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Abstract. Evaluation of molecular markers by immunohistochemical labelling of tissue sections has traditionally been
performed by qualitative assessment by trained pathologists. For those markers with a staining component present outside
of the nucleus, there has been no image histometric method available to reliably and consistently define cell interfaces
within the tissue. We present a new method of approximating cellular boundaries to define cellular regions within which
quantitative measurements of staining intensity may be made. The method is based upon Voronoi tessellation of a defined
region of interest (ROI), and requires only the position of the nuclear centroids within the ROI.

Here we describe the VORSTAIN software which has been developed based on the Oncometrics CytoSavant Automated
Image Cytometry System. To demonstrate this technique, human breast cancer sections immunohistochemically stained for
bcl-2 protein and counter-stained with nuclear methyl green stain were evaluated. Intra-observer variation in the measured
values was between 1.5–2.6% and inter-observer variation was between 1.8–4.4%. The primary source of variability was
due to difficulties in interpreting the exact position of the nuclear centroids. Analysis of mean staining densities for each
slide correlated well with subjective scoring performed by two independent pathologists. Using VORSTAIN, significant
variation of staining intensities between regions within the same slide was measured for some sections, indicating a large
degree of heterogeneity within the tumours. The ability to accurately quantitate the degree of heterogeneity of molecular
marker expression within tumours may be a valuable tool in prognostication.
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1. Introduction

In general, most cancers are evaluated by morphologic and histologic criteria, and in many cases this
information correlates with clinical outcome. However, there are many more cases where this infor-
mation may be supplemented by evaluation of molecular markers, resulting in more accurate a priori
determination of treatment response. These markers vary significantly in their function, relating to
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proliferation, angiogenesis, malignant potential, etc. For instance in breast cancer, expression levels
of the HER-2/neu oncogene product [21] and oestrogen and progesterone receptor levels [9], among
others, have been shown to correlate with clinical outcome. It is now clear that in many cases such as
these, patients may receive significant benefit from routine application of the information contained
in these measurements [18,22]. As such, it is important that new techniques become available which
allow the pathologist to perform these measurements easily and reproducibly. With recent advances in
imaging technology, it is now possible to obtain quantitative information on a cell-by-cell basis from
paraffin-embedded formalin-fixed tissue sections.

In the case of antigens which are localised within the cell nucleus, quantitation of immunostaining
may be performed by image analysis using a technique known as “nuclear masking” [5]. Briefly,
DNA is quantitatively stained (i.e., Feulgen staining) and the image of the stained material used to
create a mask of the nuclear boundaries. The immunohistochemical signal is quantitated within these
masks on a cell-by-cell basis and any influence from the DNA-stain removed by calibration techniques.
This results in accurate and reproducible assessment of immunohistochemical staining, and has been
demonstrated for p53 [3], oestrogen receptors [5], and other markers [16].

In the case where there is an extra-nuclear staining component, analysis has traditionally been per-
formed by qualitative assessment by a trained pathologist, resulting in a section-wide score describing
the antigenic expression level [20]. Although this method is economical and time saving, it is highly
subjective and results in much potential information being ignored. Imaging strategies have been
devised which provide quantitative information regarding immunohistochemical staining, but suffer
from several problems. Cytoplasmic boundaries may be manually defined using, for example, a com-
puter pointing device, such that two-colour analysis may be performed based on these masks [23].
However, this is inappropriate in a clinical setting owing to the extreme time requirements. Another
method which has been applied uses quantitative DNA staining to estimate the total number of cells
within a field. Division of the total immunostain density within the field by the estimated number
of cells results in an average staining intensity per cell [4]. However, any information regarding the
variation in staining intensity is lost, although it is not known at this time whether such information
is important.

In either case, image analysis of immunohistochemical staining with an extra-nuclear component has
been difficult due to the lack of a simple, routine and reproducible method of segmenting the tissue.
In the following work we describe a novel method of quantitation based on Voronoi tessellation of
regions of interest within a tissue section, resulting in a consistent measurement of the heterogeneity of
immunostaining. We demonstrate this technique using bcl-2 oncoprotein expression in breast tumours,
as it represents an interesting problem owing to the numerous histologic structures in breast tissue.

