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Simple Summary: Acute myeloid leukemias (AML) results from the accumulation of genetic and
epigenetic alterations, often in the context of an aging hematopoietic environment. The development
of high-throughput sequencing—and more recently, of single-cell technologies—has shed light
on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the
multiple sources of heterogeneity of leukemic cells and discuss the definition of a leukemic clone.
After introducing the two dimensions contributing to clonal diversity, namely, richness (number of
leukemic clones) and evenness (distribution of clone sizes), we discuss the mechanisms at the origin
of clonal emergence and the causes of clonal dynamics including neutral drift, and cell-intrinsic and
-extrinsic influences on clonal fitness. After reviewing the prognostic role of leukemic diversity on
patients’ outcome, we discuss how a better understanding of AML as an evolutionary process could
lead to the design of novel therapeutic strategies for this disease.

Abstract: Acute myeloid leukemias (AML) results from the accumulation of genetic and epige-
netic alterations, often in the context of an aging hematopoietic environment. The development
of high-throughput sequencing—and more recently, of single-cell technologies—has shed light
on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the
multiple sources of genetic, epigenetic, and functional heterogeneity of leukemic cells and discuss
the definition of a leukemic clone extending its definition beyond genetics. After introducing the
two dimensions contributing to clonal diversity, namely, richness (number of leukemic clones) and
evenness (distribution of clone sizes), we discuss the mechanisms at the origin of clonal emergence
(mutation rate, number of generations, and effective size of the leukemic population) and the causes
of clonal dynamics. We discuss the possible role of neutral drift, but also of cell-intrinsic and -extrinsic
influences on clonal fitness. After reviewing available data on the prognostic role of genetic and
epigenetic diversity of leukemic cells on patients’ outcome, we discuss how a better understanding
of AML as an evolutionary process could lead to the design of novel therapeutic strategies in this
disease.

Keywords: acute myeloid leukemia; clonal heterogeneity; evolutionary dynamics; drug resis-
tance; prognosis

1. Introduction

For several decades, leukemias as other cancers have been envisaged as evolutionary
processes [1,2]. From cancer initiation to diagnosis and progression, leukemic cells acquire
genetic and epigenetic alterations. As single-cell organisms reproducing asexually through
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cell division, leukemic cells follow evolutionary processes such as selection and drift,
called clonal evolution in cancer. These processes shape the architecture of leukemia by
modulating the survival and expansion of each leukemic cell population. Evolution of
cancer cells plays a major role in cancer development and treatment response; thus, it is a
topic of central importance. Focusing on acute myeloid leukemias (AML), we sequentially
address three questions: Which traits should form the basis of clone identity? What
information does assessment of clonal architecture provide on the underlying evolutionary
processes? How can this information instruct the choice of therapy for AML patients?

2. Clonal Identity in AML

In the cancer field, the term ’clone’ has been used to group cells sharing traits inherited
from a common ancestral cell. Cells within a clone are considered to have the same fitness,
i.e., the same competitive advantage in a given environment, compared to other clones
and to normal cells. However, cells are characterized by multiple biological traits, some
of which are highly context-dependent [3], raising the question of the choice of biological
properties used to define clonal identity. Ideally, clonal identify should be based on traits
that best explain the evolutionary trajectories of cancer cells.

2.1. Genetic Identity

Owing to a long tradition of genetic reductionism in the field of cancer biology, and
technological limitations to study other traits, clonal identity has long been based on genetic
alterations [4]. With aging, hematopoietic stem and progenitor (HSPC) cells accumulate
random genetic alterations [5–7]. Even after transformation, leukemic cells still acquire
new cytogenetic alterations and point mutations, and virtually each cell harbors unique,
‘private’, genetic alterations [1,5]. Most of these mutations are in noncoding regions or have
little impact on protein function and are deemed neutral for cell function [8]. Conversely, a
minority of these alterations can provide a fitness advantage to the cells, leading to clonal
expansion [8]. These high-impact driver mutations include alterations that increase self-
renewal, proliferation, or survival, and in vitro and in vivo experiments have shown that
they are important for leukemic initiation and progression. As these drivers are believed to
strongly influence the transformation of hematopoietic into pre- and fully leukemic cells,
they are attractive traits to determine clonal identity. However, classifying a mutation
as a driver or a passenger is not always straightforward, and relies on current scientific
knowledge, in silico predictions, and known epistatic interactions. Recent studies suggest
that the fitness impact of a mutation is positioned on a continuum [9]. Some variants
might provide only a limited fitness advantage (‘mini-drivers’) [10], while others might be
deleterious. Yet, all these variants could contribute to shape clonal evolution in leukemias.

