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Long non-coding RNAs (lncRNAs) are transcripts which are usually more than 200 nt
in length, and which do not have the protein-coding capacity. LncRNAs can be
categorized based on their generation from distinct DNA elements, or derived from
specific RNA processing pathways. During the past several decades, dramatic progress
has been made in understanding the regulatory functions of lncRNAs in diverse
biological processes, including RNA processing and editing, cell fate determination,
dosage compensation, genomic imprinting and development etc. Dysregulation of
lncRNAs is involved in multiple human diseases, especially neurological disorders. In
this review, we summarize the recent progress made with regards to the function of
lncRNAs and associated molecular mechanisms, focusing on neuronal development
and neurological disorders.
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INTRODUCTION

Over the past several decades, advances in genomic sequencing technology and findings from large-
scale consortia have facilitated our understanding of the complexity and flexibility of mammalian
genomes. The majority of mammalian genomes are transcribed, whereas only a few transcripts
encode proteins, the majority of transcripts are non-coding RNAs (ncRNAs) (Roberts et al., 2014).
Based on the length of transcripts, ncRNAs are usually classified into two categories: small non-
coding RNAs and long non-coding RNAs (lncRNAs). Small ncRNAs are usually <200 nucleotides,
including microRNAs, Piwi-interacting RNAs and small nuclear RNAs (snoRNAs). lncRNAs are
>200 nucleotides and frequently transcribed by polymerase II, and share some features, e.g., 5′-
capping, 3′-polyadenylation, alternative splicing and sequence conservation with mRNA (Ponting
et al., 2009; Nagano and Fraser, 2011).

Although lncRNAs generally lack protein coding capacity, spatiotemporal-specific expression
patterns have highlighted the diverse functions and complicated mechanisms of lncRNAs (Cao
et al., 2018). Currently, it is widely accepted that lncRNAs play an important function in a variety
of biological processes, including regulating gene expression, both at the transcriptional and the
post-transcriptional level, shaping the chromatin conformation and imprinting the genomic loci
(Lee and Bartolomei, 2013; Chen, 2016; Cao et al., 2018), and multiple diseases such as neurological
disorders, cancer, and immunological diseases (Bian and Sun, 2011; Huarte, 2015; Wan et al., 2017).
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In this review, we summarize the recent progress made regarding
the functions of lncRNAs, especially the functions and associated
mechanisms related to neurological disorders.

CHARACTERIZATION OF LncRNA

LncRNAs are generally transcribed from various genomic
contexts and tend to have fewer exons than protein-coding
transcripts (Iyer et al., 2015). Although there are still many
challenges in annotation and interpretation of lncRNAs, because
of the lack of an unambiguous classification framework, the
existing lncRNAs can be subdivided into several categories
based on their positional relation to protein coding genes, DNA
elements or diverse mechanisms of processing (St Laurent et al.,
2015; Kopp and Mendell, 2018) (Figure 1).

Sense lncRNAs are transcribed from the sense DNA strand,
and have overlapping regions with protein-coding genes,
including un-spliced sense partially intronic RNAs (PINs) and
spliced transcripts resembling mRNAs (St Laurent et al., 2015).
Further, natural antisense transcripts (NATs) of protein-coding
genes have also been identified and many NATs share some
opposite strand DNA sequences with the sense transcripts
(Katayama et al., 2005). Some studies also indicate that NATs
have either positive or negative effects on the corresponding
sense transcripts or nearby protein-coding transcripts (Faghihi
et al., 2010; Modarresi et al., 2012). For example, human
brain-derived neurotrophic factor antisense RNA (BDNF-AS)
was originally identified as natural antisense transcripts of
neuronal transcriptional factor BDNF, shares 225 complementary
nucleotides with BDNF mRNA and regulates the expression of
BDNF both in vivo and in vitro (Modarresi et al., 2012;Fatemi
et al., 2015).

Other studies indicate that intronic regions of coding genes
produce a lot of lncRNAs. These intronic lncRNAs form the
largest class of lncRNAs and are expressed independently from
the pre-mRNA of protein coding genes. Many intronic lncRNAs
fail to be debranched after splicing and form a covalent
circle without 3′ linear appendages, these circular intronic
ncRNAs (ciRNAs) were found to play a regulatory role on
their host genes (Zhang et al., 2013). In addition, circRNAs
derived from the internal exons of pre-mRNAs through back-
splicing, have also been found in various cell lines and tissues
(Wu H. et al., 2017). These circular ncRNAs usually present
tissue- and developmental stage-specific expression, such as
the intensively studied cerebellar degeneration-related protein
1(CDR1as) (Memczak et al., 2013).