2. Voronoi diagrams

The Voronoi diagram is a concept first described in 1850 by Dirichlet and subsequently refined by
Voronoi in 1908 [2]. Although very well characterised, it has taken recent advances in computing
power to develop this technique into useful applications. Thus, over the past decade a wealth of
application have emerged in a number of scientific disciplines (i.e., crystallography, sociology, ecology,
forestry, etc.).

Application of Voronoi diagrams to a set of points in a plane allows the partition of the space into
polygonal regions. The edges of each polygon are the bisectors drawn between its associated point
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Fig. 1. Given a series of points, Voronoi polygons are constructed by drawing the bisectors of the lines joining each pair of
adjacent points in a plane. The example shown here for four cells, illustrates how Voronoi polygons constructed based upon
the centroids of cell nuclei can be used as an approximation of cellular boundaries. The bisectors, however, do not directly
correspond to cell–cell interfaces.

and its neighbour, as is illustrated using the simple example in Fig. 1. The method of construction of
these polygons is as follows.

Let P = (p1, p2, . . . , pn) be a set of points in a two-dimensional Euclidean space, each point being
referred to as a “site”. Each co-ordinate within the plane (or within a specified region of interest)
is then assigned to their nearest site, the set of co-ordinates thus forming the Voronoi region V (pi).
Each region V (i) therefore consists of all points at least as close to pi as to any other site. Those
co-ordinates which have greater than one nearest site form the Voronoi diagram V (P ) for the set of
sites P . V (P ) thus forms a paving of the space according to the positions of the P sites, where
each site has an associated Voronoi polygon in 2D which represents the area of influence of the
site. Construction of the Voronoi diagram may be performed by brute force, however, it is typically
constructed by application of an algorithm which uses successive addition of sites combined with
only local modification of the diagram. This algorithm is described in detail elsewhere [7], but is
illustrated schematically in Fig. 2. Typically, this algorithm is performed on a full microscope field,
and marginal polygons are ignored. The algorithm has been modified such that marginal polygons
were trimmed to regions of overlap with the ROI boundary in order that all polygons within the ROI
could be analysed.

The prerequisite information for construction of Voronoi diagrams are thus simply a defined region
of interest (ROI) and a series of sites within this region. In the case of histologic sections, it is
customary to define the sites as the centroid of each cell nucleus. The resulting Voronoi diagram
therefore contains information related to the inherent structure of the tissue and the notion of cellular
neighbourhoods. This aspect of the method will not be further examined in this treatment, and the
reader is referred elsewhere for further information [6,8,17]. Here, we choose to utilise the Voronoi
polygons constructed from nuclear centroid positions to define cellular interfaces within the tissue. It
must be noted, however, that by definition, construction of the set of Voronoi polygons requires only
the position of the cell centroid and therefore cannot be viewed as a true segmentation method. Rather
it should be viewed as a gross approximation of the cellular boundaries, as is illustrated schematically
in Fig. 1. Other tessellation methods such as Laguerre’s [1], utilise nuclear size to construct a series
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Fig. 2. Construction of a Voronoi diagram using successive addition of sites and local modification of the diagram. In
each successively numbered frame, the solid circle represents the newly considered site. New bisectors are drawn between
existing neighbour sites (open circles) and existing lines are cropped according to their relative position.

of cellular boundaries, however, this method assumes that there exists a constant ratio of nuclear and
cytoplasmic cross-sectional area. Here we assume only that the nuclear centroid can be identified and
that nuclear size is unknown and/or irrelevant. Each Voronoi polygon may be used to define a mask
region approximating an individual cell’s boundaries. To this end, we have developed interactive
imaging software for analysis of biological stains with an extra-nuclear staining component.

