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Abstract. Huntington's disease (HD) is an inherited, progres-
sive neurodegenerative disease caused by a CAG expansion in 
the huntingtin (HTT) gene; various dysfunctions of biological 
processes in HD have been proposed. However, at present the 
exact pathogenesis of HD is not fully understood. The present 
study aimed to explore the pathogenesis of HD using a compu-
tational bioinformatics analysis of gene expression. GSE11358 
was downloaded from the Gene Expression Omnibus andthe 
differentially expressed genes (DEGs) in the mutant HTT 
knock‑in cell model STHdhQ111/Q111 were predicted. 
DEGs between the HD and control samples were screened 
using the limma package in R. Functional and pathway 
enrichment analyses were conducted using the database for 
annotation, visualization and integrated discovery software. A 
protein‑protein interaction (PPI) network was established by 
the search tool for the retrieval of interacting genes and visual-
ized by Cytoscape. Module analysis of the PPI network was 
performed utilizing MCODE. A total of 471 DEGs were iden-
tified, including ribonuclease A family member 4 (RNASE4). 
In addition, 41 significantly enriched Kyoto Encyclopedia of 
Genes and Genomes pathways, as well as several significant 
Gene Ontology terms (including cytokine‑cytokine receptor 
interaction and cytosolic DNA‑sensing) were identified. A 
total of 18 significant modules were identified from the PPI 
network. Furthermore, a novel transcriptional regulatory rela-
tionship was identified, namely signal transducer and activator 
of transcription 3 (STAT3), which is regulated by miRNA‑124 
in HD. In conclusion, deregulation of 18 critical genes may 
contribute to the occurrence of HD. RNASE4, STAT3, and 
miRNA‑124 may have a regulatory association with the patho-
logical mechanisms in HD.

Introduction

Huntington's disease (HD) is a fatal neurodegenerative disease 
characterized by choreiform movements, personality changes, 
and dementia. HD is caused by a CAG trinucleotide expan-
sion in exon 1 of the huntingtin gene (HTT) (1). Degenerative 
changes and cell death occur in extensive brain regions 
and outside the central nervous system (CNS), particularly 
involving the striatum; HD currently lacks effective treat-
ment (2). As a consequence, HD results in cognitive and motor 
dysfunctions, involving speech, thought, psychiatric problems 
and involuntary muscle movements (3). 

Over the years, studies on various pathological mecha-
nisms including endoplasmic reticulum stress, oxidative 
stress, axonal transport, autophagy, excitotoxicity, mito-
chondrial function, the ubiquitin proteasome system  (4), 
transcriptional deregulation and apoptosis have been 
implicated in HD (5). Among these, various molecular and 
cellular dysfunctions were shown to originate from mutant 
HTT (mHTT); transcriptional dysregulation is considered to 
be one of the most important events (6). Transcription factors 
(TFs) including CBP (7), p53 (8), Sp1 (9), NFkB, and TBP are 
recruited to aggregates formed by mHTT (10). Furthermore, 
HTT and mHTT are expressed in multiple tissues and can 
alter the transcription of miRNAs, such as miRNA‑214, ‑150, 
‑146a, and ‑137, which have been shown to target the HTT 
gene (11).

Gene expression profile analysis is a fast, high‑throughput 
method for detecting mRNA expression in tissues or cells. 
By comparing the different gene expression between HD 
models and healthy controls, a better understanding of the 
pathogenesis of HD can be acquired, facilitating the identifica-
tion of potential target genes for therapy. Recent studies have 
suggested that bioinformatics mining and network analysis 
play an important role in studying and predicting the etiology 
in various neurodegenerative diseases, including HD (12‑14). 

The present study used the data from Sadri-Vakili et al (15) 
and the DEGs between STHdh111/111 and STHdh7/7 were 
identified. Possible functions were predicted using enrich-
ment analysis; protein‑protein interaction (PPI) networks were 
visualized and module analysis was conducted to screen for 
key genes in STHdh111/111. In addition, we predicted a new 
regulatory pathway involving miRNAs, TFs, and their target 
genes. We aimed to explore the pathogenesis of HD using a 
computational bioinformatics analysis of gene expression.