A relatively well-characterized subclass of lncRNAs is
large/long intergenic or intervening non-coding RNAs
(lincRNAs), and transcribed from the intergenic regions.
LincRNAs have no overlapping sequences with transcripts of
either protein-coding genes or other types of genes (Clark
and Blackshaw, 2014). At the molecular level, most annotated
lincRNAs have mRNA-like features including 5′-cap structures,
3′-poly(A) tails, exon–exon splice junctions and association
with ribosomes (Cabili et al., 2011). Compared with mRNA
counterparts, lincRNAs exhibit a more tissue-specific expression,

a greater nuclear localization and less evolutionary conservation
(Djebali et al., 2012).

Promoter upstream transcripts (PROMPTs) localize in a
fairly narrow region between ∼500 and ∼2500 nucleotides
upstream of transcription start sites of nearby active protein-
coding genes (Preker et al., 2011; Lloret-Llinares et al.,
2016). It was reported that the expression levels of certain
PROMPTs are altered in stress conditions, such as DNA
damage responses and osmotic responses (Lloret-Llinares
et al., 2016; Song et al., 2018). Enhancer-related lncRNAs
(eRNAs) are bidirectional transcripts of enhancers and have
enhancer-like functions. Increased binding of DNA hydroxylase
Tet1 and histone methyltransferases Mll3/Mll4 and DNA
hypomethylation and H3K27ac modifications at enhancers,
may activate eRNAs transcription. Both PROMPTs and eRNAs
are targets of the RNA exosome and display similarities
during processing (Andersson et al., 2014; Wu H. et al.,
2017).

Emerging evidence indicates that telomeric repeat-containing
RNA (TERRA) is a heterogeneous lncRNA consisting of a
combination of subtelomeric and telomeric sequences. These
sequences are mostly transcribed from intrachromosomal
telomeric repeats by pol II and polyadenylated at 3′ region (Luke
and Lingner, 2009). The length and expression level of human
TERRA is influenced by the telomere length. The vast majority
of mouse TERRA-binding sites were found in distal intergenic
and intronic regions, where TERRA may regulate expression
of target genes (Chu et al., 2017; Diman and Decottignies,
2018).

SnoRNA-ended lncRNAs (sno-lncRNAs) are transcripts of
one intron flanked by two snoRNA genes that can be further
processed to form snoRNA. sno-lncRNAs can be stabilized by
snoRNPs formed by snoRNAs and specific protein components.
SLERT is a representative Box H/ACA snoRNA-ended lncRNA
and has been reported to be translocated to the nucleus by
snoRNAs to function in pre-rRNA biogenesis (Wu H. et al.,
2017).

PHYSIOLOGICAL FUNCTIONS OF
LncRNA

Loss- and gain-of-function studies revealed that many lncRNAs
are involved in various biological processes during development.
Many lncRNAs have been found to regulate transcription
via chromatin modulation, by working as molecular scaffolds
for protein–protein interactions or interacting with chromatin
modifying complexes and recruiting chromatin modifying
complexes to specific loci, to activate or repress target
gene expression. Some lncRNAs could affect transcription by
modulating the binding of the general transcription machinery
and regulatory factors (Wang and Chang, 2011; Fang and
Fullwood, 2016; Wan et al., 2017; Lekka and Hall, 2018).
Aside from modulating chromatin states, nuclear lncRNAs are
involved in the RNA processing (Tripathi et al., 2010), turnover,
silencing, translation and decay of mRNAs (Gong and Maquat,
2011; Carrieri et al., 2012; Geisler and Coller, 2013), or act as
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FIGURE 1 | Graphic illustration of the classification of lncRNAs in mammalian. General classification of lncRNAs. eRNAs, enhancer RNAs; PROMPTs, promoter
upstream transcripts; lincRNAs, large intergenic ncRNAs; vlincRNA, very long intergenic ncRNAs; TIN, totally intronic long non-coding RNAs; sno-lncRNAs, small
nucleolar RNA (snoRNA)-ended lncRNAs; NATs, natural antisense transcripts; PIN, partially intronic lncRNAs; ciRNAs, circular intronic RNAs; circRNAs, circular
RNAs; TERRA, telomeric repeat-containing RNA.

miRNA decoys to neutralize miRNA-mediated mRNAs silencing
and interact with signaling molecules, to modulate signaling
pathways (Faghihi et al., 2010; Liu et al., 2015). In addition, some
lncRNAs are determined to be precursors of certain miRNAs at
particular stages of development (Dykes and Emanueli, 2017)
(Table 1).