3. VORSTAIN interactive imaging software

VORSTAIN is an interactive software which combines the image acquisition and processing capa-
bilities of the CytoSavant image cytometry system (Oncometrics Imaging Corp., Vancouver, Canada)
with Voronoi tessellation techniques. The CytoSavant is equipped with a 12-bit scientific CCD, a
programmable shutter allowing user-control of integration time, a 8-bit to 12-bit look-up table (LUT)
to control camera gain and a motorised stage programmable in the x, y and z directions. Further
details pertaining to the CytoSavant have been described by Garner et al. [11]. Slides analysed with
VORSTAIN must be stained so that the stain to be quantitated (with an extra-nuclear component, such
as cytoplasmic antigens detected by immunohistochemical techniques) must be spectrally separable
from the nuclear stain by the use of optical absorbance filters. For illustrative purposes, we assume
here that all immunohistochemical staining is by DAB and DNA staining by methyl green such that
470 ± 10 nm and 650 ± 10 nm bandpassfilters are required. Slides are mounted on the microscope
stage and the following steps are taken:

Initialisation. Two image channels are defined corresponding to both the nuclear stain and the stain
of interest. Filters appropriate for each are placed in the light path and integration times and limits for
LUT (effectively controlling the gain) are manually adjusted such that appropriate image brightness
and contrast are obtained for each stain. The light levels remain constant through the rest of the
procedure. A calibration image of a blank field is then captured using imaging parameters and a
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filter for the stain of interest. All further images of this stain are then calibrated by subtraction and
normalised to the mode of this image to adjust for any illumination non-uniformities. The remaining
steps in the procedure are described schematically in Fig. 3.

Region of interest selection. Using the imaging parameters and the filter for the nuclear stain, the
slide may be manually scanned for a region of interest. Once found, an image is captured and the
ROI may be defined interactively using one of several pre-defined structure-types: (1) epithelial, used
for regions where the user defines two lines representing the basal lamina and the external membrane.
The extremities of these lines are automatically joined; (2) ductal, used for annular regions where
the user defines an outer ring representing the external membrane and an inner ring representing the
lumen; and (3) other, where the user delineates a region of interest by contouring.

Extraction of nuclear centroids. Once the region of interest has been defined, nuclear centroids
may be defined either manually or automatically. In this study, all nuclear centroids were manually
extracted by interactive mouse-clicking on the centre of each nucleus within the ROI. Automatic
extraction based on interactive thresholding of the nuclear image performed well but overlapping cell
nuclei due to finite section thickness and overlapping of the DAB stain absorbance spectrum caused
significantly higher imprecision than the manual method. The Voronoi diagram is then constructed
based on the set of nuclear centroids and overlaid upon all further images.

Quantitation of the immunohistochemical staining. After switching filters to the 470 nm filter for
imaging of DAB staining, another image using the previously defined parameters is acquired. Up to
ten successive images of each polygonal area are taken in the z-plane (0.5 micron apart); the image
with the highest variance in the pixel intensity histogram taken as the image of best focus. Labelling
of each polygon is performed and cytometric features based on the DAB image are calculated for each.
All cytometric features, images and polygonal overlays are then saved in a file. Following computation
of the cytometric features for each polygon in the ROI, the user may repeat the procedure for any
number of other ROIs.

File structures. Following the analysis of each ROI, cytometric features and images are saved on
disk. A separate file is created which contains the number of ROIs analysed, their type and stage
co-ordinates and pathology. Table 1 contains the complete list of information stored for each slide.

Analysis of cytometric features may be performed from within the VORSTAIN program which,
like the CytoSavant image acquisition program allows the user to display features in both scatterplot
and histogram formats, with features means, standard deviations and coefficients of variation for each
cell type calculated for the selected features.

The VORSTAIN program also allows the import and export of images coupled to their slide co-
ordinates. In this fashion, regions of interest may be identified by a pathologist and subsequently
revisited on the microscope by a technician for analysis.

