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Abstract
Histopathological images are an important resource for clinical diagnosis and biomedical 
research. From an image understanding point of view, the automatic annotation of 
these images is a challenging problem. This paper presents a new method for automatic 
histopathological image annotation based on three complementary strategies, first, a 
part-based image representation, called the bag of features, which takes advantage of the 
natural redundancy of histopathological images for capturing the fundamental patterns 
of biological structures, second, a latent topic model, based on non-negative matrix 
factorization, which captures the high-level visual patterns hidden in the image, and, 
third, a probabilistic annotation model that links visual appearance of morphological and 
architectural features associated to 10 histopathological image annotations. The method 
was evaluated using 1,604 annotated images of skin tissues, which included normal and 
pathological architectural and morphological features, obtaining a recall of 74% and a 
precision of 50%, which improved a baseline annotation method based on support vector 
machines in a 64% and 24%, respectively.
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INTRODUCTION

Recent advances in microscopical acquisition technology 
have allowed to collect huge numbers of histopathological 
images, an important resource for the diagnosis act as well 
as for pathologist training.[1] The interest in developing 
the suitable image technology to address the automatic 
analysis of this kind of images has rapidly grown over 
the last years.[2-4] As a consequence, a new research area, 
called bioimage informatics, has emerged integrating 
data mining, database visualization, extraction, searching, 
comparison and management of biomedical visual 
data.[3,5] This area combines both image analysis and 

computational techniques to provide powerful tools 
that facilitate high-throughput/high-content analysis of 
biological tissues.[5] 

Automatic annotation of histopathological images is 
a very challenging problem. In contrast with natural 
images, high level annotations are not usually associated 
to particular objects in the image. In histopathological 
images, annotations are related to pathological lesions, 
morphological and architectural features, which 
encompass a complex mixture of visual patterns that 
allow to decide about the illness presence. In general, 
images with the same annotations present a high visual 
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variability, which can be generated by several factors, 
starting with the inevitable uncertainty coming from 
the fact that a very complicated 3D biological structure 
is randomly projected onto a 2D image i.e. the tissue 
must become a solid structure from which surface cuts of 
barely 1-5 µm are obtained. For achieving so, tissues are 
subjected to a series of histological procedures: they are 
initially fixated with a basic aldehyde, then dehydrated, 
embedded and finally cut. This chain of events is very 
susceptible to different kinds of cumulative errors that 
result in histopathological images with a complex mix of 
patterns and sub-patterns that only can be interpreted 
by an expert, even in cluttered biological circumstances. 
In addition, image capturing parameters such as 
environment illumination, exposure time, microscope 
magnification, etc., are a source of image variability. 
Therefore, the relevant visual pathological patterns 
highly change their visual appearance according to their 
spatial location, severity and co-occurrence with others 
biological structures. Figure 1 shows examples of some 
histopathological images of skin tissues with different 
annotations associated with acellular, cellular and 
architectural features, illustrating the visual variability 
problem. 

Commonly, bioimage analysis methods encompass two 
main components: a feature extraction and representation 
process that allows to properly describe the visual image 
content, which ideally should be robust to the visual 
variability problem of histopathological annotations, 
and an interpretable knowledge extraction process, 
capable of linking low-level visual patterns and high-level 
annotations. In this paper we propose a novel strategy 
for automatic annotation of histopathological images, 
which combines a part-based image representation 
(bag of features, BOF), a latent topic model (non-
negative matrix factorization, NMF) and a probabilistic 
annotation strategy that allows to connect visual latent 
topics with high-level annotations. The proposed method 
provides both a robust automatic annotation method 

and a coarse location of them inside the images. The 
proposed method has a remarkable characteristic, 
it is exclusively trained with images that exhibit 
only one histopathological annotation. However the 
resulting annotation model is able to assign multiple 
histopathological annotations to full microscopical 
field of views. Therefore, it is not necessary to collect a 
representative training set that includes images that have 
different combinations of histopathological annotations. 
To the best of our knowledge, this is the first work that 
proposes an automatic annotation algorithm based on a 
part-based image representation and a probabilistic latent 
topic model in histopathological images. The proposed 
approach was evaluated using a set of images of a skin 
cancer, known as basal cell carcinoma, which contains 
regions with ten different histopathological annotations, 
including acellular, cellular, and architectural features (i.e. 
collagen, sebaceous glands, hair follicles, inflammatory 
infiltration, eccrine glands, epidermis) and pathological 
lesions (i.e. nodular basal cell carcinoma, morpheiform 
basal cell carcinoma, micro-nodular basal cell carcinoma, 
cystic basal cell carcinoma).

