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Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our
knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present
study aimed to investigate the role of melatonin and its underlying mechanism in OSCC.
MTT, colony formation, wound healing, and transwell invasion assays proved that
melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation,
migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis
showed that miR-25-5p was significantly upregulated after melatonin treatment. Further,
miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological
behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and
OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL
staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation,
and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay,
and animal experiments suggested that miR-25-5p might exert suppressive effects on the
migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown
exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot
analysis, and luciferase reporter assay suggested that neural precursor cell expressed
developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for
miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and
migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-
proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9
pathway. Melatonin could be applied as a potential novel drug on treating OSCC.

Keywords: melatonin, oral squamous cell carcinoma, miR-25-5p, anti-tumor, NEDD9
December 2020 | Volume 10 | Article 5435911

https://www.frontiersin.org/articles/10.3389/fonc.2020.543591/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.543591/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.543591/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.543591/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lbandye@foxmail.com
mailto:CQBSHEN@163.com
https://doi.org/10.3389/fonc.2020.543591
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.543591
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.543591&domain=pdf&date_stamp=2020-12-02


Wang et al. Melatonin Inhibits OSCC via miR-25-5p/NEDD9
INTRODUCTION

Oral cancer, as a global health problem, brings a huge challenge
to the health care system. Oral squamous cell carcinoma (OSCC)
occupies more than 90% of oral cancer (1). OSCC ranks as the
6th cancer type among the most common cancer types all over
the world with a low 5-year overall survival rate and high
incidence rate (2). It is estimated that there are 0.3 million new
cases each year (3). Although considerable diagnostic and
therapeutic progress has been made in recent years, the
prognosis of the patients with OSCC remains particularly
unfavorable because of its invasive characteristics and high
malignancy (4). It is demonstrated that traditional treatments
are not effective (5, 6). Thus, it is extremely urgent for us to
widen the understanding of the mechanism underlying OSCC
progression and identify novel and effective therapeutic methods.

Melatonin (N-acetyl-5-methoxytryptamine), a natural
indoleamine, is mainly synthesized by the mammalian pineal
gland and other tissues, such as lymphocytes, Harderian gland,
liver, and gastrointestinal tract (7, 8). Interestingly, melatonin
can regulate the circadian rhythms in living organisms, showing
a wide distribution from bacteria to humans (9, 10). It has been
shown that melatonin plays a vital role in the different
physiological events, including the regulation of light/darkness
responses, inhibition of tumor progression, improvement of
immune system actions, and controlling of homeostasis in the
different tissues (11–14). Besides, several pieces of evidence have
revealed that melatonin could also serve as an antioxidant and
oncostatic attributes (15, 16). According to the reports,
melatonin exerts anti-cancer roles in various types of cancers,
including breast cancer, lung cancer, colorectal cancer,
gastric cancer, and cervical cancer (17–21). However, the
underlying mechanism of the anti-cancer effects of melatonin
on cancers needs further investigation.

Neural precursor cel l expressed developmentally
downregulated protein 9 (NEDD9) is a member of the Crk-
associated substrate family. NEDD9 is located at 6p24.2 and also
known as HEF1 and CasL. NEDD9 acts as a scaffold to regulate
SRC and focal adhesion kinase pathways to modulate tumor cell
adhesion, invasion, migration, proliferation, apoptosis, and
survival (22–26). NEDD9 could activate multi-pathways, like
PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), and
HDAC6. NEDD9 could also be activated by many stimuli, like
TGF-b. At the end of mitosis, NEDD9 is degraded by
proteasome. Although NEDD9 overexpression or inhibition
does not induce tumorigenesis, its expression is upregulated in
many cancers (27). NEDD9 could also regulate cancer
metastasis. The upregulation of NEDD9 promotes multi cancer
metastasis, like epithelial ovarian cancer, epithelial ovarian
cancer, lung cancers, hepatocellular carcinoma, and cervical
cancer (22, 28–34). NEDD9 could serve as a biomarker of
tumor aggression and a prognostic gene of solid cancers.
Further, NEDD9 could serve as one of the biomarkers for
therapeutic resistance (27). Thus, NEDD9 might also regulate
OSCC development.

MicroRNAs are a type of short (approximately 20~25
nucleotide), single-stranded non-coding RNAs, which are
Frontiers in Oncology | www.frontiersin.org 2
generally expressed in a diversity of tissues and cell types and
mediate post-transcriptional gene silencing via binding to
mRNA 3’UTR (35–37). Accumulating studies on the biological
behaviors of miRNAs in the development, prognosis,
proliferation, apoptosis, and differentiation have attracted the
people’s attention (38). MicroRNAs (miRNAs) have been
reported to exhibit a fundamental role in regulating a variety
of physiological and pathological processes, including cancers
(39). Recently, miRNAs, including miR-25-5p, have been shown
to participate in the progression and metastasis of many cancers,
including colorectal cancers (CRCs), non-small cell lung cancer
(NSCL), and cutaneous squamous cell carcinoma (CSCC) (15,
40, 41). However, the expression, clinical significance, and
functions of miR-25-5p in OSCC remain unclear. In the
present study, we aimed to characterize the effects of
melatonin on the development of OSCC and identify the
underlying mechanisms.
MATERIALS AND METHODS

Clinical Specimens
During the surgical procedure, the OSCC tissues (n=35) and
adjacent tissues (n=35) were collected from patients with OSCC
who had undergone surgical operation in Henan Province
Hospital of TCM from January 2017 to October 2017 for
research purpose. The patients with OSCC were diagnosed by
histopathological analysis of tumor tissues from the surgical
resection specimen. The specimen was examined and divided
into OSCC tissues and adjacent tissues by faculties of the
Pathology Department. Among the patients, a total of 35
patients, including 22 males and 13 females, were enrolled in
this study. The age range was from 30 to 60 years old, with an
average age of 41.5 ± 10.18 years. The clinical and pathologic
characteristics of patients were obtained from the Medical
Records Room. Patient information is shown in Table 1. All
human tissues were snap frozen in liquid nitrogen and stored in a
liquid nitrogen container (Thermo, USA) prior to further
experiments. All the patients signed the informed consent
before the study. The present study was approved by the Ethics
Committee of Henan Province Hospital of TCM.