Beyond the mutational landscape at the bulk level, the precise combination of muta-
tions occurring in each single cell is important to define clonal identity. This information has
been available for a long time for cytogenetic alterations [1,2,11–13], although conventional
karyotyping has low resolution and may be subject to culture bias. For point mutations,
clonal composition has been inferred from whole-genome sequencing (WGS) of bulk sam-
ples by clustering variants with similar allelic frequencies (VAF) [14,15], a procedure that
does not resolve complex architectures [16]. Exome sequencing or targeted sequencing
of panels including at least 50–100 genes recurrently mutated in AML can capture par-
tial information on clonal structure. These approaches often compensate their limited
coverage compared with WGS with greater depth, allowing more precise assessment of
VAFs and more robust clustering of the variants captured [5,17–20]. Single-colony [5,6,21],
plate-based single cell [22,23], and more recently, high-throughput, droplet-based geno-
typing protocols [24,25] have contributed to describe the exact clonal composition of AML
(Figure 1). These studies revealed the co-occurrence of variants in genes requiring biallelic
inactivation (i.e., TET2, DNMT3A), or on the other hand, branched architectures where
multiple mutations in the same oncogenic pathways occurred in different cells. Oncogenes
with at least a partially overlapping function in AML include receptor tyrosine kinase and
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RAS-MAPK genes (FLT3, KIT, NRAS, KRAS, etc., hereafter signaling genes) [26], TET2 and
IDH1/2 [27], or TP53 and PPM1D [28]. Finally, these studies identified some co-occurring
mutations linked to clonal dominance, suggesting a strong cooperative interaction between
them, such as for DNMT3A and IDH1/2 mutations [24,25].
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2.2. Functional Identity

In AML, only few recurrent cytogenetic and gene alterations can predict responses to
chemotherapy at the population level [29,30], and robust individual prediction of chemosen-
sitivity remains unsatisfactory [31,32]. AML cells are composed of different subpopulations
expressing different transcriptional programs [33], intracellular signals, and surface protein
expressions [34]. Some of these differences reflect incomplete blockage of differentiation,
with some leukemic cells resembling normal hematopoietic progenitors and mature cells
(Figure 1) [33,34]. These intratumoral differences are clinically relevant, as a high-burden
of immature blasts with the long-term self-renewal property has been associated with
chemoresistance and poorer prognosis in multiple patient cohorts [34–36], whereas ma-
ture monocyte-like cells have immunosuppressive capacity [33] and are associated with
resistance to the recently approved BCL-2 inhibitor venetoclax [37,38].

Functional heterogeneity is sustained by an epigenetic heterogeneity [39,40]. Indeed,
epigenetic alterations have been reported in AML, only some of which are associated (and
potentially driven) by specific genetic alterations [40,41]. Similar to genetic alterations, there
are various degrees of intratumor epigenetic heterogeneity in AML [39,40,42]. Increased
methylation diversity at diagnosis is distinct from genetic heterogeneity and is associated
with higher risk AML and poorer survival [39,40]. Epigenetic heterogeneity is also dynamic
during AML evolution, and subject to evolutionary processes such as selection or drift,
which may be dissociated from the evolution of genetic heterogeneity [39].

