
Article
Numerical Cognition Based on Precise Counting
with a Single Spiking Neuron
How many ?

COUNTING ITEMS

MACHINE LEARNING

6 > 4 ?

„GREATER THAN“ DECISION

BIOLOGICAL SYSTEM

FoC
al

FoC
al

T0 sec

. . .

SEQUENCE OF „FIELD-OF-VIEW“

∑ output spikes = number of items

SPIKING NEURON MODEL

v(t)=i

Spike mismatch
Δ = -2

Gradient descent

SEQUENTIAL INSPECTION OF IMAGESSTATIC IMAGES INPUT

INPUT REPRESENTATION

LEARNING

SPIKE TRAIN ENCODING

NUMERICAL COGNITION

RANK ORDER CODING
FoCal

PIXEL INTENSITY VECTOR
1x10.000

1sec0 sec

. . .

Hannes Rapp,

Martin Paul

Nawrot, Merav

Stern

hannes.rapp@smail.uni-koeln.

de

HIGHLIGHTS
A single spiking neuron

can successfully learn to

solve numerical cognition

tasks

The number of action

potentials can represent

numerosity

Learning to count within

few epochs allows

generalization to unseen

categories

Counting with a single

spiking neuron can solve

numerical cognition tasks

in insects

Rapp et al., iScience 23,
100852
February 21, 2020 ª 2020 The
Author(s).

https://doi.org/10.1016/

j.isci.2020.100852

mailto:hannes.rapp@smail.uni-koeln.de
mailto:hannes.rapp@smail.uni-koeln.de
https://doi.org/10.1016/j.isci.2020.100852
https://doi.org/10.1016/j.isci.2020.100852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.100852&domain=pdf

Article

Numerical Cognition Based on Precise Counting
with a Single Spiking Neuron
Hannes Rapp,1,5,* Martin Paul Nawrot,1,3,4 and Merav Stern2,3,4

SUMMARY

Insects are able to solve basic numerical cognition tasks. We show that estimation of numerosity can

be realized and learned by a single spiking neuron with an appropriate synaptic plasticity rule. This

model can be efficiently trained to detect arbitrary spatiotemporal spike patterns on a noisy and

dynamic background with high precision and low variance. When put to test in a task that requires

counting of visual concepts in a static image it required considerably less training epochs than a

convolutional neural network to achieve equal performance. When mimicking a behavioral task in

free-flying bees that requires numerical cognition, the model reaches a similar success rate in making

correct decisions. We propose that using action potentials to represent basic numerical concepts with

a single spiking neuron is beneficial for organisms with small brains and limited neuronal resources.

INTRODUCTION

Insects have been shown to possess cognitive abilities (Chittka and Niven, 2009; Avarguès-Weber et al.,

2011,2012; Avarguès-Weber and Giurfa, 2013; Pahl et al., 2013). These include estimating numerosity

(Rose, 2018; Skorupski et al., 2018), counting (Chittka and Geiger, 1995; Dacke and Srinivasan, 2008; Menzel

et al., 2010), and other basic arithmetical concepts (Howard et al., 2018, 2019). How insects succeed in these

cognitive tasks remains elusive. A recent model study by Vasas and Chittka (2019) suggested that a minimal

neural circuit with only four rate-based neurons can implement the basic cognitive ability of counting visu-

ally presented items. The study implies that their minimal circuits can recognize concepts such as a ‘‘higher’’

or ‘‘lower’’ item number and ‘‘zero’’ (Howard et al., 2018) or ‘‘same’’ and ‘‘different’’ number of items

(Avarguès-Weber et al., 2012) when combined with a sequential inspection strategy that mimics the behav-

ioral strategy of insects during detection (Dacke and Srinivasan, 2008). The neural circuit studied in Vasas

and Chittka (2019) was shown to successfully predict whether a particular feature (e.g. yellow) has been pre-

sented more or less often than a pre-defined threshold number, despite being presented in a sequence of

other features and distractors. This circuit model was hand-tuned in order to successfully estimate numer-

osity in a numerical ordering task similar to Howard et al. (2018). This poses the question on how an efficient

connectivity, which allows the network to estimate numerosity, could be learned by means of synaptic

plasticity.

Numerosity estimation tasks that require counting the number of detected instances have also been re-

searched in the field of computer vision, in particular in relation to object recognition tasks. Many resources

have been devoted to train artificial neural networks to perform such tasks. Deep learning methods

(Schmidhuber, 2015) in particular have been shown to be successful in object detection, and they enable

counting by detecting multiple relevant objects within a static scene either explicitly (Ren et al., 2015) or

implicitly (Lempitsky and Zisserman, 2010). However, these model classes are costly as they typically

need to be trained on a very large number of training samples (in the millions) and often require cloud-

computing clusters (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Indeed, OpenAI, 2018 recently

showed that the amount of computing power consumed by such artificial systems has been growing

exponentially since 2012.

Clearly, insects with their limited neuronal resources cannot afford similar costly strategies and hence have

to employ fundamentally different algorithms to achieve basic numerical cognition within a realistic num-

ber of learning trials. These biological algorithmsmight prove highly efficient and thus have the potential to

inform the development of novel machine learning (ML) approaches.

A number of recent studies managed to train spiking neural networks with gradient-based learning

methods. To overcome the discontinuity problem due to the discrete nature of action potentials some

1Computational Systems
Neuroscience, Institute of
Zoology, University of
Cologne, Zülpicher Straße
47b, 50923 Cologne,
Germany

2Department of Applied
Mathematics, University of
Washington, Lewis Hall 201,
Box 353925, Seattle, WA
98195-3925, USA

3These authors contributed
equally

4Senior author

5Lead Contact

*Correspondence:
hannes.rapp@smail.
uni-koeln.de

https://doi.org/10.1016/j.isci.
2020.100852

iScience 23, 100852, February 21, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:hannes.rapp@smail.uni-koeln.de
mailto:hannes.rapp@smail.uni-koeln.de
https://doi.org/10.1016/j.isci.2020.100852
https://doi.org/10.1016/j.isci.2020.100852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.100852&domain=pdf
http://creativecommons.org/licenses/by/4.0/

studies evaluated the post-synaptic currents in the receiving neurons for the training procedures (Nicola

and Clopath, 2017; Huh and Sejnowski, 2017). Other studies used the timing of spikes as a continuous

parameter (Bohte et al., 2000; O’Connor et al., 2017; Zenke and Ganguli, 2018), which led to synaptic

learning rules that rely on the exact time interval between spikes emitted by the presynaptic and the post-

synaptic neuron. These spike-timing-dependent plasticity (STDP) rules were found experimentally (Bi and

mingPoo, 2001) and have gained much attention in experimental and theoretical neuroscience (Caporale

and Dan, 2008; Song and Abbott, 2000). Other recent studies approached the problem by either approx-

imating or relaxing the discontinuity problem (Zenke and Ganguli, 2018; Bengio et al., 2013) to enable

learning with error backpropagation in spiking neural networks. Training single spiking neurons as classi-

fiers has been proposed by Gütig and Sompolinsky (2006) and Memmesheimer et al. (2014). Closely

related, Huerta et al. (2004) trained binary neurons to perform classification in olfactory systems.

Here, we study a biologically realistic spiking neuronmodel with a synaptic learning rule proposed by Gütig

(2016). Our approach to numerical cognition takes advantage of the discrete nature of action potentials

generated by a single spiking output neuron. The number of emitted spikes within a short time period rep-

resents a plausible biological mechanism for representing numbers. In a virtual experiment we train our

neuron model to count the number of instances of digit 1 within a static image of multiple handwritten

digits (LeCun and Cortes, 2010). The synaptic weights are learned from the observations, and thus our

model overcomes the problem of hand tuning a single-purpose neuronal circuit. We then test the model

on the same ‘‘greater than’’ task as in Vasas and Chittka (2019), but we use the model’s ability of precise

counting to derive the concept of ‘‘greater than.’’

Because in the present work we are interested in estimating numerosity, the teaching signal in our model is

a single integer value that is equal to the total number of relevant objects. To achieve successful training we

introduce an improvement to the implementation in Gütig (2016) where the membrane potential was

considered for gradient-based learning to overcome the spiking discontinuity problem. We show that

our improved implementation to this approach allows to train the model with better generalization capa-

bilities and also supports better the reliability of numerosity estimation under inputs with complex distri-

butions, including noise distributions, as naturally present in the brain.

RESULTS

Our objective is the implementation of a spike-based method that can be trained to solve numerical cogni-

tion tasks. We employ the multispike tempotron (MST) (Gütig, 2016), a single leaky integrate-and-fire

neuron model with a gradient-based local learning rule. We suggest a modified update rule of the learning

algorithm that reduces the variance in training and test error. The model is subjected to three different

tasks that progress from a generic spike-pattern detection problem to a biologically inspired dual choice

task that mimics behavioral experiments in honeybees.