Cell Culture
Human OSCC cells (SCC9) and the normal human oral
keratinocytes (HOK) cells were purchased from the Biological
Resources Center of ATCC, USA. The SCC9 cells were cultured
in F12-Dulbecco’s modified Eagle’s medium (DMEM) culture
medium supplemented with 10% fetal bovine serum (FBS)
(Thermo, USA). The HOK cells were grown in DMEM culture
medium with 10% FBS. All the cells were cultured in a 37°C, 5%
CO2 humidified incubator (Thermo, USA). All cell lines were
passaged for fewer than 6 months.

MiRNA Transfection
The miR-25-5p mimic, miR-25-5p inhibitor or negative control
(NC) mimic, and NC inhibitor used in this study were designed
and synthesized by GenePharma, China. Human OSCC cells
December 2020 | Volume 10 | Article 543591

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Melatonin Inhibits OSCC via miR-25-5p/NEDD9
were transfected with miR-25-5p mimic or miR-25-5p inhibitor
using the transfection reagent Lipofectamine2000 (Invitrogen,
USA) according to the manufacturer’s instructions. The
transfection concentration for either miR-25-5p mimic or NC
mimic was 50 nM. The transfection concentration for either
miR-25-5p inhibitor or NC inhibitor was 100 nM. Then, the cells
were cultured for 48 h. RT-qPCR analysis was performed to
confirm the transfection efficiency of miR-25-5p.

Melatonin Treatment
Different concentrations (0 mM, 0.01 mM, 0.1 mM, and 1 mM)
of melatonin (trans-3,5-dimethoxy-4-hydroxystilbene)
(Selleckchem, USA) were added to the culture medium for
48 h to detect the effects of melatonin on the human OSCC cells.

Real Time qPCR Analysis
RNA was extracted from tissues and cells using Trizol reagents
(Invitrogen, USA) according to the manufacturer’s instructions.
The concentrations and purification of RNAs were assessed by
NanoDrop2000 spectrophotometer (Thermo, USA). For
detecting the expression of miRNAs, a tissue/cell miRNA
extraction kit (HaiGene, China) was used. The cDNAs were
synthesized immediately from the RNAs to avoid RNA
degradation using Reverse Transcription Kit (ABI, USA). The
expression analysis of target genes was performed on Applied
Biosystems StepOne Plus real-time PCR system (ABI, USA) by
using TaqMan Universal PCR Master Mix (ABI, USA). The
conditions were as follows: 95°C for 5 min, followed by 35~40
cycles of amplification (95°C for 30s, 60°C for 30s, and 72°C for
30s), and 72°C for 10 min. At last, the expression level of miRNA
primers (forward and reverse) and U6 served as an endogenous
control. GAPDHmRNA was used as an internal control to assess
the relative expression of NEDD9 mRNA. The 2-DDCt method
Frontiers in Oncology | www.frontiersin.org 3
was utilized to detect the expression of target genes. In our study,
the primers were designed and synthesized by GeenPharma,
China. The primer sequences were shown in Table 2.

Methyl Thiazolyl Tetrazolium (MTT)
Analysis
MTT assay was performed to investigate the cell viability of
human OSCC cells. The cells were plated into 96-well plates.
Then, 20 mL MTT solution (Biosharp, China) was added to each
well. After incubation for 4 h, the MTT solution was discarded
and 150 mL dimethyl sulfoxide (DMSO) was added. After
incubation for additional 10 min, the absorbance at a
wavelength of 490 nm were measured using a microplate
reader (TECAN, Switzerland) to determine cell viability.

Colony Formation Assay
Colony formation assay was performed to determine the
proliferation ability of cells. First, 3500 cells were seeded into
six-well plates (Corning, USA) and cultured for 14 days. The
culture medium was replaced by free medium every three days.
After three times washes with PBS, the cells were fixed with 4%
paraformaldehyde (Solarbio, China) for 25 min at room
temperature and stained with 0.2% crystal violet solution
(Biosharp, China) for 20 min. The colonies (≥50 cells/colony)
were observed and imaged under a light microscope
(Nikon, Japan).
TABLE 2 | The sequence of primers used for real-time qPCR analysis.