Identification of differentially expressed genes and regulatory 
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Materials and methods 

Affymetrix microarray data. Derivation of genetic data gene 
expression profile (GSE11358) was downloaded from a national 
center for biotechnology information GEO (http://www.ncbi.
nlm.nih.gov/geo/) database. Experiments were designed to 
compare the changes of mRNA expression between wild and 
mutant HD mouse models by histone acetyltransferase inhib-
itor intervention. Four STHdh cell lines were used, expressing 
full‑length versions of mutant 111 glutamines (STHdh111/111), 
along with four wild‑type cell lines containing seven gluta-
mines (STHdh7/7). The base data was built on the platform of 
GPL1261 and analyzed based on the affymetrix mouse genome 
430 2.0 array. In this study, GSE11358 was downloaded from 
a public database; therefore, patient consent ethics committee 
approval was not required. 

Data pre‑processing and analysis of DEGs. Original data 
was first converted into identifiable expression forms; the 
limma package (linear models for microarray data) in R 
language was used to identify DEGs between STHdh111/111 
and STHdh7/7 (16). P‑values of the DEGs were calculated 
separately and adjusted using the t‑test method, and testing 
correction was performed using a Benjamini‑Hochberg false 
discovery rate (HB FDR) (17), DEGs with FDR<0.05 and |log 
fold change (FC)|>2 were used as thresholds. 

Functional and pathway enrichment analysis. DAVID (data-
base for annotation visualization and integrated discovery) 
online analysis tools constitute a comprehensive biological 
information database. The system can mine biological func-
tions of a large number of genes and protein ID, and play 
a key role in further gene biological information extrac-
tion. Its website is http://david.abcc.ncifcrf.gov  (18). Gene 
ontology database (GO; www.geneontology.org) depicts basic 
characteristics of genes and gene products (19). The Kyoto 
encyclopedia of genes and genomes (KEGG; www.genome.
jp/kegg/) (20) pathway enrichment analysis was performed for 
identified DEGs using DAVID. Enriched terms with more than 
two genes and P values <0.01 were considered to be statisti-
cally significant. 

Construction of a PPI network and analysis. The search tool 
for the retrieval of interacting genes (STRING http:/string. 
embl.de/) is an online database that has been designed as a 
comprehensive perspective to evaluate interaction informa-
tion of proteins  (21). In the present study, STRING was 
used to obtain a protein‑protein interaction (PPI) network of 
DEGs, and subsequently visualized using Cytoscape (22). A 
confidence score of 0.4 was selected as the cut‑off criterion. 
Molecular complex detection (MCODE) was then performed 
to screen modules of the PPI network with a degree cut‑off=2, 
node score cut‑off=0.2, k‑core=2, and max, depth=100 (23). 
The functional enrichment analysis of genes was performed 
by DAVID in each module.

MicroRNAs prediction and transcription factor analysis. 
Biological targets of miRNAs were predicted by using 
TargetScan, which is one of the most commonly used bioin-
formatics target prediction tools (24). In the present study, 

we chose the threshold of a region of 8mer seeds, which were 
completely matched for miRNA prediction. The TRANSFAC 
database is one of the most commonly used platform for 
the description and analysis of gene regulatory events and 
networks. It provides information about eukaryotic TFs, 
DNA‑binding sites and DNA‑binding profiles (25). In this 
study, we selected the TRANSFAC database for the descrip-
tion and prediction of TFs.

Results 

Identification of DEGs. A total of 471 DEGs including 319 
upregulated and 152 downregulated DEGs were selected. 
This set of DEGs was used for hierarchical clustering 
analysis (Fig. 1). 

Functional and pathway enrichment analysis. Upregulated 
genes in the STHdh111/111 cells were significantly enriched 
in 208 GO terms and 25 KEGG pathways. The top ten func-
tions enriched for upregulated genes are presented in Table I, 
including extracellular region (P=1.49x10‑28) and immune 
system process (P=2.53x10‑19). Downregulated genes in the 
STHdh111/111 cells were significantly enriched in 159 GO 
terms and 16 KEGG pathways. The top ten functions enriched 
for downregulated genes are presented in Table II, including 
cell adhesion (P=5.06x10‑7), protein binding (P=3.08x10‑7), 
and cytoplasm (P=3.28x10‑6).

Pathways enriched for upregulated genes included 
cytokine‑cytokine receptor interaction (P=9.18x10‑8), the cyto-
solic DNA‑sensing pathway (P=3.39x10‑7) and the Jak‑STAT 
signaling pathway (P=5.15x10‑5), presented in Table III. In 

Figure 1. A cluster heat map of differentially expressed genes (DEGs). Red 
stands for high expression value, and black stands for low expression value. 
Changes of color from black to red represent the changes in expression value 
from low to high.
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Table I. Top 10 functions enriched for the upregulated genes in the STHdh111/111 cells.