Detection of SpatioTemporal Input Spike Patterns

We begin by considering the problem of detecting different events over time. A particular event is repre-

sented by a specific spatiotemporal spike pattern across a population of neurons that are presynaptic to

theMST. These spike patterns are generic representations of events that could, for instance, represent sen-

sory cues in an animal’s environment.

We generated event-specific patterns of fixed duration (1 s) across 500 presynaptic input neurons using a

gamma-type renewal process of fixed intensity (l = 0.89 spikes per second) independently for each neuron

(see Transparent Methods). TheMST was presented with an input consisting of a sequence of different pat-

terns on top of a noisy background that was simulated as independent gamma-type renewal processes of

either constant or time-varying intensity (see Transparent Methods).

A single input trial is shown in Figure 1A. It accounts for the random occurrence of three different event-

specific spatiotemporal spike patterns (in this specific example, each pattern occurring once) as indicated

by different spike color and of distractor patterns occurring twice (black spikes). Gray spikes represent the

background noise. Generally, for each trial of 10 s duration we randomly drew a number of pattern occur-

rences and pattern identities from a total of 9 possible patterns (five target patterns and four distractor

patterns).

2 iScience 23, 100852, February 21, 2020

Mometum

Adaptive Learning

0 1 2 3 4 5 6 7 8 9 10
0

500

sy
na

ps
e

0
1

5

M
S

T
 s

p
ik

e
co

u
n

t

B C D

E F

epoch

er
ro

r

0 10 20
0.2

0.5

1

2

5

0 10 20
epoch

er
ro

r

0.2

0.5

1

2

5

G

0 10 20
epoch

train
validation

time [sec]

Adaptive Learning Adaptive Learning

MometumMometum

A

Figure 1. Comparison of Training Convergence for Momentum and Adaptive Learning under Different

Background Noise Conditions

(A) Sample input sequence: A 10-s-duration spike train input example. The spike train is composed of three patterns, each

with a distinct target (dark green, light green, blue), background activity (gray), and two distracting patterns (black).

Number of MST output spikes superimposed as black step function. The MST is supposed to fire SiR i = 7 spikes over the

whole sequence, R = 0 spikes for distractors, and R = 1; 2 or 4 for the colored dark green, light green, and blue patterns

accordingly. Patterns are simulated with gamma processes of different order (separate datasets): G1 (Poisson), G5, and

G15. Patterns are superimposed onto 10 s inhomogeneous Poisson background activity.

(B–G) Training curves (blue) and validation curves (red) for 10 independent simulations of the (B and E) G1 (Poisson),

(C and F) G5, and (D and G) G15 patterns. (B–D) MST with Momentum-based learning implementation (Gütig, 2016). (E–G)

MST with adaptive learning implementation. Learning (training) convergence shows larger variance when using

Momentum as compared with using adaptive learning. The same is true for the validation (testing) error. This indicates

that adaptive learning is capable of finding better optima compared with Momentum.

iScience 23, 100852, February 21, 2020 3

We first trained the original MST of Gütig (2016) to detect pattern occurrence. To each of the five event-

specific patterns we assigned a specific target number of MST output spikes R (from 1 to 5). We did not

assign a target to any of the distractor patterns (i.e. the MST was expected to produce zero output spikes

in response to a distractor pattern). At the end of each training trial (one sequence of multiple patterns and

distractors) the sum of actual output spikes was evaluated and compared with the desired number of

output spikes determined by the trial-specific random realization of the input pattern sequence. The

absolute difference between the desired and the actual spike count determined the training error in the

range of 0� N ˛N+ . If the actual number of spikes was larger than the sum of the desired target spikes

by someDk, a training step of theMST was performed toward decreasing its output spikes by the difference

Dk. Similarly, if the actual number was smaller than the sum of desired target spikes, a training step was

performed to increase the MST’s number of output spikes by Dk. No training step was performed for

correctly classified samples.

To analyze model performance we computed the training error and validation error for up to 25 training

epochs (see Figures 1B–1D). Each training epoch consisted of a fixed, randomized set of 200 trials,

and the validation set consisted of 50 trials. Both training error (blue) and validation error (red)

dropped sharply with increasing number of training epochs and reached a plateau at about two spikes

after �10 epochs, independent of the type of the gamma-order used for pattern generation (Figures

1B–1D).

Local Synaptic Update Method Improves Performance and Robustness

Training and test errors exhibited a high variance across repeated models (Figures 1B–1D), indicating

limited robustness of model performance. We therefore replaced the Momentum method for gradient

descent implemented in the original work of Gütig (2016) by a synaptic specific adaptive update approach

similar to RMSprop as proposed by Tieleman and Hinton (2012) (see Transparent Methods).

Although speed of convergence is similar when using the adaptive learning method compared with Mo-

mentum, we find that using adaptive learning results in less variant training error (Figures 1E–1G). This

also holds for the variance of the test error on an independent validation set indicating better generaliza-

tion capabilities to previously unseen inputs (Figures 1E–1G, 2A, and 2B). The adaptive, per synapse

learning rate combined with exponential smoothing over past gradients has a regularizing effect and pre-

vents the model from overfitting to the training data. We further conclude that the modified algorithm is

potentially able to find better and wider optima of the error surface as compared with learning with

Momentum. More importantly, this behavior is consistent and independent of the spike-generating pro-

cess and noise level (Figures 2A and 2B).

-0.2

0

0.2
Momentum

va
ria

cn
e

a.
u.

0 100 200 300 400 500
synapse

-0.2

0

0.2

va
ria

cn
e

a.
u.

Adaptive Learning

Adaptive Learning Mometum
0

0.5

1

1.5

2

va
ria

nc
e

Homogenuous BG Noise

1

5

15

Adaptive Learning Mometum

Inhomogenuous BG Noise
CA B

Figure 2. Training Convergence Properties of Momentum and Adaptive Learning

(A and B) Variance of validation error measured at epoch 10 for datasets with homogeneous (A) and inhomogeneous (B)

background noise.

(C) Empirical analysis of the regularizing effect on the error variance. Weight changes Dui over all training steps (and all

epochs) are collected for each synapse ui. PCA is performed to reveal which synapses’ weight changes show the largest

variance over the training process. Large variance in Dui implies strong modification of a synapse. For both Momentum

(top) and adaptive learning (bottom) the first 10 principal components are shown where x axes correspond to the synapses

ui and y axis shows variance in total weight change per synapse ui. The Momentum method tends to tune only a small

subset of the available synapses strongly, whereas the adaptive learning method leads to modifications that are more

uniformly distributed over all synapses and more broadly distributed in magnitude.

4 iScience 23, 100852, February 21, 2020

At this point we cannot provide a theoretically grounded explanation for the regularizing effect we see

when using adaptive learning instead of Momentum. Development of theoretically grounded explanations

of the effects of different gradient-decent optimizers is a very recent and active research field in the Deep

Learning community. To provide insights for the regularizing effect we therefore conducted an empirical

analysis of the weight updates, as shown in Figure 2C. Specifically, we performed PCA on the weight

changes Dui applied to all synapses over all training steps. The intuition here is that large variance in

Dui implies strong modification of a synapse over the training process. Results of our analysis (Figure 2C)

show that for the adaptive learning method the weight changes are more uniformly distributed over all syn-

apses and more broadly distributed in magnitude. In contrast, with the Momentum method only a small

subset of synapses is strongly modified. We conclude that distributing the updates uniformly over all

synapses leads to a more deterministic convergence behavior toward good minima in the error surface,

independently from the initial, random initialization of ui. The results shown are obtained from a specific

choice of meta-parameters (a = g = 0.99, l = 0.01), but we verified that it remains true over a broad range

of possible values and combinations.

Moreover, we find that adaptive learning improves absolute performance converging to a smaller error in-

dependent of the actual gamma process when using the same values for the freemeta-parameters for both

methods. Although choosing different values for the meta-parameters results in different (and in some

cases even lower) train and validation errors, our main result regarding the variance still holds. For subse-

quent tasks we used the MST with adaptive learning.

Counting Handwritten Digits

We apply the MST model to the problem of counting the number of instances of digit 1 within an image

showing several random handwritten MNIST digits (LeCun and Cortes, 2010). The digits are randomly posi-

tioned within a fixed 333 grid (Figure 3A). Each image can contain between zero and six instances of the

digit 1 at one of the nine possible grid locations. To solve this problem with the MST we take the 50x50px

pi
xe

l i
nt

en
si

ty

F
oC

al

sp
ik

e
tr

ai
n

en
co

di
ng

(1
x1

0.
00

0)
0 1sec

output spikes

MST

1 5 10 15 20 25 30 200
epochs

0

20

40

60

80

100

ac
cu

ra
cy

 [%
]

validation

1 5 10 15 20 25 30
epochs

0

20

40

60

80

100

ac
cu

ra
cy

 [%
]

validation
training

0 1 2 3 4 5 6
category / #spikes

0

20

40

60

80

100

ac
cu

ra
cy

 [%
]

chance level
trained
untrained

v(t)=

A

B C DConvNet MST

MST

Figure 3. Counting of Visual Concepts with Spikes

(A) Sketch of counting task. The goal of this task is to count the number of occurrences of digit 1 in an image of random

MNIST digits. Example image (50350 px) with multiple random digits from the countingMNIST dataset positioned within

a 333 grid. The image is encoded into parallel spike trains by applying FoCal encoding, resembling a 4-layer early visual

system with rank-order coding. The multivariate spike train converges onto the MST via 10.000 synapses. The MST is

trained to elicit exactly k output spikes where k is equal to the number of digit 1 occurrences in the original image (here 2).