The measurement of immunohistochemical staining using VORSTAIN was tested using 5 µm thick
sections of primary breast carcinoma. Immunohistochemical labelling of the bcl-2 protein was per-
formed according to Krajewski et al. [12,13] and subsequent counter staining with methyl green
nuclear stain (Fig. 4).
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Fig. 3. A schematic illustration of the use of the VORSTAIN program. Several different structures may be identified on each
slide, and grouped according to their histological type and position on the slide. For each structure, an image of the nuclear
stain is acquired and used to identify the position of nuclear centroids within the ROI. An image of the immunohistochemical
label is acquired and construction of the Voronoi diagram proceeds according to methods outlined in the text. Cytometric
feature analysis is performed for each Voronoi polygon within the region and image/mask pairs and feature data are stored
within a file, and analysis of another region of interest may begin. Statistical analysis of the features/images file may be
performed at a later time.
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Table 1
Information from the analysis of each slide is stored
in two files. The first (file extension ‘.img’) con-
tains cell images, polygonal masks and cytomet-
ric features. The second contains information spe-
cific to the Voronoi diagram, slide co-ordinates and
pathology, with the ‘.cog’ extension

Slide Name/Number
Number of structures analysed

Structure number 1
Histological type
Pathological diagnosis
Architectural parameters
Number of cells within structure

Cell number 1
Cell type
Grey-level image of cell
Binary image of polygon
Slide coordinates
Cytometric features

Cell number 2
...

Structure number 2
...

Fig. 4. Image acquired with VORSTAIN, demonstrating Voronoi tessellation of a region of DCIS immunohistochemically
labelled for bcl-2 oncoprotein.
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Reproducibility of measurement. Three regions of Ductal Carcinoma In Situ (DCIS) of the breast
were selected from a slide which had been previously classified as intensely stained, but had significant
variations between regions such that areas of low, moderate and intense staining could be visually
identified. The light level was adjusted prior to measurements such that the mode of the pixel intensity
distribution of a field acquired from a blank, coverslipped slide was 226, in order to ensure field
illumination between sessions remained constant. For confirmation, a sample of 100 Feulgen-thionin
stained human peripheral blood lymphocytes was acquired (according to Garner et al. [11]) at the
beginning of each session, the mean DNA amount recorded as confirmation that the light level was
consistent.

All statistical analysis was performed on a PC using Statistica (Statsoft Inc., Tulsa, Oklahoma).

4. Results

Table 2 lists results for the three chosen regions. The integrated optical density (IOD) for each
Voronoi polygon within the ROIs was normalised by the polygonal area to give the area normalised
IOD (IOD/area) for each polygon. One-way ANOVA performed on the mean IOD/area distributions
for five independent measurements of each ROI showed that the measurements gave statistically similar
results (p > 0.05) with coefficients of variation (c.v.) ranging from 1.5 to 2.6%. Similarly, ANOVA

Table 2
Reproducibility measurements performed on DCIS components of a primary breast carcinoma. Of each ROI, the number
of cells, mean polygon area, mean IOD/area and standard deviation of IOD/area are listed. Intra-observer c.v. is shown
for each area. p values from one-way ANOVA performed on five repeated measurements on each of three separate regions
within the slide indicated that no significant differences between distributions of area normalised IOD (IOD/area) existed.
A single region (denoted 3299a and 3299a∗) was measured by two independent observers, who were also tested and found
to be statistically the same

Region Trial # of cells Mean area CV area Mean IOD/ Stand. dev. p p
area IOD/area (inter-observer)

3299a 1 282 1268 0.1327 0.0936
2 304 1170 0.1396 0.0979
3 281 1260 0.057 0.1365 0.0950 0.9194
4 259 1374 0.1385 0.0972
5 284 1264 0.1387 0.0958

0.1057
3299a* 1 312 1165 0.1328 0.0984

2 287 1280 0.1338 0.0920
3 347 1053 0.076 0.1379 0.1028 0.9444
4 295 1250 0.1330 0.0982
5 293 1245 0.1344 0.0937

3299b 1 254 1897 0.0117 0.0139
2 251 1937 0.0116 0.0145
3 255 1914 0.013 0.0111 0.0147 0.9778
4 254 1902 0.0119 0.0151
5 258 1869 0.0116 0.0149

3299c 1 340 1423 0.1444 0.0872
2 339 1421 0.1409 0.0869
3 347 1399 0.019 0.1469 0.0920 0.6650
4 359 1354 0.1509 0.0959
5 345 1404 0.1482 0.0916
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performed on five repeated measurements of a single ROI by each of two independent observers
showed a non-statistically significant difference (p > 0.05) and c.v.’s were 1.8–4.4%. Measurements
of IOD alone (not normalised by polygon area) were statistically similar (p > 0.05) when performed
by a single observer, however, a significant difference was found for inter-observer measurements (data
not shown, p < 0.05). ANOVA performed on mean IOD between different ROIs on measurements
by a single observer showed that these were statistically different regions (p 6 0.05).