The paper is organized as follows: section 2 describes the 
proposed method based on BOF and NMF. Section 3 
presents the experimental evaluation performed using a 
basal-cell carcinoma data set and the preliminary results 
obtained for automatic annotation compared with a 
classical model of Support Vector Machines (SVM). 
Finally the conclusions are presented in Section 4.

AUTOMATIC ANNOTATION OF HISTO-
PATHOLOGICAL IMAGES USING NMF

The proposed method for automatic annotation of 
histopathological images is depicted by the Figure 2. This 
approach comprises two main stages: i) training, and, ii) 
prediction. In the former stage, a probabilistic model that 
is able to automatically generate multiple annotations 
for new images (multi-label images) is generated 
from a set of images globally annotated with only one 
histopathological annotation (mono-label images). In 
this stage, a training set of images is represented by two 
matrices F and L, which codify the distribution of the 
visual information and the annotations of the images 
contained in the set, respectively. Note that, L will be a 
sparse matrix with 1 in the annotation assigned to each 
image and 0 in the other cases. The visual information is 
represented using a bag-of-features approach.[6] Therefore, 
F corresponds to a matrix of visual words versus images. 
To obtain an image representation using latent topics, 
the matrix F is factorized in two matrices (W and H), 
using a NMF model that allows to find the probability 
distribution of visual latent topic models (H) in the 
images. Finally, the visual latent topics are linked to the 
annotations distribution (L) using a probabilistic model 

Figure 1: Example of histopathological images globally annotated 
with multiple annotations (multilabeled images). These images 
correspond to the test data set used in this work and they have 
a resolution of 1024 × 768 pixels. Histopathological annotations 
of morphological and architectural features such as epidermis, 
collagen, and hair follicles appear in different images illustrating 
the high-visual variability for the same annotation
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that generates a matrix (C) with the latent representation 
of annotations. The prediction stage also starts with 
the bag of features representation of non-annotated 
images using the same visual codebook constructed 
in the training stage. A new image is projected to the 
latent topic space, given by W, to generate the vector 
Hnew. Finally, the above vector (Hnew) and the latent 
representation of annotations (C) are multiplied to obtain 
the vectors Lnew that indicates the probability that the 
new image has each histopathological annotation. The 
new image is finally annotated with the corresponding 
histopathological annotation associated with one of the 
morphological features or pathological lesions with the 
highest probability by a binarization process.

The details of the bag of features representation of images, 

latent topic model, and automatic-annotation process 
in training and prediction stages, using a probabilistic 
interpretation of non-negative matrix factorization, are 
introduced in the following Subsections.

Bag of Features Representation
The visual representation of histopathological images is 
obtained as a bag of features (BOF).[6] A model inspired 
by the fact that the visual system perceives an object 
by integrating its constituent parts.[7,8] Therefore, this 
representation is basically a histogram of small parts, 
called visual words, which are defined by a clustering 
analysis of small patches extracted from an image 
collection. The general BOF representation approach 
comprises three main stages: feature detection and 

Figure 2: Overview of the proposed method for automatic annotation of histopathological images based on non-negative matrix factorization
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description, codebook or visual vocabulary construction, 
and BOF image representation.[9]

Figure 3 depicts the BOF setup used in this 
work. The hypothesis underneath the proposed 
representation is that all biological structures are also 
represented by a probabilistic model that describe 
the distribution (histogram occurrence) of quantized 
small microstructures described by the visual patches. 
In the first step, the local feature detection consists in 
extracting small square patches that will be used for 
describing the whole visual image content. Herein, we 
extract these patches from a regular image partition of 
8 × 8 pixels without overlapping, which corresponds to 
the minimum resolution that a visual pattern require 
for covering biological structures such as cell nuclei. 
On the other hand, taking into account that from 
a pathologist point of view, visual identification of 
biological microstructures is based on the stain variations, 
we use the discrete cosine transform (DCT) coefficients 