(B) For reference we trained a ConvNet on the same raw images. Shown is the performance in terms of mean accuracy

(five-fold cross-validation). After 200 training epochs the ConvNet reached ~40% accuracy.

(C) Performance of the MST in terms of mean accuracy (five-fold cross-validation). The MST shows rapid learning reaching

a similar level of accuracy as the ConvNet after 200 training epochs within only two to four training epochs.

(D) Mean accuracy +std for the possible numbers of digit 1 present within a single image (categories). The MST is trained

on samples of categories 0–5 to generate 0–5 output spikes respectively. The MST is then tested on the untrained

category 6 and is able to generalize reasonably while the ConvNet, by design, cannot make predictions for this category.

iScience 23, 100852, February 21, 2020 5

input image and encode the entire image as a parallel spike train. To transform the image into a parallel

spike train that can be fed into the MST model we use filter-overlap correction algorithm (FoCal) of Bhat-

tacharya and Furber (2010). This method is an improved four-layer model of the early visual system using

rank-order coding as originally proposed by Thorpe and Gautrais (1998). We then train the MST model

to count the number of occurrences of digit 1 by generating one output spike for each instance of digit

1 (Figure 3A). We train the MST on targets 0–5 using five-fold cross-validation on 400 sample images.

The learning rate is tuned manually to l = 0.00002, which yields the best performance and training speed.

For reference we compare the performance of the MST with a conventional computer vision model that

uses a convolutional neural network (ConvNet) (Krizhevsky et al., 2012; Seguı́ et al., 2015; Fomoro, 2017;

Kingma and Ba, 2014; Yu and Koltun, 2015). The ConvNet is trained similarly but provided 800 training sam-

ples and a larger learning rate of 0.01 to speed up the training process.

Counting, as a conceptual problem, is similar to a regression problem where we have no a-priori knowl-

edge of the maximum number of desired targets present in an input. It is important to note that the

ConvNet model used for comparison is built using prior knowledge about the distribution of the training

set. The ConvNet is constrained to learn a categorical distribution over [0,5], where 5 is the maximum

possible count of desired digits in the used training set of images. This has two implications. First, the

ConvNet model will be unable to predict images that include more than five targets. However, in general

for regression problems, the prediction targets are usually not bounded. Second, the counting error a

ConvNet can make is constrained by the training bound, i.e. the maximum error is 5. In contrast, the

MSTmodel does not have any need for this prior knowledge or constraints. In principle it is capable of solv-

ing the general, true regression problem and can (after being trained) also make predictions for images

that contain more than five occurrences of digit 1. It thus has to solve a more difficult learning problem.

The maximum prediction error in this case is unbounded rendering the MST more vulnerable to prediction

errors compared with the ConvNet. Figure 3B shows the performance of the ConvNet in terms of mean ac-

curacy of correctly counted images. Despite the large learning rate, accuracy only slowly (but monotoni-

cally) improves over the course of 200 training epochs. In contrast, the performance of theMST in Figure 3C

shows rapid learning, reaching similar mean accuracy as the ConvNet within only �3 training epochs. The

MST reaches a performance above chance level for each of the trained target categories 0–5 (Figure 3D). It

also performs above chance level for images that contain six targets. This indicates that the MST is not only

learning a categorical distribution over 0–5, as is the case for the ConvNet but also generalizes to a larger,

previously unseen number of targets. We want to emphasize that the MST performs better than the

ConvNet despite the advantages given to the latter in the form of a larger number of training samples

and a higher learning rate. The results are further summarized in Table 1.

During our experiments we found that the choice of the spike encoding method has a big impact on the

MST’s performance. It is possible that, by applying better or more efficient encoding algorithms, the per-

formance of the MST model can be further improved.

Insect-Inspired Numerical Cognition During Visual Inspection Flights

We now consider a biologically motivated task following Vasas and Chittka (2019) and the original exper-

iment conducted in honeybees by Howard et al. (2018). The objective in this experiment is to perform a

‘‘greater than’’ dual choice task on two stimulus images that show varying numbers of geometric shapes

Counting MNIST Results: Counting Ones

Model #Parameters RMSE (Mean Gstd) Accuracy (Mean Gstd)

ConvNet (5 epochs) 11,079 1.70 G 0.2083 23.00 G 0.1746

ConvNet (100 epochs) 11,079 1.67 G 0.3130 27.07 G 0.5113

ConvNet (200 epochs) 11,079 1.02 G 0.0768 40.97 G 0.8136

MSTadaptive(~4 epochs) 10,000 1.21 G 0.2067 47.72 G 3.2052

Table 1. Results for MNIST Digit Counting MNIST Task

Weevaluate eachmodel in terms of root-mean-square error (RMSE) of the difference in actual and predicted number of digits

(a lower RMSE indicates a better performance) and accuracy of correct digit count in images. Reported results are mean and

standard deviation over a five-fold cross-validation.

6 iScience 23, 100852, February 21, 2020

(circles, squares, diamonds). The geometric shapes within a stimulus image are consistent, and the possible

number of them range from 1 to 6.

In contrast to our previous task, here a stimulus image is not presented as single static input. Instead the

input is a sequence of smaller images that mimic the 60+ field-of-view (FOV) of honeybees hovering over

the stimulus image at a distance of 2 cm (see Transparent Methods). The available corresponding dataset

that consists of stimulus images and corresponding inspection flight trajectories recorded from behaving

honeybees is highly imbalanced and limited to a total of 97 images. Figure 4A shows an example stimulus

image with six diamond shapes and the inspection trajectory taken by one honeybee. This particular tra-

jectory yields a sequence of �40 FOV images (red dots). Following the same procedure as Vasas and

Chittka (2019), the absolute value of the derivative jSðtÞ � Sðt + 1Þj of two subsequent FOV images

SðtÞ;Sðt + 1Þ is computed as input to the model (see Figure 4B). To reduce computational cost for our

MST model and to unify the varying sequence length across all stimuli, we sub-sample the trajectories

to length 10 (magenta dots). In Vasas and Chittka (2019) a rate-basedmodel was used, and the FOV images

were encoded into a univariate time-series (representing a rate) that is fed into the model as a single

v(t)=

#9 #10#1 #2
FoC

al

FoC
al

. . .
T0 sec

Train Test
0

20

40

60

80

100

ac
cu

ra
cy

 [%
]

"Greater Than" Dual Choice Task
items 1-2
items 1-3
items 1-4

items 1-5
items 1-6
chance level

50

A B

C

D

| S(t) - S(t+1) |

S(t+1)S(t)

. . .

FoC
al

FoC
al

Figure 4. Dual Choice ‘‘Greater than’’ Task Performed on Geometric Shapes Using a Visual Inspection Strategy Observed in Honeybees

(A) Sample stimulus image with six diamond shapes and inspection trajectory (red) of a honeybee. The trajectory is sampled at 40 points [Vasas and Chittka

(2019)] (all dots on the trajectory) and sub-sample at 10 points for the MST (purple and blue dots).

(B) Field of view (FOV) S(t) and S(t+1) of the honeybee during its inspection trajectory (at the blue dot and its subsequent red dot on the trajectory in (A),

accordingly). Following the method of Vasas and Chittka (2019), input to the model is constructed as a derivative of the two subsequent FOV images:

FOVdiff = jSðtÞ � Sðt + 1Þj.
(C) Sequences the FOVdiff are encoded into spatiotemporal spike patterns using rank-order coding (FoCal) and concatenated (without gaps) into the

resulting parallel spike train. The MST is trained to match its number of output spikes to the number of geometric items in the original stimulus image shown

in panel.

(D)Performance in the ‘‘greater than’’ dual choice task. TheMST output (number of spikes), by 1; by 2 in response to two different stimulus images with number of

items y1,y2, accordingly, is used and compared. When ðy1 <y2Þ^ðby 1 <by 2Þ the decision is considered correct (and vice versa for y1>y2, for by 1 = by 2 a random

decision was taken). Bars show mean accuracy � std and grouped by increasing maximum number of items present per image. Our results indicate that the

MST can achieve mean accuracy that is comparable to that of honeybees reported in Howard et al. (2018).

iScience 23, 100852, February 21, 2020 7

presynaptic input. Because our MST is a spiking model we have to encode each FOV image into a spike

train. We apply the same encoding strategy as used before in the counting MNIST task: each FOV image

is encoded as a parallel spike train of 10,000 synapses using FoCal. All encoded FOV images are combined

into a long parallel spike train by concatenation (see Figure 4C).