Correlation with bcl-2 score. A set of five slides was chosen which reflected the range of values
assigned by objective scoring by two independent pathologists. Since it is typically the invasive
component of the carcinoma which is scored, measurements were performed only on ROIs consisting
entirely of invasive carcinoma cells. Slides had been previously evaluated on a scale from 0 to 3 (0 –
none; 1 – mild; 2 – moderate; 3 – intensely stained). Of the slides obtained, only one slide had been
scored as 0, but too few cells were identifiable to perform measurements. Similarly, only a single
slide of score ‘1’ was obtained, and only two fields of invasive carcinoma were visible. For slides
scored as ‘2’ and ‘3’, three regions of invasive carcinoma each were randomly chosen for study. Due
to the fragmented nature of the invasive regions, measurements sometimes had to be performed by
delineating several ROIs within a single microscope field. Data was gathered such that images of
approximately 100 cells per field were acquired. Figure 5 shows the relationship between the mean
IOD/area and the pathologists’ score. Each point represents the mean of a single microscope field (or
ROI) and different slides are represented by different icons. A linear relationship between the mean
IOD/area and the objective score can be drawn by averaging measurements of regions from slides
with similar subjective grading (as shown, r = 0.9995). Similarly, there was an approximately linear
relationship between the highest mean score per slide (as shown, r = 0.9998). There was considerable
intra-slide variation in staining intensity observed in several of the cases. The intra-region (i.e., inter-
polygonal) variation in staining intensity was found to increase with pathologists’ score in a manner

Fig. 5. Relationship between IOD/area and pathologist score for bcl-2 protein expression. Each point represents the mean
of approximately 100 cells analysed from a single microscope field. Five slides were analysed, with up to three regions
chosen for each. The dashed line is drawn through the highest mean score per slide and a solid line is drawn through the
slide means.
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Fig. 6. Relationship between standard deviation of IOD/area and pathologist score for bcl-2 protein expression for the same
regions shown in Fig. 4. A line is drawn through the slide mean values.

strikingly similar to the mean IOD/area, as demonstrated in Fig. 6. The average standard deviation of
scoring also increased linearly with pathologists’ score (r = 0.9998).

5. Discussion

These studies demonstrate that application of Voronoi diagrams to delineate cellular interfaces could
be a useful tool in quantitative analysis of immunohistochemical staining. The VORSTAIN system
described here provides an interactive tool for research requiring the assessment of both the intensity
and heterogeneity of immunolabelling procedures. While this system in no way pretends to be capable
of accurately delineating cytoplasmic boundaries within tissue sections, it provides an architectural-
based method of tessellating a region of interest into cellular neighbourhoods, dependent on the size
of the ROI and number and position of nuclei within the ROI.

Comparison of measurements performed with VORSTAIN highlight the subjective nature of routine
pathological analysis of immunohistochemical staining levels. Significant intra-tumoural variations in
staining density was found in several of the samples, yet this feature is typically ignored when global
scoring methods are used. Although it is not currently accepted that such information is clinically
useful, there is evidence in some cases that heterogeneity is responsible for treatment failure [14,15],
and in others that the pattern of expression of some proteins may be more relevant than the mean
staining levels themselves [19]. VORSTAIN will also allow analysis of expression patterns post hoc,
as all necessary information to analyse site-specificity of staining is recorded, including stage position,
ROI co-ordinates, Voronoi structures, etc.

Since there is little information regarding intra-tumoural heterogeneity of immunohistochemical
markers, it is unknown at this time what sample sizes will be necessary to correctly characterise
individual tumours. It is surmised that this will be largely dependent on the nature of the label to be
detected. For instance it may be envisioned that in the case of some labels, only the maximum staining
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intensity (or over-expression of a specific protein) would be of clinical value in a prognostic sense,
and thus sampling could be restricted to those very intensely staining areas in a tumour. However, it
may also be postulated that for some proteins it is the degree of heterogeneity itself which might be
related to biological aggressiveness. For example in Fig. 2, two slides analysed were scored as ‘2’
by pathological examination, but express very different levels of heterogeneity based on a sample of
three regions. Studies are currently in progress to determine the number of ROIs and mean sample
size necessary to achieve a stable measure of intra-tumoural heterogeneity. This analysis is expected
to be specific to the marker under consideration and is being carried out for a number of proteins
including bcl-2.