LncRNAs and Stem Cell Pluripotency
and Differentiation
Accumulating evidence suggests that lncRNAs exert critical
functions in pluripotency maintenance, reprogramming and
lineage differentiation of stem cells (Wang and Chang, 2011;
Ghosal et al., 2013). The long intergenic non-protein coding
RNA regulator of reprogramming (lincRNA-ROR), increases the
reprogramming efficiency of human induced pluripotent stem
cells (iPSCs) and promotes the maintenance of embryonic stem
cells (ESCs) pluripotency (Loewer et al., 2010). Similar to a
miRNA sponge, lincRNA-ROR forms a regulatory feedback loop
with miR-145 and OCT4, SOX2, and NANOG, and regulates ESC
pluripotency (Wang et al., 2013). MIAT (myocardial infarction
associated transcript) is a co-activator of Oct4 and participates in
OCT4 and NANOG regulatory networks in mouse ESCs. Loss of
MIAT reduces the expression of Oct4, Sox2, and Klf4, and inhibits
ESCs proliferation (Sheik Mohamed et al., 2010).

LncRNAs and Development
Genomic imprinting is an important epigenetic mechanism and
is crucial for normal development in mammals. It restricts gene
expression on one of the two parental chromosomes in diploid

cells and affects both male and female descendants (Barlow
and Bartolomei, 2014). H19, a maternally expressed 2.3 kb
lncRNA, is generated from the highly conserved and imprinted
vertebrate gene cluster insulin-like growth factor 2 (Igf2)/H19.
H19 transcripts are the precursors of miR-675-3p and miR-
675-5p (Cai and Cullen, 2007). Before parturition, H19 slows
the growth of the placenta down partially, by down-regulating
the RNA binding protein HuR. The decreased HuR cannot
block the processing of miR-675, which further decreases the
growth regulator Igf1r with Igf2 as its main ligand (Keniry
et al., 2012). Another two well-characterized lncRNAs that
have been found to regulate genomic imprinting are Kcnq1ot1
(KCNQ1 opposite strand transcript 1) and Airn (antisense of
IGF2R non-protein coding RNA), both are paternally expressed
and regulate transcriptional silencing through a multilayered
silencing pathway (Perry and Ulitsky, 2016).

Besides genomic imprinting, dosage compensation plays a
vital role in equalizing the dosage of X-linked genes between
males and females in heterogametic species. Xist is a 17 ∼ 20 kb
lncRNA and transcribed from the X inactivation center. During
female development, Xist initiates X-chromosome inactivation
(XCI), by progressively coating the future inactive X chromosome
(Xi) and then utilizing its conserved A-repeat domain to bind
PRC2, to form a transcriptionally silent nuclear compartment.
The compartment is enriched by H3K27me3 and responsible
for the chromosome-wide gene repression in the Xi (Chery and
Larschan, 2014). TSIX, transcribed from the active chromosome
(Xa), represses Xist at the early steps of X inactivation (Gendrel
and Heard, 2014). Another lncRNA JPX/ENOX, which is
transcribed from Jpx/Enox gene, that resides 10 kb upstream of
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TABLE 1 | Diverse mechanisms of lncRNAs playing function.

Mechanism lncRNA Function Relationship with target
(Cis/Trans)

Reference

Chromatin remodeling ANRIL Repression at the CDKN2A/B locus Cis/trans Congrains et al., 2013

BCAR4 SNIP1 and PNUTS recruitment Trans Xing Z. et al., 2014

Braveheart Activation of MesP1 Trans Klattenhoff et al., 2013

cga eRNA Formation of looping between enhancer and promoter Cis Pnueli et al., 2015

COOLAIR Repression at the FLC locus Cis Marquardt et al., 2014

FENDRR PRC2 and TrxG/MLL complexes recruitment Trans Grote et al., 2013

H19 Genomic imprinting Cis/trans Cai and Cullen, 2007

HAUNT Repression at the HOXA locus Cis Yin et al., 2015

HOTAIR Repression at the HOXD locus Trans Cai et al., 2014

HOTTIP Activation at the HOXA locus Cis Lian et al., 2016

HOXD-AS1 Recruitment of WDR5 to target genes Trans Gu et al., 2017

Kcnq1ot1 Imprinting at the KCNQ1 cluster Cis Chiesa et al., 2012

lncTCF7 Recruitment of SWI/SNF complex to TCF7 Cis Wu B. et al., 2018

MEG3 Accumulation of p53 protein Cis/trans Zhou et al., 2007

Oct4P4 Repression at the Oct4 locus Trans Scarola et al., 2015

PAPAS rRNA synthesis Cis Zhao Z.L. et al., 2018

PARTICLE Repression of methionine adenosyltransferase 2A Cis/trans O’leary et al., 2017