of the RGB color components for describing each patch, 
because this local feature has been used to effectively 
describe this kind of variations in small regions.[10,11] 
Local region descriptor results into a single feature vector 
of 192 dimensions by the concatenation of the three 
color component descriptors.[12-14] The second step, the 
codebook construction, is performed using a k-means 
clustering algorithm over a sample of patches from the 
training image set. The number of clusters, k, corresponds 
to the codebook size. The centroids found with this 
clustering are the visual words of the codebook and the 
visual representation of them can be obtained applying 
the inverse DCT. In this paper the codebook size was 
set to 700, which is a good value according to,[14] where 
a systematic experimentation was performed on similar 
kind of images (histology and histopathology) using this 
visual features. Finally, each image is represented by a 
k-bin histogram. This is accomplished by associating 
the feature vector, describing each patch in the regular 
grid, to the closest visual word in the codebook. Then, 

Figure 3: Bag of feature setup used for representing histopathology images. In this work the local features extraction is performed using 
regular grid extraction and each patch of 8 × 8 pixels is represented by the first coefficients of a discrete cosine transform applied to each 
color component (RGB) independently, the visual codebook is built using k-means with k = 700, and finally each image is represented by 
a histogram of 700 bins normalized with L1 norm
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latent factors can be interpreted as general visual 
patterns. Additionally, each latent factor can be 
associated to a cluster of images,[18] the centroid of the 
cluster given by the columns of W and the assignment 
of images to clusters given by the rows of H, where 
the values can be interpreted as soft image-cluster 
membership functions.

Probabilistic Annotation Model
Following the probabilistic model described in the 
previous subsection, the annotation task can be seen 
as the process of calculating the annotation-vs-image 
conditional probabilities, p(lc|dnew), where lc is the c-th 
annotation and dnew corresponds to the new unannotated 
image. This is done by extending the latent topic model 
of the previous subsection with information from the 
annotations of the training images. This information is 
represented in a annotation-vs-image matrix, L ∈ ℝc × m. 
The first step is to assign histopathological annotation to 
each one of the visual latent topics, i.e., to calculate the 
conditional probability p(lc|zk). This is accomplished by 
applying NMF to the L matrix as follows:

L = CHT (3)

where H is the same matrix obtained from the visual 
latent topic factorization, which is kept fixed during the 
optimization process. After an appropriate normalization 
and according to the discussion of previous subsection, 
C contains the annotation-vs-latent-topic conditional 
probabilities p(lc|zk). The second step is to project the 
new image to the visual latent space, this is done by 
applying NMF to solve:

Fnew = WHT
new (4)

where Fnew is the BOF representation of the new image, 
W is the same matrix obtained from the visual latent 
topic analysis and is kept fixed during the optimization 
process. After an appropriate normalization, Hnew

T 
contains the joint probabilities p(dnew, zt). Finally, the 
conditional probability p(lc|dnew) is calculated using Bayes 
rule and law of total probability as follows:
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assuming that lc and dnew are independent given zk. It is 
easy to see that Equation 6 corresponds to the following 
matrix multiplication:

Lnew = CHT
new (7)

According to the above discussion we propose a 

the histogram is generated with each bin counting 
the number of patches in the image assigned to the 
corresponding visual word.

Visual Latent Topic Analysis
The BOF representation of an image collection could 
be seen as a term-vs-document matrix, F ∈ ℝn × m, where 
rows correspond to visual words and columns to images. 
Each element Fij indicates the frequency of the i-th 
visual word in the j-th image. The goal of latent topic 
analysis is to find a set of latent factors that explain the 
visual content of each image as a mixture of different 
probability distributions of visual words.

NMF is a well known matrix decomposition approach 
that approximates a matrix F ∈ ℝn × m as a product of 
two simpler non-negative matrix factors W ∈ ℝn × k and 
H ∈ ℝm × k as follows:

F = WHT	 (1)

with W containing a set of k latent factors that are 
linearly combined to represent the images in F using the 
coefficients in H.