Functional heterogeneity might be also explained by non-(epi)genetic, stochastic,
multigenerational fluctuations. Such pervasive ‘biological noise’ [43,44], whose underlying
mechanisms remain elusive, has been associated with in vitro chemoresistance in can-
cer [44,45] and AML [46] cells. In solid cancers, resistance to targeted therapies can emerge
from multiple independent evolutionary paths explored by cells after first entering a per-
sistent state [47,48]. Such a phenomenon, where plasticity first allows the individuals (here,
cancer cells) to explore the phenotypic space before adaptive traits (e.g., drug resistance)
are enforced by heritable genetic or epigenetic alterations, is reminiscent of the ‘Baldwin
effect’ in evolutionary biology [49]. A similar phenomenon has recently been described in
childhood B-cell precursor acute lymphoblastic leukemia [50]. Indeed, transient changes
involved in drug resistance have been reported to occur in vivo [51] and ex vivo [52], which
may allow a subset of AML cells to survive long enough time to acquire heritable resistance
(epi)mutation [43].
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2.3. Multi-Modal Identity

Genetic and functional identities are interconnected. At the population level, AML
oncogenic subgroups are associated with specific transcriptomic programs [53]. Subclonal
mutations contribute to intratumor functional heterogeneity. Patient-derived xenograft
(PDX) experiments have reported that genetic clones have distinct engraftment poten-
tials [22,24,54,55], although engraftment capacity was highly dependent on the experimen-
tal context, and poorly predicted clonal architecture at relapse [22,55]. Genotyping of sorted
subpopulations [22] and, more recently, single-cell multiomics technologies [24,25,33,56]
highlighted that some variants are enriched in clusters of leukemic cells defined by specific
RNA [33,56] or protein [24,25] expression patterns. Whether these mutations directly acti-
vate a differentiation program or confer a fitness advantage only at a specific differentiation
stage has yet to be investigated. A pan-cancer analysis studying gene-expression hetero-
geneity through multitask evolution theory has shown that driver mutations tune gene
expression towards specialization in certain tasks [57]. Emerging single-cell methodologies
integrating genotyping, gene expression, and protein expression such as TARGET-seq
are promising for studying these intricate relationships, and to define multimodal clonal
identities (Figure 1) [58].

3. Origin of Intraleukemic Heterogeneity and Clonal Evolution

Each AML results from a unique composition of clones cohabiting and/or succeeding
each other throughout the natural history of the disease. Behind the uniqueness of each
patient’s AML, various modes of evolution can be distinguished.

3.1. Characterizing Intratumor Heterogeneity

Building on ecology theories, we can first stratify diversity in AML according to spatial
scale. Global intraleukemic heterogeneity can be compared with the gamma diversity of
an ecosystem, which represents the diversity at the scale of several habitats (Figure 2) [59].
Gamma diversity has two components: heterogeneity within a specific sampling site (alpha
diversity, Figure 2) and differences across all leukemic sites (beta diversity, Figure 2). The
difference between alpha and beta diversities is less clear in AML than in solid cancers,
but some discrepancies in the genetic makeup of bone marrow leukemic cells and myeloid
sarcomas have been reported, suggesting incomplete mixing of leukemic cells and, thus,
the existence of beta diversity [60]. Furthermore, intravital imaging studies have shown
that chemoresistant AML cells have a decrease in motility [61], a phenomenon that could
generate local differences in clonal composition between leukemic niches at relapse. The
alpha diversity itself has two components: the number of clones (clonal richness) and
their relative abundance (clonal evenness, Figure 2). Different indices exist to quantify
alpha diversity [62]. The most frequently used are the number of clones [12,25], which is
sometimes approximated by counting the number of mutations in the most recurrent AML
oncogenes [17,63], Shannon’s index [17,24,25], and Simpson’s index [17].