TERRA Felomeric heterochromatin formation Cis/trans Luke and Lingner, 2009

TSIX X inactivation Cis Sado et al., 2005

XIST X inactivation Cis Cerase et al., 2015

Six3OS Recruit histone modification enzymes to Six3 target genes Trans Rapicavoli et al., 2011

DNA methylation APTR Recruitment of PRC2 to CDKN1A/p21 Trans Negishi et al., 2014

DALI DNA methylation on promoter regions of target genes Trans Chalei et al., 2014

DUM DNA methylation on Dppa2 Cis Wang et al., 2015a

Evf2/Dlx6as Transcriptional repression of Evf2 and Dlx5 Cis/trans Berghoff et al., 2013

FIRRE H3K27me3 methylation maintenance Trans Yang et al., 2015

miRNA binding CDR1as miR-7 decoy Trans Yu et al., 2016

lincRNA-ROR miR-145 binding Trans Wang et al., 2013

lncRNA-ATB miR-200s binding Trans Li et al., 2017

UCA1 miR-184 sponge NA Li and Hu, 2015

TUG1 miR-144/145 binding Trans Li et al., 2016

Transcriptional
regulation

Uph Repression at the Hand2 locus Cis Kopp and Mendell,
2018

Paupar Negative regulation Pax6 expression Cis/trans Vance et al., 2014

PANDA Repression of NF-YA-mediated transcription NA Puvvula et al., 2014

Airn Imprinting at the IGF2R cluster Cis Kopp and Mendell,
2018

RMST Transcriptional coregulator of SOX2 Trans Ng et al., 2013a.

Post transcriptional
regulation

MALAT1 Ser/Arg splicing factor regulation Trans Wu Y.T. et al., 2015

PCA3 PRUNE2 editing and stability Cis Salameh et al., 2015

CCAT2 Alternative splicing of Glutaminase (GLS) Trans Xin Y. et al., 2017

MIAT Alternative splicing of DISC1, ERBB4 Trans Sun et al., 2018

Sirt1 AS Promotion of Sirt1 mRNA stability Cis Wang et al., 2014

TINCR Stability of multiple mRNAs Trans Kretz, 2013

1/2-sbsRNA Activation of STAU1-mediated decay Trans Gong and Maquat,
2011

BACE1-AS Positive regulation of BACE1 Cis Modarresi et al., 2011

aHIF Nuclear membrane trafficking Cis Cayre et al., 2003

AS UCHL1 UCHL1 mRNA translation Cis Carrieri et al., 2015

lincRNA-p21 Translational suppression Cis Dimitrova et al., 2014

ZEB2 NAT Activation of ZEB2 translation Cis Bernardes De Jesus
et al., 2018

NORAD Inhibition of PUM protein activity NA Lee et al., 2016

(Continued)
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TABLE 1 | Continued

Mechanism lncRNA Function Relationship with target
(Cis/Trans)

Reference

SNHG4/5/6 Localization of MTA2 protein in the nuclear NA Chang et al., 2016;
Zhao et al., 2016

LINK-A Recruitment of BRK to GPNMB NA Wu D. et al., 2017

NEAT1 Formation of nuclear paraspeckles Trans Clemson et al., 2009

AOC4P Degradation of vimentin Trans Wang et al., 2015b

ASBEL Localization of ANA/BTG3 mRNA in the nuclear Cis Zhao J. et al., 2018

GAS5 Repression of glucocorticoid receptor-mediated
transcription

NA Kino et al., 2010

Xist, also involves in XCI through repressing the TSIX expression
from the Xi and evicting nuclear protein CCCTC-binding factor
(CTCF) away from promoter of XIST to activate the XIST
expression from Xi (Sun et al., 2013).