			   Total no.
ID	 Description	 P‑value	 of genes	 Genes

GO:0005576	 Extracellular region	 1.49x10‑28	 93	� ASPN, AEBP1, FGF7, FAM3C, ARSJ, POSTN, 
LRRC17, MMP3, CXCL10, LOC100861978, NOV, 
OGN, C1RA, WISP2, C1RB, TNFRSF11B, CASP4, 
ISG15, SERPINE2, APOD, APOF, TGFBI, SEMA3E, 
RSPO2, CFH, BC028528, ANGPT1, SEMA3B, ITIH2, 
SEPP1, LBP, LOX, COL10A1, C4A, SPARCL1, 
ANG3, LIFR, MGP, NDNF, VEGFC, SERPINA3N, 
BGN, C4BP, SERPINA3M, ADM, EREG, COL1A2, 
ADAMTS1, ADAMTS5, HSD17B11, CXCL1, RBP4, 
IL1R1, WNT16, C3, ENPP2, LUM, CPQ, CLU, 
CXCL9, IL33, DCN, GBP2B, CCL5, ISLR, SMOC2, 
LGALS3BP, GLIPR1, FBN2, PTX3, COL8A2, 
THBS2, SVEP1, RNASE4, EFEMP1, IL1RN, IGF2, 
CLEC11A, LGALS9, GAS6, THSD7A, TSLP, OMD, 
LAMA4, SNED1, PENK, CLEC3B, CXCL15, 
TGFBR3, APOL9A, C1S1, IGFBP4, IGFBP5

GO:0009615	 Response to virus	 7.68x10‑23	 24	� IFIH1, BST2, CLU, OAS3, RSAD2, OAS2, CCL5, 
CXCL10, ISG20, DDX58, IFIT3, IFIT2, IFIT1, 
OASL2, DDX60, IFI27L2A, TGTP2, OAS1A, 
EIF2AK2, MX1, MX2, DHX58, DCLK1, ADAR

GO:0051607	 Defense response	 2.82x10‑21	 29	� IFIH1, SLFN9, CXCL9, OAS3, SLFN8, RSAD2,
	 to virus			�   OAS2, IL33, GBP2B, CXCL10, ISG20, ISG15, 

OASL2, DDX60, MX1, MX2, DHX58, ZBP1, BST2, 
TRIM25, STAT2, H2xQ9, IFIT3, DDX58, IFIT2, 
IFIT1, OAS1A, EIF2AK2, ADAR

GO:0002376	 Immune system	 2.53x10‑19	 38	� IFIH1, C3, OAS3, H2xD1, RSAD2, OAS2, GBP2B, 
	 process 			�   ISG20, C1RA, C1RB, CASP4, OASL2, TAP1, CFH, 

IIGP1, LBP, MX1, MX2, DHX58, ZBP1, H2xK1, 
IRGM1, H2xL, BST2, HERC6, TRIM25, PSMB8, 
LGALS9, PSMB9, IFIT3, DDX58, IFIT2, IFIT1, 
C4BP, IRF7, C1S1, EIF2AK2, ADAR

GO:0035458	 Cellular response to	 4.27x10‑19	 17	� GBP6, IRGM1, IRGM2, LOC100044068, IFI47, 
	 interferonxbeta 			�   STAT1, GBP2B, IFIT3, IFI202B, IFIT1, IGTP, IIGP1, 

TGTP2, GBP3, GM4951, GBP2, IFI204
GO:0045087	 Innate immune	 5.67x10‑17	 36	� IFIH1, C3, TRIM14, OAS3, RSAD2, OAS2, ISG20, 
	 response 			�   C1RA, C1RB, CASP4, OASL2, CFH, IIGP1, VNN1, 

LBP, PTX3, MX1, MX2, DHX58, ZBP1, IRGM1, 
LOC100044068, BST2, HERC6, TRIM25, IFI202B, 
DDX58, IFIT3, IFIT2, IFIT1, C4BP, IRF7, OAS1A, 
C1S1, EIF2AK2, ADAR