3.2. Source of Clonal Richness

Given that clonal richness is a fuel for clonal evolution, it is crucial to understand its
determinants. If we apply to cancer the conceptual framework of evolutionary dynamics
in asexual organisms, most of which has been fueled by experiments on bacteria, we can
predict that the mutational rate, the number of generations from initiation to diagnosis,
and the effective population size are the key determinants of clonal richness in leukemia
(Figure 3) [64,65]. Genetic instability is believed to be limited in AML, as point mutation
and cytogenetic alteration burden is in a lower range compared with other cancers, al-
though the variance between AML patients is particularly high [8,66,67]. Rare patients
with germline mutations in DNA repair genes such as patients affected by Xeroderma Pig-
mentosum C syndrome showed an increase in the number of mutation rates in AML [68].
In most AML cases, the mutational signatures found are characterized by C > T transitions,
which are linked to spontaneous deamination of 5-methyl cytosine and are related to
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aging [5,67,69]. Thus, it is likely that most mutations have accumulated before initiation
of the leukemia, as most of them are present in all AML cells in the sample, and there is
a high correlation between the total number of mutations and the patient’s age [5]. Even
when focusing on recurrent driver mutations, higher clonal diversity correlates with older
patient age [17,24]. Of note, patients with clinically or molecularly defined secondary AML
(sAML), who are usually older than de novo AML patients, have an increased number
of genetic drivers [70,71]. Thus, the number of generations is important, especially in
the case of neutral evolution, which is frequent in solid cancers [72] but may also exist in
AML [73]. Mutation rate can be dynamic over time, and while most mutations accumulate
slowly and gradually, there are cases of punctuated evolution with the acquisition of large
genetic rearrangements, such as chromothripsis [74], especially in patients with genetic
instability such as TP53 inactivation. Mutation rate can also transiently increase as an
adaptive phenomenon in the context of therapeutic selection pressure [75]. Finally, the
effective population size, defined as the number of individuals actively contributing to
evolution in the census population, is an important determinant of clonal richness because
the number of new mutations in each generation scales with this parameter [64,76]. De-
termining effective population size in AML is not trivial. Hierarchical renewing tissue
organization is a protection against somatic mutation fixation by limiting the number
of cells with self-renewing capacity, reducing their number of divisions, and purging
mutations through differentiation [77,78]. In AML, the effective units of selection are the
minority of cells able to proliferate with a long-term self-renewal capacity, namely, leukemic
stem cells (LSCs) [79]. PDX experiments have shown that most AML clones at diagnosis
can engraft in immunocompromised mice, and thus, are sustained by a population of
self-renewing cells [22,24]. Studies on solid cancers have shown that the expression of
stemness signatures is associated with increased genetic diversity [80]. Similar studies in
AML are awaited. Whether stemness is a fixed trait or a more adaptative state subject to
equilibrium is still a matter of debate and investigation [81], including in AML [82]. In
solid tumors, accumulating evidence suggests that dedifferentiation of cancer nonstem
cells can contribute to the regeneration of the cancer stem cell pool [83,84]. A recent study
has reported reversibility of differentiation in a murine model AML driven by inducible
suppression of endogenous PU.1 [85]. The potential contribution of such a phenomenon to
the stemness capacity and long-term evolution of AML has yet to be investigated.
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3.3. Clonal Evolution Processes

With equal richness, clonal evolution can follow different paths, leading to differences
in relative clonal abundance. A wide number of biological phenomena can account for
these differences in clonal evenness. First, although clonal evolution is often conceived as a
Darwinian process of evolution by natural selection, it is important to note that neutral
evolution, which is widespread in the evolution of organisms, can also occur in cancer.
Indeed, recent data suggest that neutral evolution is frequent after initial transformation in
some solid cancers [72,73] and may also exist in AML [73,86]. In this model, cancer cells
accumulate alterations during the early steps of transformation, whereas clonal sweeps
leading to expansion and fixation of adaptive clones at late stages of progression are rare.
Depending on the tissue structure and organization, neutral evolution can lead to high
clonal richness with relatively good evenness (clone size is proportional to clone age), or to
clonal dominance due to genetic drift. In spatially structured populations, small niches
favor clonal sweeps and tumor homogeneity, while segregated regions limit clonal sweep,
thus, favoring diversity between regions (low alpha diversity in regions but high beta
diversity when comparing regions) [87]. In leukemias, where cell mixing is supposed to
be high, a small effective size (i.e., few LSCs) can also lead to random clonal expansion
or extinction due to genetic drift [64,65,76,77,88]. This may explain why some mutations
increasing self-renewal such as TET2 [89] and DNMT3A [90] are early events in AML,
increasing the probability of a secondary driver mutation that can reach fixation without
extinction of the preleukemic clone due to drift. Neutral evolution can also lead to clonal
expansion due to the founder effect, when some leukemic cells invade another environment,
e.g., in the context of myeloid sarcomas [60].