The task is divided into two steps. The MST counts the number of geometric items present in a stimulus

image. The resulting count numbers are then compared to solve the ‘‘greater than’’ dual choice task.

This differs from the original behavioral task by Howard et al. (2018) in which the honeybees were directly

trained on the ‘‘greater than’’ decision rather than on precise counting.

To this end we trained the MST (using 10-fold cross-validation) to match the number of generated output

spikes to the number of geometric items present. To evaluate the dual choice task we took two random

stimulus images with a different number of items y1,y2 and fed these images as input into the trained

MST. We then compared the true item count with the predicted item count by 1; by 2 of the MST. If

ðy1 <y2Þ^ðby 1 <by 2Þ it was considered a correct decision and vice versa when y1>y2. For undecidable cases

where by 1 = by 2 a random decision was taken. This sampling process of decisions was repeated for 1,000 it-

erations. Our results (Figure 4D) show that the MST model is able to achieve comparable performance to

the average performance of the honeybees (60%–70%) in the original task of Howard et al. (2018) in terms of

mean accuracy of correct decisions. We want to emphasize that the MST performance could be achieved

despite the very small and imbalanced training data. Moreover, the MST is trained on the problem of pre-

cise counting that is harder than the binary decision task. Although we have to acknowledge that the results

show large error bars (due to the very limited training data), we conclude that our results provide a success-

ful proof-of-concept. Using a larger and more balanced training set and better feature encoding would

certainly reduce the variability and further improve the performance.

DISCUSSION

Counting as a Basis for Numerical Cognition

Numerical cognition is a general term that covers several sub-problems, for example numerosity, counting,

relations (greater/smaller than), basic arithmetical operations, and many more. Although each individual

sub-problemmight appear fairly trivial to us as humans, it is yet not clear how this could be realized compu-

tationally on the level of spiking neurons or networks thereof. Despite the simplicity of these sub-problems

they do provide a foundation for more complex concepts that humans make heavy use of and are relevant

for behavioral decision making. For example, if one is able to count entities it might only be a small step

toward combining that information to perform more advanced concepts such as empirical statistics and

estimating (discrete) probabilities. Although the specific symbolic math concepts are unavailable to ani-

mals, they are still able to show basic numerical cognition and evaluate basic probabilities (Howard

et al., 2018, 2019; Avarguès-Weber et al., 2012).

A first objective of the present work was to study whether a single neuron model has the computational

power to support numerical cognition tasks. Specifically, we addressed cue detection and counting by

handling neuronal input such that it generates an output spike count that matches the number of relevant

cues in its input. In order to achieve this computationally, the presynaptic weights of the neuron need to be

tuned. Given the fact that the parameter space is very large and many possible solutions may exist, manu-

ally tuning the parameters is usually not possible. It is therefore desirable to implement a plasticity mech-

anism that allows the neuron to tune its weights by learning from examples.

In this work we have explored the MST developed by Gütig (2016). This spiking neuron model can be

trained by gradient-descent to produce a precise number of output spikes in response to multiple occur-

rences of patterns embedded in the presynaptic input. Different patterns are assigned to different target

numbers of output spikes per pattern occurrence. Gütig (2016) showed that the MST can learn to detect

different spike input patterns. It can further assign the correct number of output spikes matching the tar-

gets of individual patterns. The MST learns this despite the fact that the teaching signal is only provided as

a single scalar value that is equal to the sum over all targets presented sequentially in the input.

Departing from the homogeneous Poisson process studied in Gütig (2016), we confirmed MST perfor-

mance for biologically more realistic (Farkhooi et al., 2011; Mochizuki et al., 2016; Nawrot, 2010) gamma

processes as generators for input patterns on non-homogeneous background.

8 iScience 23, 100852, February 21, 2020

Adaptive Local Learning Rule Benefits Model Robustness

We introduced a modification to the update rule of synaptic weights Dui. The adaptive learning introduces

a dynamic, synapse-specific learning rate whose value at training step t depends on its history of values

from previous training steps. We find that this modification allows the MST to learn a parameter set for

the synaptic weights that shows less variability of the training and validation error as compared with the

original Momentum method used in Gütig (2016). Low variability in validation error is generally a desired

property for any learning algorithm because this commonly implies low variability in prediction or classifi-

cation performance on new, unseen data.

At this point we are unable to provide a theoretically grounded explanation of the regularizing effect shown

by adaptive learning. The deep learning community currently still lacks theoretical understanding of the

effects of different gradient-descent optimizers, which is actively researched (Choromanska et al., 2015;

Jin et al., 2017). We performed an empirical analysis of the weight changes Dui over the course of training.

Specifically, we used PCA to analyze the variance of Dui for each synapse over all training steps. Our anal-

ysis reveals that for the adaptive learning a large number of weights are affected. In contrast, when using

the originally proposed Momentum method, a much smaller subset of synapses show significant weight

changes, and their distribution appears much more heavy-tailed with strong weight changes in few neu-

rons. We conclude that modifying all synapses more uniformly appears to increase the likelihood that

training converges toward good minima, independent from the initial random choice of ui.

Spike-Based Biological Learning versus Rate-Based Machine Learning

A second objective of this work was to explore possible advantages and disadvantages of a spike-based

learning algorithm in comparison to a state-of-the-art deep learning architecture. Biological learning mech-

anisms enable animals to learn rapidly in a complex and dynamic environment. Instances where sensory cues

coincide with reward or punishment during exploration may be sparse, i.e. they have to learn on very small

sample sizes and slow learning could have fatal consequences. Single-trial learning, for instance, seems to

be a fundamental ability found in different animals. Insects, for example, are able to form long-lasting asso-

ciativememories upon a single coincident presentation of a sensory stimulus and a reinforcing stimulus (Pamir

et al., 2014; Scheunemann et al., 2013; Zhao et al., 2019). Increased learning speed generally comes at the cost

of increased generalization error and thus learning speed and high accuracy are in trade off.

We compared the biologically inspired spike-based learning algorithm of the MST with the deep learning

architecture of a convolutional neural network, a standard computer vision model (ConvNet). We found

that the MST is able to rapidly learn this task within �3 training epochs of 320 samples each to achieve a

mean accuracy of �47% of correctly counted digits. Additional training did not improve accuracy.

Conversely, the ConvNet, despite a 10003 larger learning rate and 100%more training samples per epoch,

required >200 training epochs to achieve a similar accuracy. With additional training, the ConvNet

achieved >80% accuracy for >5000 training epochs (not shown). Our results reflect a trade-off between

very fast but less accurate learning with the spike-based MSTmethod versus slow but increasingly accurate

learning with the ConvNet. An additional aspect of biological relevance is the consumption of (computing)

resources that are considerably higher for the ConvNet than for the single neuron MST. It is possible that in

nature processing with spikes is generally more energy efficient, an important constraint in living organisms

(Levy and Baxter, 1996; Niven and Laughlin, 2008; Niven, 2016).

Once trained, the ConvNet is only able to learn a categorical distribution over a fixed set of possible targets

(here 0–5) that needs to be put into the design of the model a-priori. Similarly, previous related work of

gradient-based learning in spiking network models is mostly concerned with solving classical classification

tasks with pre-defined classes (Zenke and Ganguli, 2018; Bohte et al., 2000; Gütig and Sompolinsky, 2006;

Memmesheimer et al., 2014). In this work we applied the single-neuron MST model to solve a regression

problem. We show that the MST model does not have the limitation of the ConvNet. After being trained

on targets 0–5 it was able to generalize to previously unseen images that contained digits 1 at 6 out of the 9

possible positions. This indicates that, in principle, the MST can solve full regression problems.

Differently from all other tasks presented in this work, the difficulty in this task is that each input stimulus is

presented as a whole and not sequentially. This means that spike patterns associated with each occurring

instance of digit 1 are distributed spatially (over different sets of synapses) instead of temporally. Due to the

random positioning within the 333 grid, the patterns to be identified by theMST ‘‘jump’’ over different sets

iScience 23, 100852, February 21, 2020 9

of synapses for different stimulus images that share the same training target make this task particularly hard

to solve.

Relational Operation Based on Counting

In the final task we went one step further and studied (precise) counting, as it allows other basic numerical

cognition tasks to emerge. Assuming that a single neuron can count by relating the sum of its output spikes

to the number of items present in a single stimulus, we show that this allows solving other numerical cogni-

tion tasks.

To this end we use a biologically motivated ‘‘greater than’’ dual choice task, performed by honeybees that

employ a sequential inspection strategy. Honeybees are presented with stimulus images that show 1–6

different geometric shapes. Given two different stimulus images, the bees have to decide which of the two

images containmore geometric items. Due to their limited FOV, the bees cannot perceive the stimulus image

as a whole. Instead they perform a sequential inspection strategy, by hovering over the entire stimulus image.

This results in a time series of FOV images, similar to a moving spot light. Using the MST, we approach this

problem similarly and present a long parallel spike train that contains a sequence of FOV images.