GO:0005615	 Extracellular space	 1.01x10‑16	 68	� AEBP1, FGF7, POSTN, LRRC17, DLK1, 
CXCL11, MMP3, CXCL10, LOC100861978, OGN, 
TNFRSF11B, WISP2, SERPINE2, APOD, SEMA3E, 
TGFBI, CFH, VNN1, ANGPT1, SEMA3B, CES1D, 
SEPP1, LOX, LBP, CTSZ, C4A, SPARCL1, MGP, 
VEGFC, SERPINA3N, THBD, SERPINA3M, ADM, 
EREG, PPBP, COL1A2, CTSH, ADAMTS5, CXCL1, 
RBP4, WNT16, IL1R1, ENPP2, C3, LUM, CPQ, 
CLU, CXCL9, OAS3, IL33, DCN, CCL5, ABI3BP, 
LGALS3BP, COL6A3, PTX3, EFEMP1, IL1RN, 
LMCD1, IGF2, GAS6, CLEC11A, TSLP, OMD, 
CLEC3B, CXCL15, TGFBR3, IGFBP4
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addition, downregulated genes were significantly enriched 
in the p53 signaling pathway (P=2.23x10‑3), the regulation of 
actin cytoskeleton (P=0.032) and the hippo signaling pathway 
(P=0.036), presented in Table IV.

PPI network construction and analysis. The PPI network of 
DEGs was constructed by Cytoscape software following a PPI 
search (Fig. 2). Using the MCODE in Cytoscape, degrees≥10 
was set as the cutoff criterion and a total of 18 genes were 
selected as hub genes (DHX58, HERC6, RTP4, IFI44, STAT2, 
MX2, STAT1, IRF9, CXCL10, IFIT2, USP18, ISG15, OASL2, 
IFIT1, RSAD2, IRF7, DDX58, and IFIT3) were identified 
from the PPI network (Fig. 3). Notably, there were higher 
degrees in IFIT1 and OASL2 (degree=20) in the PPI network 
for upregulated genes, and in DDX58 and HERC6 (degree=20) 
in the PPI network for downregulated genes.

miRNA prediction of DEGs. From the 471 DEGs investi-
gated by this study, we chose a DEG with the largest log fold 
change (FC) value for miRNA prediction and analysis, which 
was RNASE4. We mapped the RNASE4 (log FC=9.11, P 
Value=1.32×10‑07) in the TargetScan database for predicting 
the miRNAs of this gene. By choosing the strict cutoff of 
8mer seeds, we found two miRNAs: miRNA‑124a and 
miRNA‑124a2. 

Transcription factor prediction of DEG. We searched the 
TFs of the RNASE4 gene by using the TRANSFAC database. 
Ten TFs were identified, including nuclear factor (NF)‑κB1, 
c‑Jun, c‑Fos, hepatocyte nuclear factor (HNF)‑4 α1, HNF‑4 
α2, activating protein‑1 (AP‑1), myocyte enhancer binding 
factor 2 (aMEF‑2), signal transducer and activator of tran-
scription 3 (STAT3), and cAMP‑response element binding 
protein (δCREB; Fig. 4). The image displays the most relevant 
transcription factor binding sites in the promoter region of this 
gene as predicted by TRANSFAC database (25). We predicted 

the miRNAs of these identified TFs and found that only 
STAT3 was associated with miRNA‑124.

Discussion

In this study, bioinformatics analysis of GSE11358 was carried 
out; we identified a total of 471 DEGs in STHdh111/111 
cells compared with normal STHdh7/7 cells, including 319 
upregulated and 152 downregulated genes. Upon analysis 
by MCODE in Cytoscape, 18 modules were identified from 
the PPI network, including DHX58, HERC6, RTP4, IFI44, 
STAT2, MX2, STAT 1, IRF9, CXCL10, IFIT2, USP18, ISG15, 
OASL2, IFIT1, RSAD2, IRF7, DDX58, and IFIT3. Of these, 
IFIT1 and OASL2 had the highest degree in upregulated 
genes, while DDX58 and HERC6 had the highest degree in 
downregulated genes.