Genes Primers sequences (5’ to 3’)

miR-21 Forward: GCTTATCAGACTGATGTTG
Reverse: GAACATGTCTGCGTATCTC

miR-133a Forward: TTTGGTCCCCTTCAACC
Reverse: GAACATGTCTGCGTATCTC

miR-148a-3p Forward: GTTCTGAGACACTCCGA
Reverse: GAACATGTCTGCGTATCTC

miR-25-5p Forward: CGGAGACTTGGGCAATT
Reverse: GAACATGTCTGCGTATCTC

miR-155 Forward: TGCTAATCGTGATAGGGG
Reverse: GAACATGTCTGCGTATCTC

U6 Forward: CTGACATCAGTGTCACAGACCC
Reverse: CGCATCCTGTAGCAACTGTGTG

NEDD9 Forward: CCCATCCAGATACCAAAAGGACG
Reverse: CACTGGAACTGAAAACACAGGGC

KLK9 Forward: TCAACCTCAGCCAGACCTGTGT
Reverse: TCTCCAGGATGCTGATGTTGGC

WNT3A Forward: ATGAACCGCCACAACAACGAGG
Reverse: GTCCTTGAGGAAGTCACCGATG

FGF18 Forward: ACGATGTGAGCCGTAAGCAGCT
Reverse: ACCGAAGGTGTCTGTCTCCACT

SRSF4 Forward: CAGATTAGTTGAAGACAAGCCAGG
Reverse: CACTTCGGCTTCTGCTCTTACG

FIBP Forward: CAAGGTGGTAGAGGAAATGCGG
Reverse: CCTGTCTCAAAGCGGTTGTTAGC

SOX12 Forward: GACATGCACAACGCCGAGATCT
Reverse: GTAATCCGCCATGTGCTTGAGC

TGFBI Forward: GGACATGCTCACTATCAACGGG
Reverse: CTGTGGACACATCAGACTCTGC

GAPDH Forward: GTCTCCTCTGACTTCAACAGCG
Reverse: ACCACCCTGTTGCTGTAGCCAA
TABLE 1 | The clinical characteristics of OSCC patients.

Characteristics n %

Age
<41 19 54.29
≥41 16 45.71

Sex
male 22 62.86
female 13 37.14

Tumor location
Tongue 13 37.14
Gingival 8 22.86
Mouth floor 4 11.43
Lip 3 8.57
Cheek 4 11.43
Soft palate 3 8.57

Pathological differentiation grade
Well 21 60.00
Moderate 11 31.43
Poor 3 8.57

Clinical stage
I+II 19 55.47
III+IV 16 44.53
Clinical stage I: T1N0M0; Stage II: T2N0M0; Stage III: T3N0M0, T(1-3)N1M0; Stage IV:
T4aN(0,1)M0, T(1-4a)N2M0, TN3M0, T4bNM0.
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Apoptosis Assay
Forty-eight hours after transfection, the cells were used for
apoptosis assay. Transferase dUTP nick end labeling (TUNEL)
assay was conducted using TUNEL staining kit (Ribo, China)
according to the instructions. The TUNEL-positive cells were
examined under a microscope (Nikon, Japan). The pictures from
10 random fields were observed and taken to assess the apoptosis
of cells.
Wound Healing Assay
Cell migration ability was examined by wound healing assay, and
5×105 cells/well were plated into six-well plates (Corning, USA).
When the density of cells reached about 90%, a wound was
created at the bottom of plates using a sterile pipette tip. The cells
were washed three times with PBS to clear cell debris and then
cultured in the culture medium for 48 h. Finally, the images were
captured under an inverted microscope (Nikon, Japan) at 0 h,
24 h, and 48 h.
Transwell Invasion Assay
Cell invasion ability was tested by transwell invasion assay. For
the transwell invasion assay, human OSCC cells were plated in
the transwell chambers with 8 µm pore size polycarbonic
membrane (Corning, USA) to separate the top chamber and
the lower chamber. In brief, 1×105 cells were seeded in serum-
free DMEM in the upper chamber, which was coated with 20 µL
extracellular matrix gel (Sigma, USA). The culture medium with
10% FBS was added into the lower chamber. After incubation for
about 24 h, the cells on the top surface of the membrane were
wiped off. The cells were then stained with crystal violet
(Biosharp, China) at room temperature for 30 min. Finally, the
cells were observed under a light and inverted microscope
(Nikon, Japan).
Animal Experiments
The animal experiments were performed with the approval of the
Ethics Committee of Henan Province Hospital of TCM. Animal
experiments were carried out according to the National Institutes
of Health Guidelines to the Care and Use of Laboratory Animals.
Forty Balb/c nude mice (4~6 weeks of age, male, Charles River,
China) housed and maintained in a specific pathogen-free room,
and were allowed free access to water and food. The mice were
divided randomly into 4 groups (n=10 per group). To initiate
OSCC xenografts, 5×106 human OSCC cells transfected with
miR-25-5p were injected subcutaneously into to the flanks of the
nude mice. After 4 weeks, the animals were euthanized in a CO2