The solution to NMF involves iterative optimization 
techniques using a cost function that describes the 
‘’closeness’’ of WHT to F. Lee and Seung[15] proposed two 
different cost functions: Euclidean distance and Kullback 
Leibler (KL) divergence. In this work we use the last 
one because of its probabilistic interpretation.[16] The 
optimization problem based on KL divergence is defined 
as follows:

J D F WH F
F

WH
F WH

W H
KL ij

ij
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ijij
ij

T
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,
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An equivalence between NMF and probabilistic 
latent semantic indexing (PLSI) was reported by Ding  
et al.[16] PLSI has a strong statistical foundation that 
models documents as a mixture of term probabilities 
conditioned on a latent random variable.[17] The 
parameters of the model are estimated by a likelihood 
maximization process based on expectation maximization 
algorithm. The mixture calculated by PLSI induces a 
factorization of the original term-document matrix: 
P(wi, dj) = ∑r

k = 1P(wi|zk)P(dj|zk)P(zk), if F  is normalized 
according to Fij ← Fij ⁄ ∑ijFij , it can be interpreted as 
the joint probability p(wi, dj) = Fij. Ding et al. showed 
that the factorizations produced by NMF and PLSI 
are equivalent,[16] with W containing the visual-word-
latent-factor conditional probabilities, p(wi|zk), and 
H the image-latent-factor joint probability, P(dj|zk)
P(zk) = P(dj, zk).

In conclusion, NMF generates a model of the image 
collection that explains the occurrence of visual words 
in images by a mixture of probability distributions 
conditioned on a small set of latent factors. These 
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straightforward method for automatic annotation of 
images based on NMF (A2NMF) that consists in two 
stages (training and prediction) described in Algorithms 
1 and 2. 

EXPERIMENTAL EVALUATION

Basal Cell Carcinoma Data Set
The proposed method was evaluated on a 
histopathological image data set, which was annotated 
by an expert, identifying the presence of architectural or 
morphological features, and pathological lesions inside 
each image. Images correspond to field of views with a 
10X magnification, extracted from Hematoxilyn-eosin 
(H&E) stained skin tissues diagnosed with different types 
of basal cell carcinoma. These images contain a particular 
richness in architectural and morphological features, 
i.e., characteristic arrangements of cells, surrounded by 
several combinations of epithelial and connective tissues, 
also found in many other pathologies.[19]

The entire image set, composed of 655 digital images, was 
randomly divided into training (80%) and test (20%) sets. 
Square subimages that contained single histopathological 
annotations were manually cropped from the training 
image set. Although, there is no typical size for those 
annotations, because of their large intrinsic variability, 
subimage size was estimated as an average value of a 
set of regular regions that the pathologist marked as 
containing a single histopathological annotation i.e. 
square subimages of 300 × 300 pixels. A total of 1, 466 
training subimages were finally obtained, each containing 
a single annotation among the ten possibilities. On the 
other hand, the test set was composed of 138 images of 

1024 × 768 pixels, which, in general, are annotated as 
containing more than one histopathological annotation. 
Latter, images were globally annotated, i.e., the actual 
location of these annotations was not provided, which 
makes the task of automatic annotation even more 
challenging. The data set distribution by histopathological 
annotation is detailed in Table 1.

In order to reduce the visual image variability, a color 
normalization strategy, based on the transfer of the 
statistical properties of the stain contributions, was firstly 
applied.[20] Examples of some morphological features and 
a pathological lesion (collagen, epidermis, hair follicles 
and cystic basal cell carcinoma) are shown in Figure 4, 
in which the large appearance variability exposed by 
them can be appreciated. For example in the same figure 
Epidermis refers to outer layer of skin which comprises 
stratified squamous epithelium, i.e. several layers with 
different morphology of cells. However, typically a whole 
digital image of histopathology have one or more visual 
patterns associated with different morphological and 
architectural features of tissues like the images shown 
in Figure 1, which belong to the test image set. These 
images have in some located regions particular patterns, 
e.g. epidermis or hair follicles, whereas others are sparsely 
distributed without a well defined spatial location, e.g. 
collagen.