In contrast to the honeybees the MST is trained to perform precise counting of the geometric shapes, simi-

larly to the counting task we presented earlier. To perform the ‘‘greater than’’ dual choice task we present

two different stimulus images and compare the number of output spikes of theMST. We show that theMST

is able to achieve average success rates in terms of correct decisions that are comparable to those achieved

by honeybees in the original experiment. Although our results do showmuch larger error bars than the hon-

eybees, this is due to the following important difference that needs to be considered: the bees are explicitly

trained on the (binary) ‘‘greater than’’ task. To the contrary, the underlying problem that the MST solves

here is precise counting, which is harder to solve in general. Differently from Vasas and Chittka (2019),

where input is provided as a univariate rate signal, our model uses parallel spike trains as input, which

are derived from the FOV images. Although Vasas and Chittka (2019) used handcrafted features based

on the assumption that the number of step-like changes in global image contrast is proportional to the

number of scanned items, the MST has to learn which features are relevant and hence are useful to extract

from the spatiotemporal input spike patterns. The MST has been trained on this task with a small dataset of

�70 samples per trained model. Increasing the training data will very likely result in better and more robust

performance as well as smaller error bars.

Conclusion

Action potentials represent an elemental discrete quantity used for information processing in nervous sys-

tems. We conclude from our study that action potentials produced by a single spiking neuron can support

basic arithmetic operation of counting. The MST is a powerful single-neuron method that can be trained to

solve regression problems on multivariate synaptic input. We successfully applied the MST to perform

basic numerical recognition tasks on complex and noisy input. We suggest that using spikes to represent

numerosity with a single neuron can be a beneficial strategy especially for small-brained organisms, which

economize on their number of neurons.

Limitations of the Study

The MST learning rule used in this work requires differentiation of the membrane potential (see Trans-

parent Methods), which is considered to be biologically implausible. Gütig (2016) suggested an approxi-

mate formulation of the learning rule that uses correlation-based learning of presynaptic spikes and post-

synaptic voltage, which is considered biologically plausible. In order to ensure comparability of our results

with the results in the original work we here used the gradient-based learning rule that was evaluated in

Gütig (2016) for all the experiments presented. Although in this work we specifically focused on the compu-

tational capabilities of the single-neuron model, the same model and learning rule could also be used to

construct more complex and layered networks as shown in Gütig (2016). We leave the study of multiple

interconnected MST neurons for future research.

One weakness of the MST identified in the course of our study is a tendency for overfitting. This can, for

instance, be inferred from the insect-inspired numerical cognition task, where the MST can be trained to

reach >80% in accuracy of precise counting on the training set, but performance on the test set remains

low or even drops below chance level (data not shown). This indicates that the MST tends to learn more

10 iScience 23, 100852, February 21, 2020

about the samples of the training set compared with learning features that would generalize to the test set.

This, to some extent, is also the case for the MNIST task. A potential solution to this problem could be to

introduce explicit regularization terms in the MST learning rule, similar to approaches realized in deep

learning algorithms. During our experiments we further found that the choice of method for the multivar-

iate spike encoding of images has a big impact on learning and prediction performance. The particular en-

codings we have tried (using the same datasets) are encoding the intensity of each pixel independently by a

1-s-long spike train, generated by a renewal process with mean intensity equal to the pixel’s intensity. This

does not produce the ideal robust spike patters that can be learned by the MST. We predict that improved

or more sophisticated spike-encoding methods will boost performances.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

To support further research we make our code and datasets publicly available at Rapp and Stern (2019).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100852.

ACKNOWLEDGMENTS

This work has been sparked during theOIST Computational Neuroscience Course and has been supported

by accommodations and travel grants from the Okinawa Institute of Science and Technology (OIST) to H.R.

and M.S. H.R. is supported by the German Research Foundation (grant no. 403329959 to MN) within the

Research Unit ‘‘Structure, Plasticity and Behavioral Function of the Drosophila mushroom body’’ (DFG-

FOR 2705, www.uni-goettingen.de/en/601524.html).

AUTHOR CONTRIBUTIONS

Conceptualization, H.R., M.P.N., and M.S.; Methodology, H.R. and M.S.; Writing—Original Draft, H.R.;

Writing—Review and Editing, H.R., MP.N., and M.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 23, 2019

Revised: November 24, 2019

Accepted: January 14, 2020

Published: February 21, 2020

REFERENCES
Avarguès-Weber, A., Deisig, N., and Giurfa, M.
(2011). Visual cognition in social insects. Annu.
Rev. Entomol. 56, 423–443.

Avarguès-Weber, A., Dyer, A.G., Combe, M., and
Giurfa, M. (2012). Simultaneous mastering of two
abstract concepts by the miniature brain of bees.
Proc. Natl. Acad. Sci. U S A 109, 7481–7486.

Avarguès-Weber, A., and Giurfa, M. (2013).
Conceptual learning by miniature brains. Proc. R.
Soc. B Biol. Sci. 280, 20131907.

Bengio, Y., Léonard, N., and Courville, A. (2013).
Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv:1308.3432.

Bhattacharya, B.S., and Furber, S.B. (2010).
Biologically inspired means for rank-order

encoding images: a quantitative analysis. IEEE
Trans. Neural Netw. 21, 1087–1099.

Bi, G.q., and ming Poo, M. (2001). Synaptic
modification by correlated activity: Hebb’s
postulate revisited. Annu. Rev. Neurosci. 1,
139–166.

Zhao, B., Sun, J., Zhang, X., Mo, H., Niu, Y., Li, Q.,
Wang, L., and Zhong, Y. (2019). Long-term
memory is formed immediately without the need
for protein synthesis-dependent consolidation in
drosophila. Nat. Commun. 10, 4550.

Bohte, S.M., Kok, J.N., Poutré, H.L..,
2000.Spikeprop: backpropagation for networks
of spiking neurons, in: ESANN.

Caporale, N., and Dan, Y. (2008). Spike timing–
dependent plasticity: a hebbian learning rule.
Annu. Rev. Neurosci. 31, 25–46.

Chittka, L., and Geiger, K. (1995). Can honey bees
count landmarks? Anim. Behav. 49, 159–164.

Chittka, L., and Niven, J. (2009). Are bigger brains
better? Curr. Biol. 19, R995–R1008.

Choromanska, A., LeCun, Y., Arous, G.B.,
2015.Open problem: the landscape of the loss
surfaces ofmultilayer networks, In: Conference on
Learning Theory, pp. 1756–1760.

Dacke, M., and Srinivasan, M.V. (2008). Evidence
for counting in insects. Anim. Cogn. 11, 683–689.

Farkhooi, F., Muller, E., and Nawrot, M.P. (2011).
Adaptation reduces variability of the neuronal
population code. Phys. Rev. E 83, 050905.

Fomoro, (2017). http://github.com/fomorians/
counting-mnist.

iScience 23, 100852, February 21, 2020 11

https://doi.org/10.1016/j.isci.2020.100852
http://www.uni-goettingen.de/en/601524.html
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref1
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref2
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref3
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref3
arxiv:1308.3432
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref5
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref6
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref52
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref8
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref9
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref10
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref12
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref13
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref13
http://github.com/fomorians/counting-mnist
http://github.com/fomorians/counting-mnist

Gütig, R. (2016). Spiking neurons can discover
predictive features by aggregate-label learning.
Science 351, https://doi.org/10.1126/science.
aab4113.

Gütig, R., and Sompolinsky, H. (2006). The
tempotron: a neuron that learns spike timing-
based decisions. Nat. Neurosci. 9, 420–428.

Howard, S., Avarguès-Weber, A., Garcia, J.,
Greentree, A., and Dyer, A. (2018). Numerical
ordering of zero in honey bees. Science 360,
1124–1126.

Howard, S., Avarguès-Weber, A., Garcia, J.,
Greentree, A., and Dyer, A. (2019). Numerical
cognition in honeybees enables addition and
subtraction. Sci. Adv. 5, eaav0961.

Huerta, R., Nowotny, T., Garcı́a-Sanchez, M.,
Abarbanel, H.D.I., and Rabinovich, M.I. (2004).
Learning classification in the olfactory system of
insects. Neural Comput. 16, 1601–1640.

Huh, D., and Sejnowski, T.J. (2017). Gradient
descent for spiking neural networks. https://arxiv.
org/abs/1706.04698.

Jin, C., Ge, R., Netrapalli, P., Kakade, S.M.,
Jordan, M.I., 2017.How to escape saddle points
efficiently, In: Proceedings of the 34th
International Conference on Machine Learning-
Volume 70, JMLR. org. pp. 1724–1732.

Kingma, D.P., and Ba, J. (2014). Adam: a method
for stochastic optimization. https://arxiv.org/abs/
1412.6980.

Krizhevsky, A., Sutskever, I., and Hinton, G.E.
(2012). Imagenet classification with deep
convolutional neural networks. In Advances in
Neural Information Processing Systems 25, F.
Pereira, C.J.C. Burges, L. Bottou, and K.Q.
Weinberger, eds. (Curran Associates, Inc.),
pp. 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

LeCun, Y., and Cortes, C. (2010). MNIST
handwritten digit database. http://yann.lecun.
com/exdb/mnist/.