Clonal evolution can also be a deterministic process underlined by natural selection.
In this case, clonal evenness will largely depend on the fitness of each clone. If a clone
acquires a fitness advantage, it will expand and outcompete other clones. Interpretation of
fitness is always relative and should account for the fitness of normal hematopoietic cells,
which may decline with age, potentially explaining the age-dependence of some subsets of
acute leukemias [91]. Regarding AML, the age-related decline in HSC function—despite
their increased number [92–94]—might favor the expansion of preleukemic HSCs with
better self-renewal capacities [89,90], resulting in age-related clonal hematopoiesis (ARCH)
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and, eventually, AML transformation. In sAML patients, MDS or MPN founding clones are
still detectable at the AML phase, although sometimes outcompeted by a minor subclone
leading to a clonal sweep [70,95]. Some specific drivers, notably in signal transduction
genes, have been significantly associated with MDS progression to sAML [95].

Furthermore, fitness is often envisaged as a cell-intrinsic trait of cancer cells. However,
fitness of a clone may depend on its relative abundance because its expansion depends on
a signal, notably, a diffusible factor (e.g., a growth factor, metabolite, or exosome) available
in a limited amount (density-dependent fitness) secreted by the clone itself or by another
clone [96]. The potential paracrine effect of the oncometabolite R-2-hydroxyglutarate
secreted by IDH mutant clones may exemplify such ‘public good’ games in AML [97].
Fitness of a cancer cell may also depend on a pairwise dialogue with a neighboring cell.
Such a process, called cell competition, has been extensively studied in the context of
normal multicellular development and relies on intercellular dialogues between adjacent
cells to eliminate cells with lower fitness, while preserving the tissue architecture [98].
In solid tumors and T-cell acute leukemias, cell competition has been shown to prevent
transformation by eliminating early-stage clones [99,100]. Conversely, cancer cells may
take advantage of this process, particularly with tissue aging. Recent studies suggest
that breast and colon cancers may hijack these developmental processes to eliminate
surrounding stromal cells [101]. A p53-dependent mechanism akin to cell competition
has been shown to contribute to the resilience of the murine hematopoietic system upon
radiation-induced DNA damage [102]. Leukemic and normal HSPC have been shown to
compete for the bone marrow niche [103,104], which are saturable ecosystems important
for both HSC [105–108] and LSC functions [103,104]. Leukemic cells may even remodel
the bone marrow environment to preferentially support leukemic growth at the expense
of normal HSPCs [109–113]. Cytokines are important resources for leukemic cells, and
some genetic alterations might provide cytokine hypersensitivity or independence [114].
PDX experiments using immunodeficient mice expressing humanized cytokines (NSG-
SGM3) or not (NSG) reported different clonal architectures and phenotypic differentiation
in the two strains [22] suggesting that clones have specific cytokine requirements for
engraftment and/or expansion. In addition to this positive selection, leukemic cells are
facing hazards that may jeopardize their survival. Some leukemic clones might have
enhanced resistance to inflammation [115–117] or to therapy-induced damage [118,119]; the
latter might explain the higher incidence of TP53 and PPM1D mutations in therapy-related
AML [119]. Sequencing of paired diagnosis/relapse samples showed that chemotherapy
induces variable changes in the genetic clonal composition, with the loss of some drivers
and/or expansion of others [15,19,120]. The dominant clone at relapse can derive directly
from the dominant clone at diagnosis or from the expansion of a minor subclone frequently
detectable at diagnosis [15,82]. In a minority of cases such as AML relapses with NPM1 loss,
genetic distance between diagnosis and relapse is more important, with only preleukemic
drivers persisting at relapse. This pattern of evolution, often associated with a longer
time to relapse, should lead research to consider the post-treatment leukemia as second
AML rather than a true relapse [20]. Genetic mutations can convey resistance to treatment,
mainly in the context of targeted therapy [18,121,122], but this mechanism might also
be involved in chemoresistance [19]. Resistance to treatment can also be conveyed by a
pre-existing stemness program [82,123,124] and/or activation of a senescence program [52].
Clonal evenness is, thus, likely to change when the environment changes. Notice that, in
addition to deterministic fitness, stochastic biological noise can also play a role in clonal
expansion under changing selection pressures, particularly in the case of changes in the
fitness landscape, as discussed above [44,45].