chamber and tumors were collected. Tumor nodules were
collected and calculated by the following formula: V =
(Width2 × Length)/2. The weights of tumors were weighed
and analyzed.
Bioinformatics Analysis
The candidate target genes of miR-25-5p were predicted using
the TargetScanHuman 7.2 (http://www.targetscan.org/vert_72/)
Frontiers in Oncology | www.frontiersin.org 4
and miRWalk (http://mirwalk.umm.uni-heidelberg.de/). In
Targetscan and miRWalk databases, the species was set as
human. The miRNA was set as miR-25-5p. In Targetscan
database, the predicted target genes of miR-25-5p was shown
by searching the presence of conserved 8mer, 7mer, and 6mer
sites that match the seed region of miR-25-5p. In miRWalk
database, the interaction score of miR-25-5p and NEDD9mRNA
was 0.92. The binding sites of miR-25-5p and target genes’
mRNA 3’UTR were predicted and showed with TargetScan.
NEDD9 could be predicted by both databases and might be a
putative target for miR-25-5p.
Western Blot Analysis
Human OSCC cells were lysed by using RIPA lysis buffer
containing proteinase inhibitors (Beyotime, China). The
concentration of proteins was detected according to the
instruction of the BCA Protein Quantitation kit (Beyotime,
China). Then, the total proteins (60 µg) were subjected to 10%
sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis
(PAGE) and transferred onto a PVDFmembrane (Millipore, USA).
Then, 5% skim milk was applied to block the membranes at room
temperature for 120 min. Subsequently, immunoblotting was
performed with specific antibodies against NEDD9 (1:1000,
ab18056, Abcam, Cambridge, UK) and b-actin (1:2000, b-actin,
Abcam, Cambridge, UK). b-actin was used as an internal control.
The membranes were incubated with primary antibodies at 4°C
temperature overnight. Next day, the secondary antibodies (Abcam,
Cambridge, UK) were added and incubated at room temperature
for 2 h. Ultimately, the signals were detected by an enhanced
chemiluminescence (ECL) detection system (PerkinElmer, USA)
and quantified with ImageJ software.
Luciferase Reporter Assay
The 3’-UTR sequence of NEDD9 containing the predicted
binding site for miR-25-5p was obtained and cloned into
psiCHECK-2 vector (Promega, USA) to obtain the wild-type
(WT) reporter plasmid NEDD9-WT. To generate the NEDD9
mutant (MUT) reporter plasmid, NEDD9-MUT, the seed region
was mutated to eliminate all complementary nucleotides to miR-
25-5p. Human OSCC were transfected with the reporter plasmid
together with miR-25-5p mimic/miR-25-5p inhibitor and
NEDD9-WT/NEDD9-MUT. After 48 h of transfection, a dual-
luciferase reporter assay system (Promega, USA) was applied to
monitor the relative luciferase activity.
Statistical Analysis
All quantitative results were from at least three independent
experiments and presented as the mean ± SD. Differences among
various groups were evaluated by one-way analysis of variance
(ANOVA) followed by Turkey’s post-hoc analysis. Diffeerences
between two groups were analyzed with Student’s t-tests. All the
statistical analysis was carried out using GraphPad Prism. A p-
value of less than 0.05 was considered statistically significant.
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RESULTS

Anti-Tumor Effects of Melatonin on Human
Oral Squamous Cell Carcinoma Cells
To test whether melatonin could exert the inhibitory effects in
the biological functions of OSCC (SCC9) cells, various
concentrations of melatonin were used. First, SCC9 cells were
treated with 0.01, 0.1, and 1 mM of melatonin for 48 h. MTT
assay indicated that, compared to control, melatonin decreased
the cell viability of SCC9 cells in a concentration-dependent
manner, and the maximum effect was 1 mM group (Figure 1A).
The concentration-dependent effects of melatonin on the
proliferation ability of SCC9 cells were also observed as
confirmed by colony formation assay (Figure 1B). The
number of colonies was significantly reduced by melatonin at
concentrations of 0.01, 0.1, and 1 mM in SCC9 cells (Figure 1B).
Wound healing assay showed that the number of migrating cells
Frontiers in Oncology | www.frontiersin.org 5
was reduced after melatonin treatment at 0.01, 0.1, and 1 mM,
especially at 1 mM. These results suggested that melatonin
showed a significant inhibitory effect on cell migration ability
(Figure 1C). Dose-dependent inhibitory roles of melatonin in
the invasion ability of SCC9 cells were displayed by the Transwell
invasion assay (Figure 1D). These results suggested that
melatonin played anti-tumor effects in SCC9 cells by inhibiting
the cell viability, proliferation, migration, and invasion at a
millimolar concentration.

Melatonin Upregulates the Expression of
miR-25-5p
To understand the underlying mechanism of melatonin
inhibiting the biological behaviors of OSCC cells, the RT-qPCR
analysis was performed to identify the dysregulated expression of
miRNAs in different concentrations of melatonin treated SCC9
cells. The results of RT-qPCR analysis revealed no significant
A B

D

C

FIGURE 1 | Effects of melatonin on the biological functions of OSCC cells. (A) SCC9 cells were treated with melatonin at 0.01, 0.1, and 1 mM for 48 h, and MTT
assay was performed to detect the cell viability. (B) SCC9 cells were exposed to different concentrations of melatonin for 48 h and subjected to colony formation
assay to examine the proliferation ability. (C) Effects of melatonin on the migration of SCC9 cells after exposure to melatonin (0.01, 0.1, and 1 mM) for wound healing
assay. (D) The invasion ability of SCC9 cells after melatonin treatment by Transwell invasion assay. (n=4, One way ANOVA followed by the Tukey’s test, * indicated
the differences compared with 0 mM Melatonin group, *p < 0.05, **p < 0.01, ***p < 0.001, ns, no statistical differences, Scale bar, 100 mm).
December 2020 | Volume 10 | Article 543591
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changes in miR-21 or miR-133a expression after melatonin
administration (Figures 2A, B). As shown in Figures 2D, E,
melatonin elevated the expression of miR-148a-3p and miR-25-
5p, but it inhibited the expression of miR-155 (Figures 2C–E).
Among these miRNAs, miR-25-5p was the most significantly
upregulated miRNA after melatonin treatment (Figure 2C). We
hypothesized that miR-25-5p might be involved in the
development of OSCC and the inhibitory effects of melatonin
on OSCC cells. To further confirm this observation, the OSCC
tissues and adjacent tissues were collected to detect the
expression level of miR-25-5p. RT-qPCR assay based on 35
paired tumor tissues and matched tumor-adjacent tissues
showed that miR-25-5p was significantly decreased in the
OSCC tissues compared with the adjacent tissues (Figure 2F).
In addition, as indicated in Figure 2G, the expression of miR-25-
5p was markedly decreased in SCC9 cells compared with that in
the normal human oral keratinocytes (HOK) cells (Figure 2G).
These results suggested that miR-25-5p might be involved in
melatonin-induced inhibitory effects on the biological functions
of OSCC cells.