Lempitsky, V., Zisserman, A., 2010.Learning to
count objects in images, in: Advances in Neural
Information Processing Systems, pp. 1324–1332.

Levy, W.B., and Baxter, R.A. (1996). Energy
efficient neural codes. Neural Comput. 8,
531–543.

Memmesheimer, R.M., Rubin, R., Ölveczky, B.P.,
and Sompolinsky, H. (2014). Learning precisely
timed spikes. Neuron 82, 925–938.

Menzel, R., Fuchs, J., Nadler, L., Weiss, B.,
Kumbischinski, N., Adebiyi, D., Hartfil, S., and
Greggers, U. (2010). Dominance of the odometer
over serial landmark learning in honeybee
navigation. Naturwissenschaften 97, 763–767.

Mochizuki, Y., Onaga, T., Shimazaki, H.,
Shimokawa, T., Tsubo, Y., Kimura, R., Saiki, A.,
Sakai, Y., Isomura, Y., Fujisawa, S., et al. (2016).
Similarity in neuronal firing regimes across
mammalian species. J.Neurosci. 36, 5736–5747.

Nawrot, M.P. (2010). Analysis and interpretation
of interval and count variability in neural spike
trains. In Analysis of Parallel Spike Trains
(Springer), pp. 37–58.

Nicola, W., and Clopath, C. (2017). Supervised
learning in spiking neural networks with force
training. Nat. Commun. 8, 2208.

Niven, J.E. (2016). Neuronal energy consumption:
biophysics, efficiency and evolution. Curr. Opin.
Neurobiol. 41, 129–135.

Niven, J.E., and Laughlin, S.B. (2008). Energy
limitation as a selective pressure on the evolution
of sensory systems. J. Exp. Biol. 211, 1792–1804.

O’Connor, P., Gavves, E., and Welling, M. (2017).
Temporally efficient deep learning with spikes.
https://arxiv.org/abs/1706.04159.

OpenAI, (2018). https://blog.openai.com/ai-and-
compute/.

Pahl, M., Si, A., and Zhang, S. (2013). Numerical
cognition in bees and other insects. Front.
Psychol. 4, 162.

Pamir, E., Szyszka, P., Scheiner, R., and Nawrot,
M.P. (2014). Rapid learning dynamics in individual
honeybees during classical conditioning. Front.
Behav. Neurosci. 8, 313.

Rapp, H., and Stern, M. (2019). Matlab
implementation of multispiketempotron with
adaptive learning. https://doi.org/10.5281/
zenodo.3603129.

Ren, S., He, K., Girshick, R., and Sun, J. (2015).
Faster r-cnn: Towards real-time object detection
with region proposal networks. https://arxiv.org/
pdf/1506.01497.

Rose, G.J. (2018). The numerical abilities of
anurans and their neural correlates: insights from
neuroethological studies of acoustic
communication. Philos. Trans. R. Soc. B Biol. Sci.
373, 20160512.

Scheunemann, L., Skroblin, P., Hundsrucker, C.,
Klussmann, E., Efetova, M., and Schwarzel, M.
(2013). Akaps act in a two-step mechanism of
memory acquisition. J.Neurosci. 33, 17422–
17428.

Schmidhuber, J. (2015). Deep learning in neural
networks: an overview. Neural Netw. 61, 85–117.

Seguı́, S., Pujol, O., and Vitrià, J. (2015). Learning
to count with deep object features. https://arxiv.
org/abs/1505.08082.

Simonyan, K., and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. https://arxiv.org/abs/1409.1556.

Skorupski, P., MaBouDi, H., Galpayage Dona,
H.S., and Chittka, L. (2018). Counting insects.
Philos. Trans. R. Soc. B: Biol. Sci. 373, 20160513.

Song, S.M.K.D., and Abbott, L.F. (2000).
Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nat.
Neurosci. 3, 919.

Thorpe, S., and Gautrais, J. (1998). Rank order
coding. Comput. Neurosci. 1, 113–118.

Tieleman, T., and Hinton, G. (2012). Lecture
6.5-rmsprop: Divide the gradient by arunning
average of its recent magnitude. COURSERA:
Neural networks for machine learning 4, 26–31.

Vasas, V., and Chittka, L. (2019). Insect-inspired
sequential inspection strategy enables an
artificial network of four neurons to estimate
numerosity. iScience 11, 85–92.

Yu, F., and Koltun, V. (2015). Multi-scale context
aggregation by dilated convolutions. https://
arxiv.org/abs/1511.07122.

Zenke, F., and Ganguli, S. (2018). Superspike:
Supervised learning in multilayer spiking neural
networks. Neural Comput. 30, 1514–1541.

12 iScience 23, 100852, February 21, 2020

https://doi.org/10.1126/science.aab4113
https://doi.org/10.1126/science.aab4113
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref16
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref17
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref18
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref19
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref19
https://arxiv.org/abs/1706.04698
https://arxiv.org/abs/1706.04698
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref26
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref27
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref28
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref29
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref30
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref31
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref32
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref33
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref33
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref33
https://arxiv.org/abs/1706.04159
https://blog.openai.com/ai-and-compute/
https://blog.openai.com/ai-and-compute/
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref36
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref37
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref37
https://doi.org/10.5281/zenodo.3603129
https://doi.org/10.5281/zenodo.3603129
https://arxiv.org/pdf/1506.01497
https://arxiv.org/pdf/1506.01497
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref40
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref41
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref42
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref42
https://arxiv.org/abs/1505.08082
https://arxiv.org/abs/1505.08082
https://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref45
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref46
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref47
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref48
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref49
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref49
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref51
http://refhub.elsevier.com/S2589-0042(20)30035-3/sref51

iScience, Volume 23

Supplemental Information

Numerical Cognition Based on Precise Counting with a Single Spiking

Neuron

Hannes Rapp, Martin Paul Nawrot, and Merav Stern

Supplemental Information

Transparent Methods

To support further research we make our code and data-sets publicly available

at Rapp and Stern (2019).

Multispike Tempotron Model

The Multi-Spike Tempotron (MST) is a current-based leaky integrate-and-fire

neuron model (Gütig, 2016). Its membrane potential, V (t), follows the dynamical

equation:

V (t) = Vrest︸ ︷︷ ︸
:=0

+

N∑
i=1

ωi
∑
tji<t

exp. PSP kernel︷ ︸︸ ︷
K(t− tji) −(ϑ︸︷︷︸

:=1

−Vrest)
∑
tjs<t

e−
t−tjs
τm (1)

where tji denotes the time of spike number j from the input source (presynap-

tic) number i, and tjs denotes the time of postsynaptic spike number j of the

Tempotron neuron model. For mathematical convenience the resting potential is

chosen to be Vrest = 0 and the spiking threshold ϑ = 1. Thus equation 1 can be

simplified to:

V (t) =

unreset sub-threshold potential V0︷ ︸︸ ︷
N∑
i=1

ωi
∑
tji<t

K(t− tji) −ϑ
∑
tjs<t

e−
t−tjs
τm (2)

Every input spike at tji contributes to the postsynaptic potential (PSP) by the

following causal kernel:

K(t− tji) =

Vnorm(e−
t−tj

i
τm − e−

t−tj
i

τs) if t ≥ tji

0 if t < tji

(3)

multiplied with the synaptic weight ωi of input synapse i. These synaptic input

weights are learned via the gradient decent algorithm. The kernel is normalized

to have its peak value at 1 with Vnorm = η
η

(η−1)

(η−1) and η = τm
τs

where τm and τs

are the membrane time constant and the synaptic decay time constant. The

kernel is made causal by setting it to 0 for t < tji . When V (t) crosses the spiking

1

threshold ϑ the neuron emits a spike and is reset to Vrest = 0 by the last term

in equation 2.

In order to have the neuron emit the required number of k postsynaptic

spikes in response to some presynaptic spike pattern the weights ωi are modified.