IFIT1 was identified as a member of a macrophage 
ʻcore response module ,̓ which was commonly differentially 
expressed in response to multiple stimulatory signals in the 
immune system (26). Interestingly, previous studies have 
demonstrated that both innate and adaptive immune systems 
were activated during progression of HD (27). Dysregulation 
of IFIT1 can cause a measurable effect in the expression of 
downstream targets, acting either directly or indirectly, and 
IFIT1 was associated with a cluster of genes related to the 
innate immune response. Bayram‑Weston et al found that 
IFIT1 was highly expressed in the striatum of the YAC128 
and HdhQ150 mouse models of Huntington's disease (28); 
Jordanovski et al also found that high expression of IFIT1 
was correlated with Huntington's disease in the study 
of the TF ZNF395  (29). All these results suggested that 
IFIT1 plays an important role in the immune response by 
regulating macrophage function, and its abnormal regulation 
could be involved in the pathophysiological changes of HD. 
However, the exact regulatory mechanism is unclear, and 
further experiments are needed to define the mechanism 

Table I. Continued.

			   Total no.
ID	 Description	 P‑value	 of genes	 Genes

GO:0005578	 Proteinaceous	 5.89x10‑16	 31	� ASPN, WNT16, LUM, POSTN, DCN, MMP3, 
	 extracellular matrix 			�   ABI3BP, NOV, SMOC2, OGN, TNFRSF11B, 

LGALS3BP, WISP2, TGFBI, COL6A3, FBN2, LOX, 
THBS2, COL8A2, COL10A1, SPARCL1, EFEMP1, 
NDNF, LAMA4, OMD, BGN, CLEC3B, COL1A2, 
TGFBR3, ADAMTS1, ADAMTS5

GO:0008201	 Heparin binding	 1.79x10‑12	 20	� FGF7, POSTN, CCL5, CXCL11, ABI3BP, NDNF, 
CXCL10, NOV, SMOC2, OGN, WISP2, SERPINE2, 
CLEC3B, RSPO2, CFH, TGFBR3, ADAMTS1, 
GPNMB, THBS2, ADAMTS5

GO:0031012	 Extracellular matrix	 1.32x10‑11	 25	� ASPN, AEBP1, LUM, CLU, POSTN, DCN, MMP3, 
NOV, OGN, LGALS3BP, CD93, SERPINE2, 
COL6A3, TGFBI, FBN2, COL8A2, THBS2, 
EFEMP1, LMCD1, MGP, OMD, BGN, COL1A2, 
ADAMTS1, ADAMTS5
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in HD. OASL2, as an interferon‑stimulated gene is another 
gene related to the innate immune response (30), and was 
shown to be an important response module in macrophage 
activation (31). In the BACHD mouse model of HD, impaired 
migration of macrophages in response to an inflammatory 
stimulus was shown, which predicted one of the underlying 
mechanisms of HD  (32). McDermott et  al reported that 

OASL2 participates in interactions that are important for 
macrophage activation and migration  (33). Dysregulation 
of OASL2 may interrupt migration of macrophages in the 
HD mice model or interact with mHTT fragments in their 
immunological functions.

DDX58, also known as retinoic acid inducible gene‑I 
(RIG‑I), has been validated by immunofluorescence labeling 

Table II. Top 10 functions enriched for the down regulated genes in the STHdh111/111 cells.

			   Total no.
ID	 Description	 P‑value	 of genes	 Genes

GO:0007155	 Cell adhesion	 5.06x10‑7	 17	� FLRT2, CADM1, NUAK1, PDPN, ITGB5, ITGA3, 
NECTIN4, CDH2, MEGF10, NCAM1, HES1, 
WISP1, PKP1, CD34, TENM3, ITGA7, HAS2

GO:0005515	 Protein binding	 3.08x10‑7	 56	� ALDH1L1, CADM1, ATL2, AQP5, PAX6, PMAIP1, 
PRKG2, ANKRD1, CKB, WNT4, UNC5B, TIAM1, 
BOK, EMID1, PID1, KIF5C, BASP1, ECT2, 
HES1, NCAM1, KRT19, UHRF1, SIX1, BUB1B, 
WNT9A, KIF26B, MAP3K11, SOX2, BEX1, 
CDH2, SOX6, CEP55, IVNS1ABP, PEX5L, VDR, 
LHX2, POU3F3, SCN5A, OLFM1, DTNA, FLRT2, 
NES, TRPC6, IGF1, BIRC5, DPYSL3, ITGA3, 
SOD3, NREP, BMPER, PKP1, SFRP2, SALL1, 
ITGA7, ID4, FCGBP