Overexpression of miR-25-5p Inhibits
Cell Viability, Proliferation, and
Induces OSCC Cell Apoptosis
As miR-25-5p was downregulated in OSCC, we hypothesized
that miR-25-5p might serve as a tumor-suppressive miRNA in
OSCC. To confirm this hypothesis, we transfected miR-25-5p
mimics/mimics NC in OSCC cells. The expression levels of miR-
25-5p in SCC9 cells were examined with RT-qPCR analysis 48 h
after transfection. The results of RT-qPCR displayed that the
miR-25-5p expression was significantly upregulated in SCC9
Frontiers in Oncology | www.frontiersin.org 6
cells transfected with miR-25-5p mimic compared with that in
the NC mimic group (Figure 3A). MTT assays showed that the
cell viability of miR-25-5p mimic group was much lower than
that in the NC mimic group (Figure 3B). The colony formation
assay revealed that miR-25-5p mimic transfection significantly
inhibited the proliferation ability compared with that in NC
mimic-transfected cells (Figure 3C). TUNEL staining revealed
that miR-25-5p overexpression led to an increase in apoptotic
cell number in SCC9 cells (Figure 3D). These results supported
the hypothesis that miR-25-5p inhibited the cell viability,
proliferation, and induced the apoptosis of OSCC cells.

Upregulation of miR-25-5p Suppresses
the Migration, Invasion, and Tumor
Formation of OSCC Cells
To unravel the function of miR-25-5p in OSCC cells, the
oncogenic phenotypes, including migration, invasion, and
tumor formation were detected. Wound healing assay showed
that the SCC9 cells transfected with miR-25-5p mimic showed
lower migratory capacity than the cells transfected with NC
mimic, indicating that the increase of miR-25-5p led to a
decrease in migratory ability of SCC9 cells (Figure 4A). The
Transwell invasion analysis revealed that miR-25-5p
overexpression was able to reduce the invasion of SCC9 cells
(Figure 4B). To further determine the potential roles of miR-25-
5p in OSCC tumor formation, animal experiments were
performed. The SCC9 cells treated with miR-25-5p mimic or
NC mimic were injected subcutaneously into the flanks of the
nude mice. After 4 weeks, the tumors were collected and the
tumor nodules were collected and calculated. As presented in
Figures 4C, D, the tumor weights and tumor volumes in miR-
A B

D E F G

C

FIGURE 2 | Melatonin increases the expression of miR-25-5p in OSCC cells. (A–E) RT-qPCR analysis of miR-21, miR-133a, miR-25-5p, miR-148a-3p, miR-155
expression was performed in SCC9 cells after treating with melatonin at 0.01, 0.1, and 1 mM for 48 h (n=4, One way ANOVA followed by the Tukey’s test,
* indicated the differences compared with 0 mM Melatonin group). (F) Relative miR-25-5p levels in OSCC tissues (n=35, Student’s t-test). (G) RT-qPCR analysis
was utilized to examine the expression of miR-25-5p in SCC9 and HOK cells (n=4, Student’s t-test) (*p < 0.05, **p < 0.01, ns, no statistical differences).
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25-5p mimic group were much lower than that in NC mimic
group (Figures 4C, D). These data suggested that miR-25-5p
might exert suppressive effects on the migration, invasion, and
tumor formation of OSCC cells.

Knockdown of miR-25-5 Promotes the
Viability, Proliferation, and Inhibits the
Apoptosis of OSCC Cells
To explore the role of miR-25-5p in OSCC, SCC9 cells were
transfected with miR-25-5p inhibitor or NC inhibitor, and the
cell viability, proliferation, and apoptosis were evaluated using
MTT assay, colony formation assay, and TUNEL staining,
respectively. First, the SCC9 cells were transfected with miR-
25-5p inhibitor or NC inhibitor, and the expression of miR-25-
5p was analyzed by RT-qPCR analysis (Figure 5A). As shown in
Figure 5A, miR-25-5p inhibitor significantly inhibited miR-25-
5p expression in SCC9 cells compared with NC inhibitor group
(Figure 5A). Then, the transfected cells were selected for
subsequent experiments. As shown in Figure 5B, knockdown
of miR-25-5p markedly elevated the cell viability of SCC9 cells in
comparison with the NC inhibitor group (Figure 5B).
Furthermore, the number of colonies of SCC9 cells transfected
with miR-25-5p inhibitor were significantly increased compared
with SCC9 cells transfected with NC inhibitor (Figure 5C).
Subsequently, TUNEL staining was utilized to determine the
apoptosis of SCC9 cells. The results of TUNEL staining
demonstrated that downregulation of miR-25-5p markedly
suppressed the apoptosis of SCC9 cells compared with the NC
Frontiers in Oncology | www.frontiersin.org 7
inhibitor group (Figure 5D). The above results indicated that
knockdown of miR-25-5p elevated the viability and proliferation
but inhibited the apoptosis of OSCC cells.

Knockdown of miR-25-5p Accelerates
the Migration, Invasion, and Tumor
Formation of OSCC Cells
To explore the functions of miR-25-5p in OSCC, we employed
the miR-25-5p inhibitor and NC inhibitor in cultured SCC9 cells.
The results of the wound healing and transwell invasion assays
indicated that transfection of the miR-25-5p inhibitor obviously
promoted both migration (Figure 6A) and invasion (Figure 6B)
of SCC9 cells. Meanwhile, the knockdown of miR-25-5p
increased the tumor weights and tumor volumes of Balb/c
nude mice (Figures 6C, D). To conclude, the knockdown of
miR-25-5p accelerated the migration, invasion, and tumor
formation of OSCC cells.