LncRNAs in Neurodevelopment
A great number of lncRNAs are expressed during neural
development and in the brain. Using high-throughput
technologies, in situ hybridization, microarray analysis and
RNA sequencing (RNA-seq), researchers have found that most
of the lncRNAs examined (849 out of 1328) are expressed
in specific cell types, subcellular compartments and different
regions of the brain (Ng et al., 2013b; Shi et al., 2017). LncRNAs
display differential expressions across the cortical layers, and
region-specific expressions in the subventricular zone, dentate
gyrus and olfactory bulb of mice (Belgard et al., 2011; Ramos
et al., 2013). Based on a unique custom microarray platform, 8
lncRNAs were identified to be expressed in an age-dependent
manner, from 36 surgically resected human neocortical samples,
ranging from infancy to adulthood (Lipovich et al., 2014).
However, the function of those lncRNAs need to be validated,
through loss-of-function assays, RNA-protein association assays
or assessments of RNA-chromatin association.

Some lncRNAs are also found to participate in neural
cell fate determination, neuronal-glia fate switching and
oligodendrocyte elaboration. An antisense transcript of the
distal-less homeobox 1 (Dlx1), Dlx1AS, was discovered to be
up-regulated during GABAergic differentiation and down-
regulated during oligodendrocyte differentiation (Mercer et al.,
2010). A subsequent study found that Dlx1AS participated in
neurogenesis, implying its function in neuronal differentiation
by regulating expression of its homeobox gene neighbors (Ramos
et al., 2013). Evf2, a cloud-forming Dlx5/6 ultra-conserved eRNA,
influences the formation of GABAergic interneurons in both a
mouse and human forebrain. In the developing ventral forebrain,
Evf2 regulates Dlx5, Dlx6 and glutamate decarboxylase 1 (Gad1)
expression by recruiting DLX1 and/or DLX2 and methyl CpG
binding protein 2 (MeCP2) to specific DNA regulatory elements.
GAD1 is an enzyme responsible for catalyzing glutamate to form
GABA. Evf2 mouse mutants reduced GABAergic interneurons in
the early postnatal dentate gyrus and hippocampus (Bond et al.,
2009; Berghoff et al., 2013; Cajigas et al., 2018).

The vertebrate retina is comprised of three well-organized cell
type-specific neuron layers, interconnected by synapses (Ng et al.,

2013b). Six3OS is the long non-coding opposite strand transcript
(lncOST) of the homeodomain factor Six3. During mammalian
eye development, Six3 regulates both early eye formation and
postnatal retinal cell specification. Knockdown of Six3OS leads
to a decrease of bipolar cells and an increase of Müller glia,
similar to the results in the knockdown of Six3. In contrast,
overexpression of Six3OS decreased syntaxin positive cells. Gene
perturbation studies revealed that Six3OS participates in retinal
cell specification as a molecular scaffold, to regulate Six3 activity
rather than expression (Rapicavoli et al., 2011). TUG1 (taurine
upregulated gene 1), a spliced and polyadenylated lncRNA, is
highly conserved in humans and mice. TUG1 may participate in
rod-photoreceptor genesis and inhibits cone-photoreceptor gene
expression globally, by altering the chromatin configurations of
photoreceptor-specific transcription factors Crx and Nrl (Young
et al., 2005).

LncRNAs IN NEUROLOGIC DISORDERS

Emerging evidence has shown that the dysregulation of
lncRNAs is related to multiple neurological disorders, such as
schizophrenia (Scholz et al., 2010), autism spectrum disorder
(ASD) (Wang et al., 2015c), Parkinson’s (Ni et al., 2017),
Huntington’s (Sunwoo et al., 2017) and Alzheimer’s diseases
(Faghihi et al., 2008).

Schizophrenia (SCZ) is a debilitating mental disorder with a
broad spectrum of neurocognitive impairments. Abundant data
suggests that both genetic and environmental factors contribute
to the pathophysiology of SCZ (Seidman and Mirsky, 2017).
Several lncRNAs have been used as biomarkers and therapeutic
targets for SCZ (Chen et al., 2016). lncRNA MIAT, also known
as Gomafu or RNCR2, is down-regulated in SCZ upon neuronal
activation (Sun et al., 2018). Previous studies found MIAT either
acts as a competitive endogenous RNA (ceRNA) for miR-150-5p,
miR-24, miR-22-3p or miR-150, to influence cell proliferation,
apoptosis and migration, or participates in various signaling
pathways by enhancing Nrf2 (nuclear factor erythroid 2-related
factor 2) and Oct4 expression. Subsequent studies revealed
that MIAT can directly bind to the splicing regulator quaking
homolog (QKI) and splicing factor 1 (SF1), to modulate several
gene expressions in the neuron. In SCZ patient brains, DISC1
(disrupted in schizophrenia 1), ERBB4 (v-erb-a erythroblastic
leukemia viral oncogene homolog 4) and their alternatively
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spliced variants were all down-regulated due to MIAT up-
regulation. MIAT could act as a scaffold to affect alternative
splicing of those SCZ-associated genes (Roberts et al., 2014; Liu
et al., 2018; Sun et al., 2018).