Since the required number of postsynaptic spikes are non-differentiable discrete

numbers the gradient for adjusting the weights is derived from the spiking

threshold using an auxiliary objective function, the spike-threshold surface

(STS). The STS is a step function R+ 7→ N0, which maps each threshold value

ϑ to the number of output spikes (ϑ 7→ STS(ϑ)) that will be generated by

the neuron with this threshold value. The STS for a presynaptic input can be

described by the decreasing sequence of critical thresholds values ϑ∗k:

ϑ∗k = sup{ϑ ∈ R+STS(ϑ) = k}, k ∈ N (4)

The critical threshold ϑ∗k denotes the threshold value at which the neuron’s

number of generated output spikes jumps from k − 1 to k. The number of

generated output spikes remains constant when ϑ is between two critical threshold

values: STS(ϑ∗k+1 < ϑ < ϑ∗k) = k. Additionally, a neuron does not fire any

output spike if its threshold is larger than the maximum postsynaptic voltage

(Vmax). In this case the STS is zero: STS(ϑ > Vmax) = 0. The first output

spike is generated when ϑ = Vmax, thus the critical threshold for k = 1 spike

is ϑ∗1 = Vmax. Generally, all ϑ∗k are voltage values and can be described by the

neuron’s membrane equation 2 which is a function of the synaptic weights ωi

of the neuron. Hence, all critical thresholds are also a function of ωi and thus

differentiable with respect to them. The goal is to adjust ϑ∗k (by modifying

the synaptic weights ωi) whenever the number of generated spikes does not

match the desired training target. In our case, the specific k of desired output

spikes is provided as supervised teaching signal. For each presynaptic input

where the number of output spikes did not match the desired training target

a training step is performed to adjust the number of output spikes towards k:

∆k = |kgenerated − ktarget| and η = sign(kgenerated − ktarget) indicates whether

the neuron should increase or decrease its number of output spikes by ∆k.

2

To simplify notation, from now on we denote ϑ∗ as the desired critical

threshold, e.g. ϑ∗ = ϑ∗k for the desired k of a specific presynaptic input.

The gradient of the critical threshold can be found by:

∆ω = ηλ~∇~ωϑ∗ (5)

Where η ∈ {−1, 1} controls whether to increase or decrease the number of

output spikes towards the k required spikes, λ is the learning rate parameter that

controls the size of the gradient step to take in each training step and ~∇~ωϑ∗ is

the gradient of the critical spiking threshold with respect to the synaptic weights.

To evaluate the expression in eq. 5 the properties of the critical spike time t∗ is

used where by definition of the neuron equation 2 and ϑ∗ the following identity

is satisfied:

ϑ∗ = V (t∗) = V (tjs) where tjs are all spike times before t∗ (6)

In what follows a recursive expression is derived for the gradient in equation

5 using equations 2 and 3. For notional clarity the recursive expression for the

gradient is derived for a single component ωi of the vector ~ω. The generalization

to ~ω is immediate.

Let m denote the the number of output spikes the neuron fires before t∗:

tjs < t∗ for j ∈ {1, ...,m}. Using the identities in 6, for each synapse i the

derivative of ϑ∗ has the following properties:

ϑ∗′i ≡
d

dωi
ϑ∗ =

d

dωi
V (t∗) =

d

dωi
V (tjs) (7)

And the derivative of ϑ∗ follows the equation:

ϑ∗′i =
∂

∂ωi
V (t∗) +

m∑
j=1

∂

∂tjs
V (t∗)

d

dωi
tjs (8)

In the last equation the vanishing term ∂
∂t∗V (t∗) d

dωi
t∗ = 0 has been dropped.

This relationship is true because V (t∗) is either a local maximum with ∂
∂t∗V (t∗) =

0 or t∗ is the arrival time of an inhibitory input spike that does not depend on

ωi.

3

Similarly for each k ∈ {1, ..,m} the following relationship holds:

d

dωi
V (tks) =

∂

∂ωi
V (tks) +

k∑
j=1

∂

∂tjs
V (tks)

d

dωi
tjs (9)

from which the following equations are obtained:

d

dωi
tks =

1

V̇ (tks)

[
ϑ∗′i −

∂

∂ωi
V (tks)−

k−1∑
j=1

∂

∂tjs
V (tks)

d

dωi
tjs

]
(10)

V̇ (tks) =
∂

∂t
V (t)

∣∣∣∣
t=tk−s

evaluated from the left before spike reset (11)

To solve equation 8 for ϑ∗′i , the right hand side of eq 10 is refactored to:

d

dωi
tks =

1

V̇ (tks)

[
ϑ∗′i Ak +Bk

]
(12)

The coefficients Ak, Bk are given by the following recursive equations:

Ak = 1−
k−1∑
j=1

Aj

V̇ (tjs)

∂

∂tjs
V (tks) (13)

Bk = − ∂

∂ωi
V (tks)−

k−1∑
j=1

Bj

V̇ (tjs)

∂

∂tjs
V (tks) (14)

Similarly for t∗ the analogous recursion formula is defined:

A∗ = 1−
m∑
j=1

Aj

V̇ (tjs)

∂

∂tjs
V (t∗) (15)

B∗ = − ∂

∂ωi
V (t∗)−

m∑
j=1

Bj

V̇ (tjs)

∂

∂tjs
V (t∗) (16)

Inserting equation 12 into 8 the derivative of ϑ∗′i for each vector component i

of ω can be expressed as:

ϑ∗′i = −B∗
A∗

(17)

To calculate A∗ and B∗ all times tx ∈ {t1s, t2s...tms , t∗} are considered at which

the voltage reaches the spiking threshold ϑ. At these time points, due to the

spiking and reset, the membrane potential equation 2 reduces to the form:

V (tx) =
V0(tx)

Ctx
(18)

4

with

V0(t) =

N∑
i=1

ωi
∑
tji<t

K(t− tji) unreset sub-threshold potential (19)

Ctx = 1 +
∑
tjs<tx

e−
tx−tjs
τm (20)

and gives the following derivatives:

∂

∂ωi
V (tx) =

1

Ctx

∂

∂ωi
V0(tx) (21)

=
1

Ctx

∑
tji<tx

K(tx − tji) (22)

∂

∂tks
V (tx) =

−V0(tx)

C2
tx

e−
tx−tks
τm

τm
for tks < tx (23)

V̇ (tx) =
1

C2
tx

[
Ctx

∂

∂tx
V0(tx) +

V0(tx)

τm

∑
tjs<tx

e−
tx−tjs
τm

]
(24)

Where in our implementation the temporal derivative V̇ (tx) is estimated

numerically instead of using its analytical expression.

Momentum and Adaptive learning

The learning rate λ is global for all synaptic weights. Hence, the gradient

descent takes an equal size step along all directions. If this parameter is too small

the training process will take very long, but if it’s too big the algorithm might

miss an optimum within the error surface and never converge to a good solution.

Hence, tuning this learning rate is important to achieve decent training speed. A

possible approach (Gütig, 2016) to avoid these problems is to update the weights

according to exponential moving average of current and past gradients (up to

training step t), using the Momentum heuristic:

∆ωMomentum = α∆ω(t− 1) + ∆ω(t)

= α∆ω(t− 1) + ηλ~∇~ωϑ∗, (25)

where α is the Momentum meta-parameter to control the exponential smoothing

effect. In practice, a common heuristic in the machine learning community is to

choose α’s value as 0.999 while tuning the global learning rate λ.

5

Adaptive input weight learning and gradient smoothing

We propose here to use an adaptive learning approach for the weight up-

dates instead of the Momentum heuristic. The proposed algorithm fits each

input synapse with its own update rate and by doing so it takes into account

that each synapse contributes to the overall update with a different level of

importance. For example, updates should be larger for directions that provide

more consistent information across examples. The RMSprop (Root Mean Square

(back-)propagation) (Tieleman and Hinton, 2012) is a possible approach to

achieve this. It was successfully used in deep learning for training mini-batches.

It computes an adaptive learning rate per synapse weight ωi as a function of its

previous gradient steps :

vi(t) = γvi(t− 1) + (1− γ)(∆ωi(t))
2

∆ωAdaptivei (t) =
ηλ√
vi(t)

~∇ωiϑ∗ (26)

The dynamical variable vi(t) gives the synapse specific (e.g. local) learning

rate for the current training step t. The value of this variable depends on the

exponential moving average of current and past squared gradients (up to training

step t). The meta-parameter γ controls the degree of exponential smoothing

similarly to α of the Momentum method above. Setting γ = 1 would be similar

to vanilla gradient descent where only the gradient of current training step t is

used to update. In practice a common heuristic for the choice of γ in the deep

learning community (also suggested by Tieleman and Hinton (2012)) is 0.999

and instead only tuning the global learning rate λ.

At this point we cannot provide a theoretically grounded explanation for the

regularizing effect we see and report in the results section when using adaptive

learning instead of Momentum. Theoretically grounded explanations of the effects

of different gradient-decent optimizers are a very recent and ongoing research field

in the machine learning community. We thus conducted an empirical analysis of

the weight updates and report our findings in Figure 2C and conclusions in the

discussion.

6

Detection of spatio-temporal input spike patterns.

In this task we study the general case of counting arbitrary, task dependent

patterns. To this end we use 1sec long spike trains generated from point processes

as a model of complex spatio-temporal patterns that represent features of task

dependent activity. An input to the MST model consists of a sequence of such

patterns, each of which assigned with a specific target Ri. The patterns are

superimposed onto a 10sec long spike train of background activity. Similar to

the task in (Gütig, 2016) the MST model is trained to respond with spikes for

each pattern occurrence where the number of spikes per pattern depends on

its assigned target Ri. For each data-set a training set of 200 samples and a

separate validation set of 50 samples is generated. Each pattern is associated

with a fixed, positive integer target Ri ∈ [0, 9]. For each data-set the patterns

are generated from a different renewal process. Out of the 9 patterns, 5 patterns

are considered to be task-related and are associated with some positive target Ri.