Performance evaluation 
The performance of the proposed automatic annotation 
method was evaluated using standard measures such 
as precision, recall, accuracy and f-measure which are 
defined as follows: 
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where tp is the number of correctly predicted annotations, 
fp is the number of wrong predicted annotations, tn is 

Algorithm 1: Training stage for automatic 
annotation of images using NMF
1. � Normalize F matrix to get joint probabilities of visual words 

and images. 
2. � Normalize L matrix to get joint probabilities of 

histopathological annotations and images.
3. � Apply NMF with the visual information of the training data set 

(i.e., F visual word vs. image matrix) to get W and H matrices. 
Equation (1)

4. � Apply NMF with the annotation information of the training 
set (i.e., L annotation vs. image matrix) fixing H matrix to get 
C matrix

Algorithm 2: Prediction stage for automatic 
annotation of images using NMF
1. � Apply NMF with the visual information of new images (i.e., 

Fnew) fixing W matrix to get Hnew. Equation (4)
2. � Multiply C and Hnew matrices to get Lnew (Equation 7)
3. � Normalize Lnew to get conditional probabilities p(lc|dnew). Lc, new 

← Lc, new / ∑cLc, new. Equation (5)
4.  Binarize Lnew assigning 1 if Lc, new > p(lc) and 0 in otherwise

Table 1: Data set distribution per histopathological 
annotation for training and test

Histopathological annotation Train Test Total

Collagen (c) 337 70 407
Sebaceous glands (sg) 108 36 144
Hair follicles (hf) 106 33 139
Inflammatory infiltration (i) 135 90 225
Eccrine glands (eg) 108 22 130
Epidermis (e) 144 39 183
Nodular basal cell carcinoma (nbc) 208 33 241
Morpheiform basal cell carcinoma (mbc) 132 14 146
Micro-nodular basal cell carcinoma (mnbc) 83 9 92
Cystic basal cell carcinoma (cbc) 105 9 114
Total 1466 138 1604
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the number of correctly omitted annotations, and fn is 
the number of missed annotations. 

Note that these measures are not evaluated independently 
by class. This is a better way to evaluate the performance 
in an automatic annotation task where images 
simultaneously exhibit multiple annotations.

As baseline, a state-of-the-art supervised annotation 
method based on support vector machines (SVM) was 
used. We train a one-vs-all SVM model with an RBF 
kernel for each class, the best parameters were chosen 
using a 10-fold cross-validation over the training data set. 
As well the proposed approach, the SVM model uses the 
same BOF image representation for visual content of the 
images.

The performance of the proposed and baseline annotation 
methods was evaluated in both training and testing data 
sets. When evaluating the performance in the training 
data set, 20% of the training images are withheld during 
training and later used to evaluate the generalization 
performance. The purpose of this two-way evaluation was 
to contrast the performance of the annotation methods 
in two scenarios: a simple mono-label annotation 
task, corresponding to annotate images with the same 
characteristics as that ones used for training, and the 
original complex multi-label annotation task.

RESULTS 

An important parameter for a latent-topic model is the 
size of latent space dimension, i.e the number of latent 
topics required for representing the collection visual 

content. Therefore, the effect of varying the number of 
latent topics was assessed on the mono-label annotation 
task. Figure 5 shows the average performance of the 
proposed method in the training data set against the 
number of latent topics (dimension of the latent space). 
With a small number of latent dimensions, the annotation 
model has a high recall, but with low precision, accuracy 
and f-measure. This indicates that the annotation model 
tends to assign a high number of annotations per image. 
The situation improves with a higher number of latent 
dimensions, and all the measures steadily increase beyond 
32 dimensions.

These results suggest selecting a k value as big as possible. 
Lee and Seung in[21] suggested a number of latent topics 
k < nm ⁄ (n + m). The reason is that beyond of this 

Figure 4: Examples of training images with the corresponding histopathological annotations. These images have a resolution of 300 × 300 
pixels and exhibit only one annotation per image

Figure 5: Performance evaluation on training mono-label images 
by each number of dimensions in the latent space
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value the number of parameters in the factorization, 
the maximum number of dimensions in the latent space 
according to the rule (n + m)k, will be greater than the 
number of values in the original matrix, nm. We decided 
to use this limit for the experiments, taking into account 
that n is the codebook size and m is the number of 
images in training stage. This gives a number of latent 
topics k = 438 for the mono-label scenario and k = 473 
for the multi-label scenario. 