Autism spectrum disorder (ASD) is a heterogeneous group
of neurodevelopmental disorders characterized by impaired
reciprocal social interactions, communication, and repetitive
stereotyped behaviors (Tang et al., 2017). 222 differentially
expressed lncRNAs have been identified from autistic brain
tissues. 90% of these lncRNAs are oriented in or around known
genes related to neurodevelopmental and psychiatric diseases,
such asUBE3A (ubiquitin protein ligase E3A), which is associated
with Angelman syndrome, that shares common features with
ASD. At the same time, it has been found that the number of
lncRNAs differentially expressed within a control sample, was
much greater than that within an autistic sample (1375 lncRNAs
vs. 236 lncRNAs, respectively) (Ziats and Rennert, 2013).
A genome-wide association study (GWAS) of ASD identified
a 3.9 kb lncRNA designated MSNP1AS, which is encoded by
the opposite strand of the moesin pseudogene 1 (MSNP1). The
sense transcript MSN encodes the moesin protein that regulates
neuronal architecture and immune responses. MSNP1AS was
found to be significantly upregulated in a postmortem ASD
temporal cortex, and overexpression of MSNP1AS led to
significant decreases in MSN, moesin, neurite number and length
in cultured neurons. Thus, MSNP1AS contributes to ASD risk,
by possibly influencing the sense transcript MSN expression
negatively (Wilkinson and Campbell, 2013).

BACE1-AS is a conserved non-coding antisense transcript
of β-secretase 1 (BACE1) and has been shown to be closely
associated with Alzheimer’s disease (AD). BACE1 is responsible
for the generation of β-amyloid and the amyloid plagues in the
brain, which are the primary pathophysiology of AD. BACE1-
AS is markedly up-regulated in AD brains and promotes the
stability of BACE1 through stabilizing BACE1 mRNA, thereby
increasing the BACE1 protein and Aβ1–42 levels (Faghihi et al.,
2008). Knock down of BACE1-AS in vivo resulted in the down-
regulation of both BACE1 and BACE1-AS, along with reduced
β-amyloid in the brain. In addition, the brain cytoplasmic RNA
BC200 (BCYRN1), GDNF gene antisense transcript (GDNF-
AS) and Sox2 overlapping transcript (Sox2OT), all participate
in progress and development in AD brains (Wan et al.,
2017).

Huntington disease (HD) is a hereditary neurodegenerative
disease with symptoms including dementia, chorea, and
psychiatric disturbances. HD is caused by a CAG trinucleotide
abnormal expansion in the first exon of the huntingtin gene and
its probability of occurrence is 1/10000. Microarray data found
that the expression of four lncRNAs significantly changed in
HD brains: NEAT1 (nuclear paraspeckle assembly transcript 1)
and TUG1 are upregulated, and DGCR5 (DiGeorge syndrome
critical region gene 5) and MEG3 (maternally expressed 3)
are downregulated. The up-regulation of NEAT1 in HD might
contribute to the pathogenic alteration of the transcriptional
status, by sequestrating various paraspeckle proteins (Sunwoo
et al., 2017), whereas TUG1 is possibly activated by p53 and
then interacts with PRC2, to affect downstream HD-associated

genes. DGCR5 and MEG3, are both direct targets of REST. Their
down-regulation may result from the aberrant accumulation of
REST in the nuclei of striatal neurons in HD (Johnson, 2012;
Hwang and Zukin, 2018). Using the whole genome chromatin
immunoprecipitation sequencing (ChIP-Seq) method, HAR1, a
deeply conserved genomic region that is directly bound by REST
was confirmed. This region encodes a pair of structured lncRNAs
as well, HAR1F and HAR1R. Both HAR1F and HAR1R were
downregulated in the striatum of HD patients (Johnson et al.,
2010).