GO:0005737	 Cytoplasm	 3.28x10‑6	 75	� ALDH1L1, CRABP1, PTGS2, TUBB2B, NUAK1, 
CRABP2, PTGS1, PAX6, RPRM, ANKRD1, CKB, 
WNT4, WISP1, BOK, TIAM1, PID1, CDC6, 
SGOL1, KIF5C, BASP1, UBE2C, ECT2, HES1, 
TNNT2, NCAM1, PPM1E, TAGLN, SPAG5, CD34, 
SIX1, BUB1B, HAS2, FILIP1L, GRB14, CASQ2, 
KIF26B, MAP3K11, FHL1, SOX2, DIAPH3, 
BEX1, ANLN, CDH2, DENND2A, CEP55, 
SERPINB1B, IVNS1ABP, PEX5L, TK1, ACSBG1, 
NCAPG, FNDC1, ENO3, DTNA, FLRT2, PTGR1, 
NES, GSTA4, TRPC6, IGF1, BIRC5, DPYSL3, 
C330027C09RIK, RGS16, SOD3, CENPI, 
FAM64A, NREP, SALL1, PRKAR1B, ITGA7, ID4, 
FAM84B, BTBD11, PLEKHA1

GO:0000902	 Cell morphogenesis	 2.80x10‑5	 7	� VDR, CAP2, PDPN, TENM3, SOX6, GREM1, 
ECT2

GO:0051301	 Cell division	 9.48x10‑5	 12	� CCNE2, CDC6, FAM64A, SPAG5, SGOL1, NUF2, 
BUB1B, BIRC5, ANLN, CEP55, UBE2C, ECT2

GO:0007275	 Multicellular organism	 1.72x10‑4	 20	 FLRT2, NES, CADM1, PDPN, FHL1,
	 development			�   SOX2, PAX6, BEX1, SOX6, SHOX2, VDR, WNT4, 

UNC5B, SFRP2, SEMA7A, SIX1, POU3F3, 
WNT9A, OLFM1, KIF26B 

GO:0045165	 Cell fate commitment	 1.82x10‑4	 6	� HES1, WNT4, SOX2, PAX6, SOX6, WNT9A
GO:0007067	 Mitotic nuclear division	 2.00x10‑4	 10	� CDC6, FAM64A, SPAG5, SGOL1, NUF2, BUB1B, 

BIRC5, ANLN, CEP55, UBE2C
GO:0008283	 Cell proliferation	 2.14x10‑4	 9	� UHRF1, PDPN, BOK, CD34, PRKAR1B, SIX1, 

IGF1, ID4, MAP3K11
GO:0005911	 Cell‑cell junction	 6.26x10‑4	 8	� NCAM1, FLRT2, CADM1, TIAM1, FNDC1, 

CDH2, NECTIN4, ECT2
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of motor neurons in an amyotrophic lateral sclerosis 
mouse(TDP‑43A315T) spinal cord (34). DDX58 is a direct 
target of TDP‑43, and abnormalities of TDP‑43 were shown to 
lead to deregulation of DDX58. Tauffenberger et al confirmed 
the results that inappropriate cytoplasmic accumulations 
of TDP‑43 are observed in HD (35). In our study, we found 
that DDX58 was clearly downregulated, which inferred that 
abnormal accumulations of TDP‑43 in HD could be respon-
sible for this result. Other studies also found that DDX58 was 
involved in immune regulation (36).

HERC6 is a HerC protein family member; a previous 
study found that HERC6 was the main E3 ligase for global 
ISG15 conjugation in mouse cells (37). ISG15, an interferon 
(IFN)‑stimulated gene, was reported to participate in activa-
tion of IFN signaling in the CNS and was usually associated 
with inflammation  (38). Together, some studies indicated 
that ISG15 could activate autophagy by various means (39). 

Although there were no exact studies reporting a correlation 
between HERC6 and HD, it has been established that aber-
rant inflammation and autophagy may both participate in the 
pathogenesis of HD; therefore, we believe that HERC6 may 
play a role in the etiology of HD by influencing the function 
of ISG15.

KEGG pathways, in our present study, including the 
Jak‑STAT signaling pathway  (37), the toll‑like receptor 
signaling pathway  (13,40), and the RIG‑I‑like receptor 
signaling pathway (41) have been confirmed to be associated 
with HD and neurodegenerative diseases. Although we did not 
explore these pathways further in the present study, they are 
critical for understanding the pathogenesis of HD.