Even when considering a fixed environment and neglecting density-dependent phe-
nomena, inferring the fitness of clones harboring several drivers based on data for each
individual driver (e.g., from syngeneic mouse models [89,90]) is not straightforward. Based
on bulk sequencing data, each additional driver has been proposed to lead to a 15-20%
gain in fitness [3,125]. However, gene–gene interactions (‘epistasis’) are likely to affect the



Cancers 2021, 13, 4887 8 of 18

combined output of combinations of driver mutations. Some combinations of mutations
may synergize at the molecular level, leading to large gains of fitness and clonal domi-
nance, strong association at the population level, and poorer prognosis, as exemplified in
AML by the combination of IDH2 and DNMT3A mutations [25,63,126,127]. During AML
progression, fitness gains of mutations tend to be lower, owing to partially overlapping
effects (diminishing-returns epistasis [64]), progressive alteration of the cellular signaling
networks, and increased immunogenicity [9,128]. This phenomenon is pervasive across
cancer subtypes [129], and could contribute to the persistence of clonal heterogeneity, no-
tably, explaining why subclones with the highest number of (supposedly driver) mutations
are not necessarily dominant [25,70]. The persistence of ancestor clones prior to therapy
may then fuel the reservoir of resistance clones [15,25,70].

Clones are often conceived primarily as competitors, but they can also cooperate [130–134].
A small population can promote growth of other clones by noncell autonomous mechanisms,
leading to a strong interdependency and clonal equilibrium.

Studying leukemia through the prism of multitask evolution theory helps to under-
stand inter- and intraleukemic heterogeneity. Leukemic cells must perform several tasks to
survive, but theoretically, no cell can be optimal for all tasks because of limited biomass
or interference between them [3,57,135]. Therefore, leukemic cells must find trade-offs
between these tasks. Spatiotemporal heterogeneity of selection pressures might increase
the diversity of the cancer population, a feature more obvious in solid oncology as the
tumor grows [3]. However, this might also be the case in AML, as spatial gradients of
hypoxia have been reported in the bone marrow [136], and progressive saturation of bone
marrow niches at advance stages of AML might lead to temporal heterogeneity, promoting
the migration to peripheral blood and spleen [137].

4. Clinical Impact of Clonal Architecture

Evolution of cancer cells represents a challenge for cancer treatment. A better un-
derstanding of the underlying processes that drive clonal evolution can provide new
therapeutic opportunities.

4.1. Impact of Clonal Architecture at Diagnosis

Clonal diversity has been associated with poorer outcomes in AML. Clonal richness,
defined on the number of cytogenetic clones, has been associated with poorer prognosis,
especially in AML patients with a complex karyotype [12,13]. The impact of genetic
heterogeneity for point mutations is more difficult to assess. Recent technological advances
allow the precise characterization of the clonal architecture at the single-cell level of large
cohorts of AML patients [24,25], and the prognostic impact of clonal heterogeneity and
specific clonal architectures in a uniformly treated patients cohort should be investigated
soon. A higher number of driver mutations has been consistently associated with poorer
prognosis in AML [17,63,138,139]. Epigenetic heterogeneity may also portend a poorer
prognosis [39,40].

Clone size distribution and specific clonal architectures have been associated with
prognosis in AML. In two independent cohorts, the presence of clonal dominance in-
ferred from bulk sequencing was shown to predict shorter survival independently of
the number of clones [17]. Interestingly, FLT3–ITD allelic ratio, which integrates both
zygosity and clonal dominance, is a strong stratifying driver in AML patients. Whether
homozygous state, dominance of the FLT3-ITD clone, or both, are prognostic remains to
be elucidated [140]. In core-binding factor AML, branching caused by parallel evolution
of clones harboring distinct signaling pathway mutations (a process reminiscent of clonal
interference reported in bacteria populations under antibiotic selection pressure) is an
independent predictor of outcome [26]. Clonal interference of FLT3 internal tandem du-
plications also portends greater risk of treatment failure [141]. Importantly, all of these
analyses have been carried out in patients treated with conventional ‘7 + 3’ chemotherapy.
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Whether these findings are specific to this intensive cytotoxic regimen or reflect the natural
history of the disease remains unknown.