Parkinson’s disease (PD) is one of most prevalent
neurodegenerative disorders, characterized by progressive
impairments of motor abilities caused by the loss of
dopamine-producing cells in the brain. Antisense ubiquitin
carboxy-terminal hydrolase L1 (AS-Uchl1) was discovered to up-
regulate the translation of UchL1 protein at a post-transcriptional
level depending on a 5′ overlapping sequence and an embedded
inverted SINEB2 sequence (Carrieri et al., 2012). AS-Uch1 is
strongly down-regulated in neurochemical models of PD as
a component of the Nurr1-dependent gene network and the
subsequent reduced translation of UCHL1 protein, lead to the
perturbation of the ubiquitin-proteasome system (Carrieri et al.,
2015). H19 upstream conserved 1 and 2 (Huc1 and Huc2),
lincRNA-p21, MALAT1, SNHG1, and TncRNA were differentially
expressed in PD patients (Kraus et al., 2017). As these lncRNAs
are associated with synaptogenesis, proliferation and apoptosis,
the expression of these lncRNAs precede the course of PD,
suggesting they may be biomarkers of PD (Kraus et al., 2017).

MECHANISMS OF LncRNAs IN
BIOLOGICAL PROCESSES

lncRNAs could provide functions through differential
mechanisms, including serving as molecular scaffolds, molecular
signals, guiding chromatin modifiers, and miRNA sponges, etc.
(Figure 2).

Molecular Scaffolds
Xist, a 17 ∼ 20 kb lncRNA transcribed from the X inactivation
center, initiates X-chromosome inactivation (XCI) by
progressively coating the future inactive X chromosome (Xi).
Xist can bind to chromatin-modifying complexes PRC2 through
the conserved A-repeat domain and form a transcriptionally
silent nuclear compartment. This compartment is responsible
for the chromosome-wide gene repression in the Xi (Chery and
Larschan, 2014). Another example of the lncRNA acting as a
molecular scaffold is the HOTAIR, which are transcripts of the
antisense strand of HOXC gene cluster, which can modulate
nearby gene expression by interacting with PRC2 and lysine
specific demethylase 1 (LSD1) (Tsai et al., 2010).

lncRNA tsRMST, an isoform of RMST (rhabdomyosarcoma
2 associated transcript) was highly expressed in human iPSCs
and ESCs. Further studies revealed that tsRMST down-regulation
leads to NANOG and the PRC2 complex component SUZ12
fail to bind to the promoters of several inactive genes. These
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FIGURE 2 | Graphic illustration of Mechanisms of lncRNAs playing functions. (1) lncRNAs can titrate transcription factors away from chromatin; (2) lncRNAs can
serve as a scaffold to form ribonucleoprotein complexes; (3) lncRNAs can recruit chromatin-modifying enzymes to target genes; (4) lncRNAs can be precursors of
small regulatory RNAs; (5–8) lncRNAs can regulate processes such as RNA splicing, translation and decay, in addition to miRNA binding; (9–11) lncRNAs can
participate in protein–protein interactions, regulate protein activity and present as a structural component in the cytoplasm.

genes are thereby activated and promote ectoderm and endoderm
differentiation (Ng et al., 2012; Yu and Kuo, 2016).

Molecular Signals
Genomic imprinting restricts gene expression on one of the
two parental chromosomes and the parental-specific gene
expression in diploid cells, and affects both male and female
descendants (Barlow and Bartolomei, 2014). H19 transcripts are
the precursors of miR-675-3p and miR-675-5p (Cai and Cullen,
2007). Before parturition, H19 slows the growth of the placenta
down partially, through down-regulating the RNA binding
protein HuR. The decreased HuR fails to block the processing
of miR-675, which further decreases the growth regulator Igf1r
(Keniry et al., 2012).

MALAT1 (metastasis-associated lung adenocarcinoma
transcript (1) is initially found as an abundant lncRNA in nuclear
speckles to regulate processes of mRNA alternative splicing by
modulating the levels of serine/arginine splicing factors (Tripathi
et al., 2010). Recent studies confirmed that MALAT1 is a sensitive
prognostic marker for lung cancer metastasis and linked to
several other human cancers (Gutschner et al., 2013).

Guiding Chromatin Modifiers
Genome regulation via DNA methylation and post-translational
histone modifications by the activity of chromatin modifiers, is a
well-documented function of lncRNA in eukaryotes (Bohmdorfer
and Wierzbicki, 2015; Nanda et al., 2016). Altered DNA
methylation patterns at CpG islands and mutations in chromatin
modifiers, may result in oncogenesis (Haladyna et al., 2015;
Nanda et al., 2016).