The reproducibility studies highlight that measurements of the distribution of IOD measurements,
when normalised for polygonal area are highly reproducible. Coefficients of variation for the mean
values obtained by five separate measurements of each of four ROIs were in the range of 0.015–
0.026. Furthermore, measurements of intra-region heterogeneity were also highly reproducible, such
that the standard deviations of the IOD/area histograms varied by only 1.8–4.4% over five trials. Thus,
this system allows one to measure the global average staining intensity, the intra-slide heterogeneity
and the intra-regional variation in staining intensity in a consistent and objective manner. While
measurements of raw staining intensity (not normalised by polygonal area) were found to be slightly
more inconsistent between observers, this may be attributed to several factors.

The data have been presented as IOD/area, since we found a not wholly unexpected correlation be-
tween polygonal IOD and polygonal area. Considering the three-dimensional nature of tissue sections
and the possible inclusion of several layers of cells within a single polygon, this was deemed justi-
fied. However, normalisation of the IOD by polygonal area produces several theoretical and technical
benefits over reporting raw IOD. The most significant variation occurs due to difficulties in identifi-
cation of nuclear centroids. Some overlap in the spectra of the two stains meaning that there was a
small DAB component within the image used for identification of centroids and there were frequent
problems in discerning whether one was looking at a single oblong-shaped cell or two separate and
overlapping nuclei. In addition, in many cases there were small portions of nuclei sheared during
sectioning that were easily missed. Indeed, the number of cells within an ROI varied up to 20% in the
cases described herein (Table 2). Because the boundaries of the ROIs may be clearly delineated by
comparison, the total area of the ROI remained relatively constant between measurements. Therefore,
the number of cells identified within a given ROI is inversely correlated with both the mean IOD
for the ROI and mean area of individual polygons, as may be noted in Table 2. Moreover, it is
the nature of Voronoi polygons that regions equidistant between two or more different sites are not
associated exclusively with any one nucleus. These boundary points are used solely for delineation
and are not included in the calculation of IOD. Therefore, a greater number of sites would result in
a larger number of pixels used to define the polygons and therefore a lower IOD summed over the
whole ROI. Division of the raw IOD by polygonal area circumvents the preceding problems, as may
be seen in Table 2, where there is no consistent variation in mean IOD/area with cell number. The
authors recognise that measurements of raw IOD may prove useful in the future and are taking steps
to resolve this problem. Routines will be incorporated to subtract overlapping DAB signals from the
image used for nuclear centroid identification and future plans include the evaluation and testing of
various nuclear segmentation routines to more consistently develop a map of nuclear positions prior
to Voronoi construction.

It should be noted, however, that quantitation of immunohistochemical staining is highly dependent
on tissue preparation and staining methods. Strictly quantitative measurements can only be achieved
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when appropriate steps in quality control are taken and therefore may only be applicable to fresh
biopsied samples. For archival tissue samples, or where quality control procedures are lacking, it may
be possible to obtain semi-quantitative assessment of tumour markers using VORSTAIN, if data can be
scaled according to IOD measurements from internal positive and negative controls. Furthermore, the
application of this technique may prove more useful for fluorescence detection of immunuhistochemical
staining. The higher degree of linearity between stain intensity and amount of antigen afforded by
fluorescence techniques combined with the improved ability to separate two stains spectrally makes
this approach more attractive than absorbance methods.

In summary, the application of Voronoi diagrams to quantitative measurement of immunohisto-
chemical staining opens exciting possibilities for the study of prognostic markers. It allows objec-
tive measurement of cytoplasmic (and other) expressed tumour markers and provides a reproducible
method for the assessment of the relationship of tumour heterogeneity to the biological aggressiveness
of tumours.
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