The remaining 4 patterns are considered to be distractor patterns with target 0.

The training target for each of such input spike train is determined as the sum

over all individual targets ΣiRi of each occurring pattern.

For each data-set, at the end of each training epoch, the error in the MST

performance is calculated as the mean absolute difference between the target

input spike count and the actual MST response across all training trails (training

error) or testing trials (validation error),

It has been shown that in-vivo cortical spiking activity is typically more

regular than Poisson (Mochizuki et al., 2016; Nawrot, 2010). In general any

correlated stimuli input is expected to deviate from Poisson (Farkhooi et al.,

2011). Moreover, input is generally non-homogenous, i.e. time-varying. However

in (Gütig, 2016) only homogeneous Poisson statistic of input patterns and

background were considered.

All patterns are generated as 1sec long spike trains by drawing instantaneous

firing rates from three different point processes (renewal processes): Γ1 represent-

ing the homogeneous Poisson process, Γ5, and Γ15 represent Gamma-Processes

with a fixed intensity (or rate) of λ = 0.89 spike events per second.

7

Input spike trains of 10 sec duration and 500 presynaptic inputs are generated

by simulating a 10 sec long spike train of background activity using renewal

processes and patterns are superimposed onto this background activity. The

number of patterns to appear within a sequence is drawn from a Poisson distribu-

tion of mean 5 patterns. These patterns are randomly positioned in time within

those 10 sec but are not allowed to overlap (an example of an input spike-train

is shown in fig. 1A).

We evaluate learning under different noise conditions, where one condition

uses homogenous Poisson background activity and the other condition uses

inhomogenous Poisson background activity. The homogenous background activity

is drawn from a stationary Poisson process (λ = 0.3 spikes/sec) while for

the inhomogenous case the instantaneous firing rates are slowly modulated by

λ(t) = sin(10π
10000 t) + (4π10 ξ(t)) where ξ(t) is noise drawn from a standard normal

distribution.

The free meta-parameters for Momentum and adaptive learning are set to

be α = 0.999 and γ = 0.999 respectively. These are heuristic values taken

from current deep learning frameworks and in practice are treated as constant

parameters. Thus, the only real free parameter is the global learning rate λ.

Since the objective of this task is to study the effect of the two different update

methods, we are not concerned to determine the optimal learning rate that

would give the best possible, absolute numbers in terms of training error. The

described effect in the results section is independent of the specific choice we

made λ = 0.001, although the absolute numbers vary.

Counting handwritten digits

This task considers the problem of estimating numerosity. Specifically the

problem of counting the occurrences of digit 1 within an image showing 9 random

MNIST (LeCun and Cortes, 2010) digits positioned within a 3x3 grid. Following

Segúı et al. (2015) we generated new images of size 50x50 pixels. Each image

is subdivided into a 3x3 grid where each grid cell shows a randomly chosen

(with replacement), single MNIST digit. Out of the 9 possible cells, up to 6

8

cells can be occupied by digit 1. This yields samples with possible targets

from 0− 6. The generated data set is only roughly balanced, containing ∼ 200

samples for each target 0 − 6. The model is supposed to learn to count the

number of occurrences of the digit 1 by generating one output spike per each

occurrence. The training target is provided by a single scalar label of the number

of digits 1 in the image. All models are trained using 5-fold cross-validation.

While the training set for the MST model comprises 400 samples, the ConvNet

is provided with 800 samples. Additionally, the ConvNet is provided with a

much larger learning rate of λ = 0.01 to accelerate training, while the MST is

manually tuned to use learning rate of λ = 0.00002. To train the ConvNet we

use the ADAM (Kingma and Ba, 2014) optimizer which has been found to be

an effective optimizer for training ConvNets. For the MST model we use our

adaptive learning rate method where the meta-parameter is set to γ = 0.999.

The MST model is trained for max. 30 epochs as it does not improve further

after this. The ConvNet is trained for max. 200 epochs. For all models, the

training is considered to be converged at that epoch before the validation error

diverges for the first time. While the ConvNet shows monotonic decrease of

validation error, the MST fluctuates.

For the Multi-Spike Tempotron the images have to be encoded as spike

trains. This is done by using Filter-Overlap Correction Algorithm (FoCal)

(Bhattacharya and Furber, 2010), a 4-layer model of the early visual system

that uses an improved rank-order coding originally proposed by Thorpe and

Gautrais (1998). Encoding a single 50x50px image thus yields a spike train

with 4 × 502 = 10000 synapses. The encoding algorithm makes use of spatial

correlations in order to reduce the amount of redundant information. This is

similar to the convolutional filters embedded in current deep neural networks

(Simonyan and Zisserman, 2014; Krizhevsky et al., 2012). For reference, we

train a conventional ConvNet architecture that has been shown to successfully

accomplish this task when trained on 100000 samples. The architecture uses

several layers (conv1 - MaxPool - conv2 - conv3 - conv4 - fc - softmax) and

includes recently discovered advances like strided and dilated convolutions (Yu

9

and Koltun, 2015).

The free meta-parameters for the MST model, Adaptive learning parameter

γ and global learning rate λ, are set to be γ = 0.999 and λ = 0.0001. This

learning rate has been determined manually, by step-wise decreasing from 0.1

by factor of 10 until reaching the best trade-off between learning speed and

convergence of validation error. For the choice of γ we refer to the explanation

given in the method section above.

Insect-inspired numerical cognition during visual inspection flights

Following Vasas and Chittka (2019); Howard et al. (2018) we consider estima-

tion of numerosity of geometric shapes during a sequential inspection strategy

employed by insects. We use 97 sample trajectories from sequential inspection

flights from real honeybees, taken from supplements of Vasas and Chittka (2019).

The available trajectories cover samples from 0 to 6 items (we removed 0 since it

only had a single trajectory). Following Vasas and Chittka (2019) the trajectories

have been used to extract a sequence of single images with a field of view (FOV)

of 60◦ and 2cm distance to the inspected image. Thus each time point of a

scanning trajectory yields a 183x183 pixel image. Particularly, the absolute

difference of each image S between two successive time points t and t+ 1 (1st

derivative) of the trajectory is used: FOVdiff = |S(t) − S(t + 1)|. While the

proper way would be to use |S(t− 1)− S(t)| we decided to exactly follow the

method used in Vasas and Chittka (2019). Differently from Vasas and Chittka

(2019) the sequence of derivative images is down sampled to obtain sequences of

equal length of 10 derivative images. This is done to reduce the computational

cost as well as removing some redundant information from overlapping field

of views between two successive time steps (a very coarse approximation of a

working memory). All images are further down-scaled by factor 0.25 to 46x46

pixels. This additional preprocessing is done to further reduce computational

cost and to reduce the number of free parameters (synapses) in the MST model.

To obtain spike trains from the image sequences, each FOVdiff image is encoded

as a short parallel spike train using Filter-overlap Correction (FoCal) algorithm

10

(Bhattacharya and Furber, 2010). FoCal resembles a 4-layer early visual system

and is an improved rank-order coding scheme of images originally proposed by

Thorpe and Gautrais (1998). The resulting parallel spike trains per FOVdiff im-

age are finally concatenated (without gaps) into a single long parallel spike train.

Using this encoding results in parallel spike trains with 8468 input synapses to

the MST. The MST model is trained (supervised) to fit its numbers of output

spikes to the precise item count of geometric shapes. We used the adaptive

learning method described above with γ = 0.999 (see explanation in methods

section above), λ = 0.00002 (manually tuned) and performed a 10-fold, stratified

cross-validation and trained for max. 25 epochs. We consider a model’s training

to be converged at that epoch before the validation error diverges for the first

time. This generally was the case after 4-7 epochs. We assess the performance

on a ’greater than’ dual choice task following the original experiments of Howard

et al. (2018). To this end, we randomly choose two independent samples of

numerosity (y1, y2) and feed the corresponding images into a randomly chosen,

trained instance of the MST (10-fold cross-validation yields 10 independent

models in total). A prediction by the MST ŷ1, ŷ2 is considered to be correct if

(y1 > y2) ∧ (ŷ1 > ŷ2) (and vice versa). In undecidable cases where ŷ1 = ŷ2 a

random decision is made (coin-flip). This sampling process is repeated for 1000

random pairs, independently and separately for the training and testing data

sets.

11

	ISCI100852_proof_v23i2.pdf
	Numerical Cognition Based on Precise Counting with a Single Spiking Neuron
	Introduction
	Results
	Detection of SpatioTemporal Input Spike Patterns
	Local Synaptic Update Method Improves Performance and Robustness
	Counting Handwritten Digits
	Insect-Inspired Numerical Cognition During Visual Inspection Flights

	Discussion
	Counting as a Basis for Numerical Cognition
	Adaptive Local Learning Rule Benefits Model Robustness
	Spike-Based Biological Learning versus Rate-Based Machine Learning
	Relational Operation Based on Counting
	Conclusion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