MicroRNA (miRNA) is a small non‑coding RNA 
molecule containing about 22 nucleotides, and mediates the 
post‑transcriptional regulation of gene expression (42). It has 
been reported that miRNA is abundantly expressed in the 

Table III. Top 10 enriched pathways for the upregulated genes.

			   Total no.
ID	 Description	 P‑value	 of genes	 Genes

mmu05168	 Herpes simplex infection	 1.70x10‑11	 21	� H2‑K1, IFIH1, SP100, SOCS3, C3, 
OAS3, H2‑D1, OAS2, STAT1, CCL5, 
H2‑Q6, STAT2, IRF9, DDX58, IKBKE, 
IFIT1, IRF7, TAP1, LOC101056305, 
OAS1A, EIF2AK2

mmu05164	 Influenza A	 4.28x10‑11	 19	� IFIH1, SOCS3, OAS3, RSAD2, TRIM25, 
IL33, OAS2, STAT1, CCL5, STAT2, 
CXCL10, IRF9, DDX58, IKBKE, IRF7, 
OAS1A, EIF2AK2, MX2, ADAR

mmu04060	 Cytokine‑cytokine	 9.18x10‑8	 18	 IL1R1, LTBR, OSMR, IL6ST, LIFR,
	 receptor interaction			�   CXCL9, ACKR3, CCL5, CXCL11, 

CXCL10, LOC100861969, 
LOC100861978, VEGFC, TSLP, 
TNFRSF11B, PPBP, CXCL15, IL13RA1

mmu04623	 Cytosolic DNA‑	 3.39x10‑7	 10	� IFI202B, DDX58, IKBKE,
	 sensing pathway			�   LOC100044068, IRF7, IL33, CCL5, 

ZBP1, ADAR, CXCL10
mmu05160	 Hepatitis C	 6.55x10‑7	 13	� SOCS3, OAS3, OAS2, STAT1, STAT2, 

IRF9, DDX58, IKBKE, IFIT1, IRF7, 
CLDN1, OAS1A, EIF2AK2

mmu05162	 Measles	 6.55x10‑7	 13	� IFIH1, OAS3, OAS2, STAT1, STAT2, 
IRF9, DDX58, IKBKE, IRF7, OAS1A, 
EIF2AK2, MX2, ADAR

mmu04630	 Jak‑STAT signaling pathway	 5.15x10‑5	 11	� STAT6, IRF9, TSLP, OSMR, IL6ST, 
SOCS3, LIFR, STAT1, IL13RA1, 
STAT2, LOC100861969

mmu04622	 RIG‑I‑like receptor signaling	 5.87x10‑5	   8	� DDX58, IKBKE, IFIH1, ISG15, IRF7,
	 pathway			   TRIM25, DHX58, CXCL10
mmu04620	 Toll‑like receptor signaling	 6.98x10‑4	   8	� IKBKE, IRF7, CXCL9, LBP, STAT1,
	 pathway			   CCL5, CXCL11, CXCL10
mmu05203	 Viral carcinogenesis	 2.17x10‑3	 11	� H2‑K1, IRF9, LTBR, SP100, IL6ST, 

C3, IRF7, H2‑D1, LOC101056305, 
EIF2AK2, H2‑Q6
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Table IV. Top 10 enriched pathways for the downregulated genes.

			   Total no.
ID	 Description	 P‑value	 of genes	 Genes

mmu05414	 Dilated cardiomyopathy	 5.90x10‑4	 6	� TNNT2, ADCY7, ITGA7, IGF1, 
ITGB5, ITGA3

mmu04550	 Signaling pathways regulating	 9.37x10‑4	 7	� INHBB, WNT4, SOX2, PAX6, IGF1, 
	 pluripotency of stem cells 			   ID4, WNT9A
mmu04923	 Regulation of lipolysis in adipocytes	 1.22x10‑3	 5	� ADCY7, PTGS2, PTGS1, PDE3B, 

PRKG2
mmu04115	 p53 signaling pathway	 2.23x10‑3	 5	� CCNE2, RPRM, IGF1, PMAIP1, 

IGFBP3
mmu05412	 Arrhythmogenic right ventricular	 2.75x10‑3	 5	 TCF7, ITGA7, ITGB5, ITGA3, CDH2
	 cardiomyopathy (ARVC)
mmu05410	 Hypertrophic cardiomyopathy (HCM)	 4.05x10‑3	 5	� TNNT2, ITGA7, IGF1, ITGB5, 