The link between clonal architecture and prognosis remains unclear in AML and
has been mainly reported in studies where clonal architectures were inferred from bulk
samples. Future studies defining clonal architecture based on multiple traits at the single-
cell level might refine this association with outcome. Clonal architecture could play
a direct, causal role on AML prognosis. Alternatively, clonal architecture could be a
proxy of an underlying process itself, causing chemoresistance or relapse. Determinist
mechanisms linking intraleukemic heterogeneity and chemoresistance remain elusive.
Sequential driver acquisition could lead to additive fitness, ultimately resulting in an
aggressive chemoresistant clone. However, lack of correlation between the accumulation
of drivers in individual clones and clonal dominance in single-cell genotyping studies
challenges this hypothesis [25]. Furthermore, the dominant clone at diagnosis is often
not the one found at relapse [17]. Intraleukemic heterogeneity can also be considered as
a reservoir of resistance. Indeed, even undetectable mutations generated with neutral
evolution can later be involved in resistance and relapse, a phenomenon described as the
‘Dykhuizen-Hartl effect’ in the neutral theory of evolution [142]. Indeed, in most patients,
mutations associated with resistance to targeted therapies can be detected at very low allelic
frequencies in pretreatment samples [24,121]. Intratumoral heterogeneity can also be a
mechanism of immune escape, as reported in solid cancers [143]. Finally, clonal interference
of signaling mutations could indicate strong selection pressures on this oncogenic pathway
with the successful emergence of well-adapted clones [144], or reflect clonal cooperation
involved in chemoresistance [132].

On the other hand, clonal architecture might simply reflect some underlying mecha-
nisms responsible for both clonal heterogeneity and chemoresistance. Mutation rate, num-
ber of generations, and effective population size can impact clonal architecture (Figure 3)
and, thus, might provide underlying explanations of the relationship between clonal archi-
tecture and AML prognosis. Specifically, a causal role for the number of generations and,
hence, longer evolutionary history, may explain the association of clonal heterogeneity
with older age and sAML [12,13,17,25]. Increased stemness has been associated with a poor
prognosis in most AML patients [34–36] and is a factor of clonal richness [80].

4.2. New Treatment Strategies

In the past decade, the development of new drugs targeting genetic [145–148] and
functional [149] AML dependencies has led to significant clinical progress. To date, there is
no strong evidence that the clonal or subclonal nature of these targetable hits influences
response to FLT3 or IDH inhibitors in AML [145,150]. In a subset of patients, multiple
targetable clones may be present. In that instance, although it may seem intuitive to target
the dominant or more ancestral mutation, ‘commensal’ effects of minor subclones on non-
mutated leukemic cells may represent a vulnerability for the leukemic bulk, as exemplified
by IDH mutant clones [97,150]. Conversely, targeting an ancestral mutation may allow the
expansion of rare subclones that, in absence of therapy, are encumbered by an untapped
vulnerability to oncogene overdose [151]. Single-agent targeted therapy is not curative
in AML. Primary resistance and relapses frequently emerge from a minor, pre-existing
resistant clone expanding with therapy, though they are often barely detectable prior to
therapy with current methods, as discussed above [121,152]. Interestingly, clonal selection
might sometimes lead to a drug addiction phenomenon, where emerging clones are only
fit under drug exposure. For instance, NRAS/FLT3-ITD double-mutated clones have been
reported under treatment with the FLT3 inhibitor gilteritinib, whereas these mutations
are usually mutually exclusive in the absence of this drug. Drug withdrawal (“drug holi-
day”) often induces regression of these addicted clones [121]. This illustrates the overall
fitness cost of resistance, a well-known phenomenon in bacteria and cancer cells [153–155].
Combining or alternating drugs are two strategies borrowed from antimicrobial therapy
that can effectively prevent resistance by either having deeper on-target effects, targeting
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different vulnerabilities, preventing signaling pathway reactivation, taking advantage of
synthetic or collateral lethality, or killing different cell populations [156]. One of the most
elegant strategies is to use fitness trade-offs of resistance to build an evolutionary trap,
where resistance to drug A sensitizes to drug B and vice versa. This ‘double bind’ strategy
exploiting antagonistic pleiotropy is starting to be systematically investigated in solid
tumors and in AML [157,158].