Inhibition of miR-25-5p Reverses
the Inhibitory Effects of Melatonin
in OSCC Cells
Then, we further investigated whether melatonin could exert the
anti-proliferative, anti-invasive, and anti-migratory effects on
OSCC cells by regulating the expression of miR-25-5p.
According to the results of Figure 1C, the expression of miR-
25-5p was the highest when the cells were treated with 1 mM
melatonin. Therefore, the cells were treated with 1 mM
melatonin and miR-25-5p inhibitor. MTT assay indicated that
A B

D

C

FIGURE 3 | Overexpression of miR-25-5p inhibits the cell viability, proliferation but promotes the apoptosis of OSCC cells. (A) RT-qPCR analysis of miR-25-5p in
SCC9 cells transfected with miR-25-5p mimic or NC mimic. (B) MTT assay of cell viability in SCC9 cells treated with miR-25-5p mimic or NC mimic. (C) Colony
formation of SCC9 cells exposed to miR-25-5p mimic or NC mimic (Scale bar, 100 mm). (D) The apoptosis of SCC9 cells detected by TUNEL staining. Nuclei were
stained by DAPI (blue) stain and apoptotic cells were stained by TUNEL (green) (Scale bar, 200 mm). (n=4, Student’s t-test, *p < 0.05, **p < 0.01).
December 2020 | Volume 10 | Article 543591

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Melatonin Inhibits OSCC via miR-25-5p/NEDD9
compared with the control group, the cell viability of OSCC cells
were inhibited by 1 mM melatonin, while the inhibitory effects
were abolished in the presence of miR-25-5p inhibitor (Figure
7A). As shown in Figure 7B, the number of colonies were
markedly reduced by 1 mM melatonin, but it was increased in
the OSCC cells treated with both 1 mM melatonin and miR-25-
5p inhibitor (Figure 7B). Furthermore, the migratory ability of
OSCC cells were obviously inhibited after 1 mM melatonin
treatment. However, the inhibitory effects of melatonin on
OSCC cell migration was offset by miR-25-5p inhibitor (Figure
7C). Transwell invasion analysis revealed that the inhibition of
miR-25-5p could reverse the anti-invasive effects of melatonin in
OSCC cells (Figure 7D). Above results indicated that melatonin
exerted the anti-proliferative, anti-invasive, and anti-migratory
effects on OSCC cells by regulating miR-25-5p.

miR-25-5p Regulates OSCC Cell
Proliferation, Invasion, and Migration
via Targeting NEDD9
To determinate the mechanism underlying the effects of miR-25-
5p in OSCC cells, the candidate target genes of miR-25-5p were
predicted using the TargetScanHuman7.2 (http://www.
Frontiers in Oncology | www.frontiersin.org 8
targetscan.org/vert_72/) and miRWalk (http://mirwalk.umm.
uni-heidelberg.de/). Among these target genes of miR-25-5p,
KLK9, WNT3A, FGF18, SRSF4, FIBP, SOX12, TGFBI, and
NEDD9 have been reported to participate in the development
human cancers (42–49). Thus, we selected these genes for further
investigation. The binding sequences between miR-25-5p and
these target genes were shown in Figure 8A. The results of RT-
qPCR indicated that among KLK9, WNT3A, FGF18, SRSF4,
FIBP, SOX12, TGFBI, and NEDD9, the expression of NEDD9
was much higher in OSCC tissues than adjacent tissues. NEDD9
was the most obviously upregulated gene between OSCC tissues
and adjacent tissues that isolated from OSCC patients (Figure
8B). Thus, we selected NEDD9 for further analysis. To further
investigate the role of NEDD9, OSCC cells were transfected with
miR-25-5p inhibitor, miR-25-5p inhibitor+siRNA-NEDD9
respectively. As shown in Figure 8C, compared with NC
group, the proliferation ability of OSCC cells was elevated by
miR-25-5p inhibitor, but it was inhibited in the presence of
siRNA-NEDD9 (Figure 8C). The transwell assay showed that
knockdown of miR-25-5p promoted the invasion ability of
OSCC cells, which was reversed by siRNA-NEDD9 (Figure
8D). Furthermore, wound healing assay indicated that the
A
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D
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FIGURE 4 | Upregulation of miR-25-5p suppresses the migration, invasion, and tumor formation of OSCC cells. (A) Wound healing assay was used to determine the
migration of SCC9 cells transfected with miR-25-5p mimic or NC mimic (n=4). (B) SCC9 cells were transfected with miR-25-5p mimic or NC mimic and allowed to migrate
through an 8 µm pore size polycarbonic membrane in Transwell chambers. The invasive cells were stained and counted (n=4, Scale bar, 100 mm). (C, D) Animal experiments
of tumor formation of OSCC cells were conducted using SCC9 cells. Tumor weights and volumes were measured (n=10, Student’s t-test, *p < 0.05).
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migratory ability of OSCC cells in the miR-25-5p inhibitor group
was higher than that in the NC group, while the elevated
migratory ability was inhibited by NEDD9 siRNA (Figure 8E).
To further confirm the relationship between miR-25-5p and
NEDD9, dual-luciferase reporter assay was conducted.
Luciferase reporter assay revealed that miR-25-5p mimic
significantly decreased the luciferase activity in SCC9 cells
transfected with NEDD9-WT, but not the NEDD9-MUT
compared with NC group (Figure 8F). RT-qPCR analysis was
conducted to determine the expression levels of NEDD9 in SCC9
cells after miR-25-5p modulation (Figure 8G). The results
indicated that miR-25-5p mimic inhibited the mRNA
expression of NEDD9, while miR-25-5p inhibitor elevated the
mRNA expression of NEDD9 (Figure 8G). Western blot analysis
demonstrated that miR-25-5p mimics reduced the protein level
of NEDD9 and miR-25-5p inhibitor elevated the protein level of
NEDD9 (Figure 8H). The results provided that NEDD9 was a
direct target of miR-25-5p that regulated OSCC cell behaviors.
DISCUSSION