The first lncRNA identified to interact with both
maintenance and de novo methylases, Dum, is tightly
associated with myogenesis and transcriptionally induced
by MyoD upon myoblast differentiation. Dum can recruit DNA
methyltransferase1/3a/3b complex to the Dppa2 promoter,
through intra-chromosomal looping, mediated by RAD21
and NIPBL, resulting in two CpG loci hypermethylation and
Dppa2 silencing (Wang et al., 2015a). Recent studies of HOTAIR
suggest that under heypoxia, HOTAIR expression is up-regulated
in several cancer cells induced by the hypoxia-inducible
factors (HIFs), recruiting hypoxia-response elements (HRE)
to bind on the HOTAIR promoter. Along with HIFs, histone
acetyltransferase CREB-binding protein (CBP/p300) and histone
H3K4 specific methyltransferases, mixed lineage leukemia (MLL)
family, are enriched in the HRE region of the HOTAIR promoter
(Bhan et al., 2017).

Additionally, N-Myc can directly bind to the JMJD1A
promoter to upregulate JMJD1A expression in neuroblastoma
cells. The upregulated JMJD1A then directly binds to the
MALAT1 promoter to demethylate H3K9, to activate
MALAT1 expression (Tee et al., 2014; Peng et al., 2018).
Furthermore, H19 and mir-675 were found to participate
in the adipogenesis through mir-675, targeting the histone
deacetylase (HDAC) 4–6 3′ untranslated regions and inducing
HDACs 4–6 down-regulation. The reduced HDAC 4–6 then
reduced H19 expression, possibly by reducing the levels of
CTCF occupancy in the H19 imprinting control region. H19
inhibition then facilitates the bone marrow mesenchymal
stem cells differentiating into adipocytes (Huang et al.,
2016).
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miRNA Sponges
A handful of microRNAs have been reported to influence the
mRNA stability of protein-coding genes on post-transcriptional
level. Recent studies on lncRNAs discovered several miRNA-
lncRNA interactions based on in silico and experimental analyses
(Paraskevopoulou and Hatzigeorgiou, 2016). One of the well-
studied lncRNAs which act as miRNA sponges, is lincRNA-
ROR, which decoys miR-145 in self-renewing human ESCs.
A regulatory feedback loop formed by lincRNA-RoR, miR-145
and the core transcription factors OCT4, SOX2, and NANOG
is closely related to the ESCs pluripotency (Wang et al., 2013).
MALAT1 not only interacts with several splicing factors, but
also binds to miRNAs including miR-101, miR-9, miR-125b, and
miR217 to regulate the interactions between miRNA and mRNAs
(Paraskevopoulou and Hatzigeorgiou, 2016).

Other Mechanisms
Some lncRNAs exert their function by maintaining DNA
looping between enhancer and promoter regions, or by
recruiting chromatin regulatory proteins to establish high affinity
interactions between different regions of the DNA, resulting
in closely positioned promoters and enhancers (Yang et al.,
2013). For example, linRNA-p21 regulates the expression of
its neighboring gene p21, by cis-regulatory enhancer-like DNA
elements, which embed within the p21 gene body (Dimitrova
et al., 2014). lncRNAs can also interact with DNA directly
through nucleic-acid hybridization, and regulate nearby gene
expression, such as Airn (antisense of IGF2R non-protein
coding RNA), which produces transcription interference on
paternal allele, by spanning the Igf2 gene promoter (Latos
et al., 2012). Additionally, lncRNAs may influence the three-
dimensional organization of the mammalian nucleus. FIRRE
(firre intergenic repeating RNA element) is transcribed from the
X chromosome, and interacts with hnRNPU in the process of
nuclear organization (Yang et al., 2015). Trans-acting lncRNAs
also modulate the protein activity and RNA stability by directly
binding in the nucleus or cytoplasm. lncRNA NORAD functions
as a negative regulator of the RNA binding protein PUMILIO1

and 2 (PUM1 and 2) in the cytoplasm. The knockdown of
NORAD leads to the degradation of PUM1/2 targeted mRNAs
(Lee et al., 2016).

PERSPECTIVES

Previous studies have revealed that lncRNAs play an important
role in neuronal development and function through differential
mechanisms. The dysregulation of lncRNAs could result in
neurological diseases. Advances in sequencing technologies and
their applications will contribute substantially to uncovering and
investigating novel lncRNAs and their functions.

One challenge in the lncRNA field is whether lncRNAs can be
used as diagnostic biomarkers or therapeutic targets for diseases.
Considering that the down-stream targets of lncRNAs could be
broad, it is hard to use it as a specific “key” to one “lock.”
Although the validation of their functions could be performed
in vitro and in vivo, it is difficult to claim a specific target.
Another challenge is to better understand the mechanisms of
lncRNAs functions. It is highly necessary to develop proper
genetic tools and to establish animal models to dissect the
regulatory networks of lncRNAs, and their interaction with other
epigenetic modifications.
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