Predicting drug sensitivity only through molecular profiling has been disappointing
so far in oncology [159]. It is therefore important to predict the best available drug combina-
tions for each patient. Ex vivo drug screening has been reported to predict drug sensitivity
in AML patients [160,161]. However, the limited number of cells and short-term end point
restrict testing many combinations and studying complex and heterogeneous responses on
a polyclonal leukemic population. Indeed, response of the predominant subpopulation
has been predicted to be insufficient to determine the best drug combination [162]. Flow-
cytometry-based drug screening has shown that distinct immunophenotypic populations
have different sensitivity to therapies [38], e.g., a monocytic differentiation is associated
with venetoclax resistance [37,38]. In addition, readouts other than viability might be
important, including differentiation and stemness [163]. Authors recently reported on the
use of sc-RNAseq with single-agent ex vivo drug screening to predict the best combination
at the bulk level [164], but this strategy might also be able to predict which combination
therapy can be effective at the clonal level [162].

Other emerging strategies take advantage of selective pressures that have shaped
the clonal architecture of AML at diagnosis. Clonal interference might point out a strong
selective pressure on the involved oncogenic pathway, thus, representing a targetable
Achille’s heel [144]. One crucial challenge is to prevent the selection and onset of a highly
resistant disease. Contrary to chronic hematologic malignancies, the problem of when
to start treatment to avoid selecting a chemoresistant clone versus delaying progression
is not relevant in AML. Adaptive strategies assume that resistant cells are a minority at
diagnosis because of the fitness cost of resistance [165]. An intensive treatment would
preferentially kill sensitive cells, leading to a competition release and a relapse mostly
composed of resistant cells. Adaptive strategies suggest using a less-intensive treatment
sufficient to stabilize tumor size, while maintaining an effective competition between
sensitive and resistant cells. Though this strategy has shown some clinical relevance in
solid tumors [165–168], the requirement of complete remission to obtain a survival benefit
with nonintensive therapies in AML suggest that adaptive therapy may not be relevant in
this disease [169]. Other strategies less likely to lead to resistance would imply targeting
interclonal cooperation between clones [62,170], or LSCs and their microenvironment [171].

5. Conclusions

Intraleukemic diversity can occur at various scales, from local to global, and take
various shapes that can usefully be described through richness (the number of clones) and
evenness (the relative size of the clones). Multiple factors contribute to clonal emergence,
including mutation rate, evolutionary time, and effective population size. Clonal expansion
can occur due to a fitness advantage or by random drift in a small effective population.
Clonal coexistence can be caused by competition or, instead, cooperation. It may simply
reflect a task repartition with even fitness advantage. Single-cell multiomics will be nec-
essary to determine a multimodal clonal identity. A clonal architecture reconstruction
solely based on genetics may provide a biased view of the true diversity of leukemic cells.
For instance, during therapy, diversity may remain high at the genetic level but converge
to a single, potentially targetable phenotype, as recently observed in solid cancers [172].
High-throughput and combinatorial functional screens will also be necessary to deter-
mine the relative contribution of different evolutionary processes (selection, neutral drift,
cooperation) to leukemic transformation and treatment resistance. These steps will be
crucial for the development of evolutionary informed therapies. Notably, task repartition
might be amenable to evolutionary steering toward evolutionary traps by exploiting fit-
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ness trade-offs. The development of such single-cell approaches and the availability of
an increasing therapeutic armamentarium will then open a new era for AML, where a
deeper understanding of the evolutionary dynamics underlying leukemic transformation
and drug resistance will instruct the design of novel biomarkers and treatment strategies,
improving patient outcome.
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