OSCC is one of the most malignant neoplasms worldwide and
ranks first with 90% in oral cancers. There are about 0.3 billion
new patients every year. Unhealthy living habits like smoking,
alcohol uptake, and papillomavirus infection are the main risk
factors of OSCC. With the progress of medical science in the
recent decades, the 5-year survival rate of OSCC patients
Frontiers in Oncology | www.frontiersin.org 9
improves to approximate 50%. However, over 60% patients are
at stage III or IV when diagnosed, which leaves a poor survival
rate for these patients. It is necessary to clarify the mechanism of
origination and development of OSCC, so as to find treatment
targets and novel therapeutics (1–3).

Melatonin is an endogenous hormone secreted from pineal
and could regulate circadian rhythms and mitochondrial
homeostasis (12, 50, 51). Melatonin and its metabolites are
proved to have an antioxidative role against oxidative stress
(51). More interestingly, this hormone exerts anti-tumor effect
on kinds of solid tumors via its receptor that exists in tumor
tissues (13). It is thought that the anti-tumor effect of melatonin is
based in its anti-oxidation and anti-inflammatory roles (52, 53).
Melatonin inhibits triple negative breast cancer cell proliferation,
migration via increasing miR-152-3p (54, 55). Melatonin inhibits
breast tumor cell survival, migration, and invasion and upregulates
miR-148a-3p (56). Melatonin represses 5-FU resistant colorectal
cancer cell growth via miR-215-p/thymidylate synthase (TYMS)
pathway (57). Melatonin inhibits gastric cancer cell growth viamiR-
16-5p/Smad3 pathway (58). Glioma cell proliferation and invasion
are inhibited by melatonin via repressing miR-155 (59). In a
random clinic trial, after neoadjuvant chemotherapy, melatonin
was applied to treat OSCC patients. The residual tumor percentage
and miR-210 were reduced. However, the decrease of miR-210 had
no statistical significance (60). Thus, there could be other miRNAs
downstream melatonin. After literature research, we chose miR-21,
miR-133a, miR-148a-3p, miR-25-5p, and miR-155, which have
been reported to regulate tumor progression in other cancers and
A B