The proposed approach was compared against a state-
of-the-art SVM model in both mono-label and multi-
label scenarios. Table 2 shows the average value for 
each performance measure, for both scenarios on the 
respective test set. The results show that the SVM 
model performs better on the mono-label annotation 
tasks. The reason could be because the test images are 
similar to those used in the training stage, i.e. small 
images containing a unique annotation. However, when 
test images contain more than one histopathological 
annotation, the proposed approach takes advantage of 
the intermediate representation in the latent semantic 
space, and outperforms the results reported by the SVM 
learning model. 

The results suggest that the proposed model is doing a 
better work characterizing the high visual variability of 
the different histopathological annotations. A supervised 
learning model, such as SVM, requires a representative 
set of training images that exhibit combination of 

Figure 6: Example of an image from the test data set automatically annotated by the proposed method. The original multilabel image (a) 
is showed with the salient maps of the patches inside the image according with each one of the 10 histopathological annotations: collagen 
(b), sebaceous glands (c), hair follicles (d), inflammatory infiltration (e), eccrine glands (f), epidermis (g), nodular basal cell carcinoma (h), 
morpheiform basal cell carcinoma (i), micro-nodular basal cell carcinoma (j), cystic basal cell carcinoma (k), on the top of each salient 
image is the real membership of the class (v), the conditional probability estimated by the proposed method (p), and the final concept 
binarization value (b)

Table 2: Average in automatic annotation 
performance in both experiments with standard 
performance measures, accuracy (Acc), precision 
(Pr), recall (Rc), and f-measure (F) 

Method Mono-labeled images Multi-labeled images

Acc Pr Rc F Acc Pr Rc F 

SVM-RBF 0.96 0.84 0.69 0.76 0.70 0.26 0.10 0.11 
A2NMF 0.92 0.67 0.46 0.51 0.76 0.5 0.74 0.55 
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morphological and architectural features of tissues 
similar to the ones expected in the test set. In contrast, 
the proposed method initially characterizes the visual 
variability of the training data set in an unsupervised 
fashion. Annotations of the training data set are used 
in a later step to build a probabilistic annotation model 
that connects latent visual topics with histopathological 
annotations. 

One important characteristic of the proposed method 
for automatic annotation is its interpretability. Whereas 
SVM is one of the most powerful models for supervised 
learning, the generated classifiers are not easily 
interpretable. The improved interpretability of the 
proposed method is due to the fact that it is possible to 
map back the generated labels to particular regions of the 
image by each morphological and architectural feature. 
This is accomplished by assigning a histopathological 
annotation posterior probability to each small image 
patch. Figure 6 illustrate the concept mapping strategy: 
a test image is shown in Figure 6a and the corresponding 
probabilities maps of its patches for each of the ten 
histopathological annotations are shown in Figure 6b-
k. Each of these maps have in the top the real binary 
membership value of the histopathological annotation 
(v), the posterior probability of the predicted annotation 
given the image by the proposed method in Equation 
6 (p), and the binary classification of image with the 
corresponding histopathological annotation according to 
the step 4 of Algorithm 2 (b). 

These results are relevant in the biomedical context 
because the high-variability of architectural and 
morphological features in healthy and pathological tissues 
is a common phenomena. In general, it is very difficult 
to have enough examples of each possible structural 
arrangement of the morphological features for training 
a supervised learning model such as the SVM algorithm. 
This scenario is also a more realistic in biomedical image 
domain, where regions of interest in the image, which 
cover an example of biological structures, are commonly 
annotated by the presence or absence of a given set 
of histopathological annotations whereas computer-
aided diagnosis or image retrieval systems require the 
annotation of full images. 

CONCLUSIONS

This paper presented a novel method for histopathological 
images annotation with probabilistic support for 
prediction and spatial location of morphological and 
architectural features in healthy and pathological tissues. 
The method was evaluated in a challenging scenario 
were training images corresponded to small subimages 
exhibiting only one histopathological annotation, 
although test images included multiple annotations. The 
proposed method exhibited an improved performance 

when compared to a state-of-the-art supervised annotation 
method. The distinctive characteristic of the proposed 
method is that it builds an enhanced representation of 
the visual image collection content in an unsupervised 
fashion finding latent visual topics, which encode high-
level visual patterns.

Histopathological images are particularly challenging to 
analyze because of their high variability and complex 
visual structure. The results reported in this paper 
suggest that latent semantic characterization of the visual 
structure is a viable alternative to build competitive 
annotation models for histopathological images.
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