 1000 each) with RFs overlapping one stimulus location were averaged. If 

the maximum difference between pools at any time in the trial was above a threshold, a 

decision to respond was triggered. (c) Pooled right (green) and left (red) SC activity 

averaged across 10000 simulated cue change (top) and foil change trials (bottom); each trial 

included a portion of activity aligned with respect to stimulus onset (−0.25s to 2s) 

concatenated with a portion aligned to stimulus change (−0.5s to 1.5s); the tick labeled 2/0 

marks where the portions were concatenated. (d) A trajectory in “SC activity space” is 

constructed by plotting right SC activity-versus-time against left SC. Characters (a,b,c,d,e) 

with pointers indicate time points corresponding to matching characters along time axis in 

panel c. Dark gray ellipses surround the point on the average trajectory when the difference 

between right and left SC activity is maximal (point d), and indicate the 68% and 95% 

confidence intervals on that maximum difference. (e) Relationship between 2D activity 

space and 1D activity difference representations. In 2D space (left), each “summary point” is 
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the point on the trajectory at the time of maximum difference between right and left SC 

activity in one simulated trial. Ellipses are identical to those plotted in panel d. Dashed black 

lines are a pair of decision of boundaries (1 parameter) fit to monkey 1’s hit (83%) and false 

alarm rate (7%) from an example session. Blue summary points are from simulated cue 

change trials that crossed the decision boundary (n = 8283) and are counted as “hits” while 

orange summary points (n = 757) are “false alarms”. In 1D (inset), model hit and false alarm 

rates can equivalently be calculated by projecting each summary point onto the line y = -x (a 

simple difference of the x- and y-value), and counting the number that exceed the criterion 

corresponding to the 2D decision boundary. Taking the absolute value of the 1D projection 

“flips” the 1D foil distribution such that criterion values align (right), resembling a familiar 

signal detection theory presentation. In this format, an activity-d’ (computed from means 

and standard deviations of the cue and foil distributions: μcue, σcue and μfoil, σfoil) can be 

compared to a behavioral-d’ (computed from monkey hit (H) and false alarm (F) rates). As a 

complement to these 1D and 2D representations, figure S1 illustrates the temporal 

distribution of summary points. (f) Box plot summarizing hit (blue) and false alarm rates 

(orange) for monkey (high saturation fills) and model (low saturation fills; n = 59 in monkey 

1, n = 70 in monkey 2). Upper and lower box edges mark 25th and 75th percentile of 

distribution, whiskers mark 2.5th and 97.5th percentiles, and central line marks median (50th 

percentile). (g) Distributions of behavioral-d’ values computed from each session’s hit and 

false alarm rates (n = 59 in monkey 1, n = 70 in monkey 2). Dark gray shading indicates 

bootstrapped 95% confidence interval on the mean of each distribution (monkey 1: [2.37, 

2.63]; monkey 2: [2.29, 2.48]). Black triangle indicates each monkey’s SC activity-d’ (2.61 

and 2.39).

Herman et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Correlation effects and measurements. (a) SC activity-d’ as a function of pool size (neurons 

per pool) for combinations of average correlation within (ρw) and between (ρb) pools. 

White-filled circles correspond to example cases illustrated in panel b. (b) In fixed pools of 

1000 neurons, increasing ρw increases x- and y-components of 2D covariance (left panel) 

and 1D variance (right panel). Right, bottom: ρb > 0 (brown) “tilts” 2D distributions towards 

identity line (left), reducing 1D variance (right); ρb < 0 (yellow) tilts 2D distributions away 

from identity line (left) increasing 1D variance (right). (c) Relative d’ (magnitude of 

difference: activity-d’ – behavioral-d’) with fixed pool size (n = 1000 each), for 

combinations of ρw and ρb. ρw was systematically varied over 0.0–0.2; for each ρw value, ρb 

was varied over the range of possible theoretical values (see methods). Overlaid symbols 

(solid black and black-outlined) are from measurements in monkey 1, and are identical in 
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left and right panels, indicating the mean and 95% confidence interval on measured ρw and 

ρb values. (d) ρw (blue) and ρb (yellow) were measured in monkey 1 by simultaneous 

bilateral multi-contact probe recordings. Colored connecting lines represent hypothetical 

neuronal pairs used to measure within-SC and between-SCs correlations. (e) Distributions of 

ρw (blue) and ρb (yellow) values measured at “summary point” time (maximum difference 

between x- and y-component of 2D trajectory); colored triangles indicate means (ρw = 0.09 

and ρb = 0.047).
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Figure 3. 
Modeling the effects of unilateral causal manipulations of SC activity. (a) Following 

protocols known to affect behavior, in separate sessions we either damped activity by 

injecting the GABAA agonist muscimol (left) or facilitated activity by microstimulation 

(right). (b) We simulated the effects of these causal manipulations by scaling SC activity. 

Top: Example decision boundary fits to hit and false alarm rates for the control conditions: 

before muscimol (left), or without microstimulation (right), without scaling of SC activity; 

format as in figure 1e. Bottom: with the decision boundary held fixed, the scaling parameter 

was fit to hit and false alarm rates during muscimol (left) or microstimulation (right). (c) 

Monkey and model performance before and during inactivation (left; n = 8 in monkey 1, n = 

10 in monkey 2) or without and with microstimulation (right; n = 7 in monkey 1, n = 6 in 

monkey 2); box plots and other conventions are as described in figure 1f.
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