D

C

FIGURE 5 | Knockdown of miR-25-5p promotes cell viability, proliferation, and inhibits the apoptosis of OSCC cells. (A) SCC9 cells transfected with miR-25-5p or NC
inhibitor were used to analyze the expression of miR-25-5p with RT-qPCR. (B) MTT assay of cell viability in SCC9 cells in the presence of miR-25-5p or NC inhibitor.
(C) Effect of miR-25-5p inhibitor on the proliferation ability of SCC9 cells (Scale bar, 100 mm). (D) The apoptosis of SCC9 cells detected by TUNEL staining. Nuclei were
stained by DAPI (blue) stain and apoptotic cells were stained by TUNEL (green) (Scale bar, 200 mm). (n=4, Student’s t-test, **p < 0.01 ***p < 0.001).
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FIGURE 6 | Knockdown of miR-25-5p accelerates the migration, invasion, and tumor formation of OSCC cells. (A, B) The effects of miR-25-5p inhibitor on the
migration and invasion of SCC9 cells were detected by wound healing assay and transwell invasion assay, respectively (n=4). (C, D) The SCC9 cells transfected with
miR-25-5p inhibitor or NC inhibitor were injected subcutaneously into the flanks of the nude mice. After 4 weeks, the tumor nodules were collected and the tumor
formation was examined (n=10). (Student’s t-test, *p < 0.05 and ***p < 0.001, Scale bar, 100 mm).
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FIGURE 7 | Inhibition of miR-25-5p reverses the inhibitory effects of melatonin in OSCC cells. (A) SCC9 cells were treated with melatonin at 1 mM and miR-25-5p
inhibitor, and MTT assay was performed to detect the cell viability. (B) SCC9 cells were exposed to 1 mM melatonin and miR-25-5p inhibitor and then were
subjected to colony formation assay to examine SCC9 cell proliferation ability. (C) Effects of melatonin on the migration of SCC9 cells in the presence of miR-25-5p
by wound healing assay. (D) The invasion ability of SCC9 cells after melatonin treatment and miR-25-5p transfection by Transwell invasion assay. (n=4, One way
ANOVA followed by the Tukey’s test, * indicated the differences compared with 0 mM Melatonin group,*p < 0.05, **p < 0.01, ***p < 0.001, Scale bar, 100 mm).
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have not been studied in OSCC. Among these miRNAs, miR-25-5p
was downregulated in OSCC tissues and cells, and melatonin
treatment upregulated miR-25-5p expression in OSCC cell.
Further, we confirmed miR-25-5p was the downstream miRNA
Frontiers in Oncology | www.frontiersin.org 11
of melatonin in OSCC. Melatonin could inhibit multi tumor, like
breast cancer, glioma, colorectal cancer, and gastric cancer.
However, the involved pathways downstream melatonin in multi
tumors are different.
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FIGURE 8 | miR-25-5p regulates OSCC cell proliferation, invasion, and migration via targeting NEDD9. (A) Schematic representation of the predicted miR-25-5p binding
region in the 3′-UTR of target genes. (B) The expression of KLK9, WNT3A, FGF18, SRSF4, FIBP, SOX12, TGFBI, and NEDD9 in OSCC tissues and adjacent tissues. (C)
Colony formation assay was used to examine the proliferation ability. (D) Transwell invasion assay was performed to detect the invasion ability. (E) Wound healing assay
was applied to assess the migration ability. (F) Luciferase activity was analyzed to confirm the relationship between miR-25-5p and NEDD9. (G, H) RT-qPCR (G) and
western blotting (H) were performed to examine the NEDD9 level in SCC9 cells transfected with miR-25-5p mimic or NC mimic. (n=4, B: Student’s t-test; C-H: One way
ANOVA followed by the Tukey’s test, * indicated the differences compared with NC mimics/inhibitor group, *p < 0.05, **p < 0.01, ***p < 0.001, Scale bar, 100 mm).
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MiRNAs, a cluster of noncoding RNAs, could regulate cell
biological behaviors in tumors via targeting the 3’UTR of target
genes (61). The role of miRNAs has been studied in multi tumors
like breast and colon cancers (62, 63). In OSCC, the role of
miRNAs has also been studied. Many miRNAs in the body fluids
of OSCC patients are common, which indicated they could be set
as biomarkers to predict diagnosis, prognosis, and therapeutic
efficiency (64). MiRNAs are crucial therapeutic targets to handle
oral cancer related pain (65). Thus, it might also be the targets to
treat OSCC. According to the previous reports, miR-21, miR-
133a, miR-148a-3p, miR-25-5p, and miR-155 participated in the
development of various cancers. However, there were no studies
that investigate the role of miR-21, miR-133a, miR-148a-3p,
miR-25-5p, and miR-155 in OSCC cells and the relationship
between melatonin and the expression of these miRNAs.
Therefore, in our study, we performed RT-qPCR analysis to
identify the dysregulated expression of miRNAs by using SCC9
cells, which were pretreated with melatonin at different
concentrations. The results of RT-qPCR analysis revealed that
no significant changes in miR-21 or miR-133a expression were
observed under melatonin administration. As shown in the
results, melatonin elevated the expression of miR-148a-3p and
miR-25-5p, but it inhibited the expression of miR-155. Among
these miRNAs, miR-25-5p was the most significantly
upregulated miRNA after melatonin treatment. Therefore, we
chose miR-25-5p for further analysis. MiR-25-5p has been
reported to inhibit the proliferation of colorectal cancer cells
(15, 66). In our study, melatonin upregulated the expression of
miR-25-5p in vitro. Melatonin has been reported to upregulate
lncRNA H19 via enhancing its transcription efficiency. H19
could target miR-675 to upregulate miR-675 expression (67).
Thus, in this study, melatonin might upregulate miR-25-5p
expression by promoting the expression of lncRNAs or
transcription factors that binding to the promoter of miR-25-
5p. This hypothesis needed further confirmation. The
overexpression of miR-25-5p inhibited OSCC cell viability,
proliferation, and induced cell apoptosis. The migration,
invasion, and tumor formation were also inhibited by miR-25-
5p. Our data confirmed the potential inhibitory role of miR-25-
5p on OSCC. Besides, in our study, the results indicated that
melatonin exerted anti-proliferative, anti-invasive, and anti-
migratory effects on OSCC and promoted the expression of
miR-25-5p. Further, inhibition of miR-25-5p could reverse the
inhibitory effects of melatonin in OSCC cells. Therefore, we
concluded that melatonin exerted anti-proliferative, anti-
invasive, and anti-migratory effects on OSCC cells by
regulating the expression of miR-25-5p.

As is widely known, miRNAs exert their posttranscriptional
regulation role via inhibiting target genes expression. The
potential target genes were predicted by two databases. There
are lots of target genes of miR-25-5p according to the results of
quick search on TargetScan databases. Among these target genes,
KLK9, WNT3A, FGF18, FIBP, SOX12, TGFBI, and NEDD9 have
been reported to participate in the development of human
cancers (42–49). The results of RT-qPCR indicated that among
KLK9, WNT3A, FGF18, SRSF4, FIBP, SOX12, TGFBI, and
Frontiers in Oncology | www.frontiersin.org 12
NEDD9, the expression of NEDD9 was much higher in OSCC
tissues than adjacent tissues. NEDD9 displayed the most
obviously upregulated gene between OSCC tissues and
adjacent tissues that isolated from OSCC patients. Therefore,
we speculated that NEDD9 might play a vital role in the
development of OSCC. According to the results, NEDD9
might be the potential target gene of miR-25-5p, and we
selected NEDD 9 for further analysis. Dual-luciferase reporter
assay confirmed the interaction of miR-25-5p and NEDD9
mRNA. The mRNA expression of NEDD9 could be regulated
by miR-25-5p. In OSCC cells, NEDD9 induced MMP9 secretion
is an important process to form invadopodia (68). Abnormal
expression of NEDD9 has been proved in colorectal cancer, lung
cancer, and melanoma (69–71). The inhibition of NEDD9 could
induce cancer cell apoptosis in colorectal cancer (15). NEDD9
could regulate many cellular behaviors like proliferation,
invasion, mitosis, and migration (72). Overexpressed NEDD9
could enhance the metastasis of hepatocellular carcinoma, while
inhibition of NEDD9 could suppress the metastasis (73).

In conclusion, our results proved miR-25-5p/NEDD9 was the
downstream pathway of melatonin in OSCC. This study clarified a
new mechanism and provided novel therapeutic targets in OSCC.
Melatonin could be a potential treatment drug to handle OSCC.
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12. Garcıá-Macia M, Santos-Ledo A, Caballero B, Rubio-González A, de Luxán-
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