ITGA3
mmu05200	 Pathways in cancer	 0.016	 9	� CCNE2, TCF7, WNT4, ADCY7, 

PTGS2, IGF1, BIRC5, ITGA3, 
WNT9A

mmu05205	 Proteoglycans in cancer	 0.026	 6	� WNT4, TIAM1, IGF1, ITGB5, 
WNT9A, GPC1

mmu04810	 Regulation of actin cytoskeleton	 0.032	 6	� TIAM1, ITGA7, DIAPH3, ITGB5, 
ITGA3, MYL9

mmu04390	 Hippo signaling pathway	 0.036	 5	� TCF7, WNT4, SOX2, BIRC5, 
WNT9A

Figure 2. Protein‑protein interaction network constructed for the DEGs. Red stands for high expression value and blue stands for low expression value. Changes 
of color from blue to red represent the changes in expression value from low to high.
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CNS (43) and may participate in diverse biological processes 
in neuronal cell differentiation and functions (44). A number of 
different miRNAs have been found to be abnormally regulated 
in cellular and mice models of HD, including miRNA‑137, 
‑214 (45), ‑146a (46), and ‑27a (47). Therefore, deregulated 
miRNAs could be attributed in etiology and therapeutic 

targets in the HD. Here, we tried to predict the miRNAs and 
TFs of DEGs in the HD mice model. We chose ribonuclease 
4 (RNASE4), which is most significantly upregulated in HD 
(log FC=9.11). RNASE4, the fourth member of this super-
family, shares the same promoters as angiogenin (ANG), 
and is co‑expressed with ANG (48). It has been reported that 

Figure 3. A significant module selected from the protein‑protein interaction network by utilizing MCODE in Cytoscape. Lines represent an interacting 
relationship between nodes.

Figure 4. Transcription factors of RNASE4 gene in the TRANSFAC database. The red arrow indicates the transcription starting site and direction of the 
RNASE4 gene. The green vertical lines indicate the transcription factor binding sites. NF, nuclear factor; CREB, cAMP‑response element binding protein; 
HNF, hepatocyte nuclear factor; AP, activating protein; aMEF, myocyte enhancer binding factor; STAT3, signal transducer and activator of transcription 3; 
delta CREB, cAMP‑response element binding protein.
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RNASE4 protects neuron degeneration by promoting angio-
genesis, neurogenesis, and neuronal survival under stress (49). 
The neuroprotective activity of RNASE4 is similar to that of 
ANG, which can upregulate Bcl‑2 (50) and inhibit nuclear 
translocation of apoptosis‑inducing factor (51). 

To strictly predict the miRNAs of the target gene RNASE4, 
we chose an exact match (8mer seed) to positions 2‑8 of the 
mature miRNA. We found that miRNA‑124 had the highest 
score, suggesting that miRNA‑124 could play an important 
role in HD, which was in line with previous studies  (52). 
MicroRNA‑124 has been implicated in HD by a mechanism 
that involves the regulation of CCNA2, and is involved in 
regulating the cell cycle (53).

By searching TRANSFAC databases, we found STAT3 
was also regulated by miRNA‑124. Astrocyte reactivity is a 
hallmark of neurodegenerative diseases (ND); activation of 
the JAK/STAT3 pathway can promote astrocyte reactivity and 
decrease the number of huntington aggregates, a neuropatho-
logical hallmark of HD (54). By analyzing new regulatory 
relationships between miRNA‑124, STAT3 and RNASE4, we 
predicted a novel regulatory pathway that miRNA‑124 regu-
lates TF STAT3, and TF STAT3 regulates RNASE4, that is, 
miRNA‑124→STAT3→RNASE4, which could be a possible 
target for HD treatment.

In the present study, we investigated the underlying mecha-
nisms of HD via bioinformatics analysis. A total 471 DEGs 
were identified, and 18 hub genes including DHX58, HERC6, 
RTP4, IFI44, STAT2, MX2, STAT 1, IRF9, CXCL10, IFIT2, 
USP18, ISG15, OASL2, IFIT1, RSAD2, IRF7, DDX58, and 
IFIT3 may be involved in the progression of HD. Meanwhile, 
we found a new regulatory relationship between miRNA‑124, 
STAT3 and RNASE4. All these findings can shed light on 
the complex pathogenesis of HD and provide a potential 
novel therapeutic strategy for patients with HD, but the 
bioinformatics findings obtained in this study require further 
conformation via experimental studies. 
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