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Our understanding of the neural underpinnings of perception is largely built upon studies employing
2-dimensional (2D) planar images. Here we used slow event-related functional imaging in humans to
examine whether neural populations show a characteristic repetition-related change in haemodynamic
response for real-world 3-dimensional (3D) objects, an effect commonly observed using 2D images. As
expected, trials involving 2D pictures of objects produced robust repetition effects within classic
object-selective cortical regions along the ventral and dorsal visual processing streams. Surprisingly,
however, repetition effects were weak, if not absent on trials involving the 3D objects. These results suggest
that the neural mechanisms involved in processing real objects may therefore be distinct from those that
arise when we encounter a 2D representation of the same items. These preliminary results suggest the need
for further research with ecologically valid stimuli in other imaging designs to broaden our understanding of
the neural mechanisms underlying human vision.

A
lmost all functional magnetic resonance imaging (fMRI) studies that have examined the human neural
substrates of object processing have utilized 2-dimensional (2D) pictures of objects. Although pictures are
ubiquitous in everyday life, we interact with real 3-dimensional (3D) objects far more often than 2D

representations. Moreover, we have little difficulty in distinguishing between the two. Numerous cortical areas
have been identified in the perception of object shape but the neural mechanisms involved in the perception of
real 3D objects have received scant investigation with fMRI. In this study we ‘bring the real world into the scanner’
to examine whether the large body of evidence pertaining to human neural processing of pictorial stimuli is
applicable also to real-world objects.

The processing of object shape in humans is broadly distributed across a number of cortical areas spanning
both the dorsal and ventral visual pathways. Most notably, object-selective neural populations have been iden-
tified within the ventral stream along a swathe of inferior temporal cortex known as lateral occipital complex
(LOC)1, 2. The LOC is dedicated to processing object shape independent of the low-level image features that define
the shape. Area LOC produces robust responses to objects depicted in a range of formats including greyscale
images, line drawings, silhouettes, shapes defined by motion or textures, or when the percept of form is induced by
an illusory contour3. Additional object-selective regions have also been identified within the ‘dorsal’ processing
stream particularly along the intraparietal sulcus (IPS)3–6.

Beyond simple fMRI subtraction designs, neural coding within object-selective cortex has been further inves-
tigated using comparisons between repeated vs. unrepeated objects7–11. The characteristic reduction in haemo-
dynamic response with stimulus repetition has been variously referred to as ‘fMR adaptation’ (fMR-A)7, 12, 13, or
‘repetition suppression’14, 15. fMR-A is a robust effect that is a putative analogue of a similar effect seen in
nonhuman primates in which neurons within infero-temporal cortex show reduced firing rates as a result of
stimulus repetition16, 17. Repetition designs have become a popular methodological approach that contrast with
standard mapping techniques in their ability to probe neural selectivity in higher-order visual areas at a sub-voxel
scale beyond that of traditional fMRI designs12, 15, 18. In the field of object perception, repetition designs have
perhaps most commonly been used to determine whether object-selective neural populations are response
invariant to image transformations such as changes in viewpoint, size or illumination4, 7.
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Repetition effects have been observed in human object-selective
cortex with a variety of 2D image types. These include simplified
monochrome shapes4, silhouettes19 and line drawings that convey
object structure via contours5, 7 or integrated elements20, 21. Repeti-
tion effects have also been demonstrated with ‘richer’ stimuli such as
greyscale photographs or other detailed images that provide more
information about an object’s 3D characteristics via shading and
texture4, 7, 10, 22–24, or that induce the percept of depth so that they
appear to lie in front of the fixation plane19, 25.

While this approach has been highly fruitful, we wondered how
well this large body of results would generalize to realistic 3D objects.
The choice of 2D stimuli to study object recognition has been largely
one of convenience and experimental control. The presentation of
2D images simply requires projection of the images onto a flat screen
viewed through a mirror by the participant who can lie comfortably
in the supine position; moreover, the control of image parameters
(e.g., size, depth, timing) is straightforward. Many additional chal-
lenges arise in the presentation of real world 3D stimuli; however,
many of these problems have been solved in fMRI research on grasp-
ing and reaching where 3D objects are required to elicit normal
object-directed actions26–28. Such approaches involve tilting of the
head and head coil to enable direct viewing of real 3D objects within
reachable space (Figure 1a). These configurations offer realistic

presentations of objects in which (a) all binocular and monocular
depth cues are consistent, (b) retinal size, viewing distance and
expected size are consistent, and (c) the location within reachable
space means that objects may afford real actions such as manipula-
tion29. Given these differences, we investigated whether the effects
obtained with 2D images would be corroborated in a richer, more
realistic context.

Here we used an fMR repetition paradigm to examine both the
overall level of activation and repetition-based effects in the context
of real-world 3D objects compared to 2D pictures. We expected clear
activation and repetition effects within the ventral and dorsal stream
areas identified across prior studies for both stimulus classes.
However, the main question was how similar these effects would
be for 3D objects. We anticipated that the overall level of activation
as well as the strength of repetition effects for the richer, real-world
3D objects would be at least equal to, if not greater than, those for 2D
pictures, particularly within the dorsal stream30. Neurophysiology
research has characterized several areas within the macaque dorsal
stream with 3D object-selective responses, including the anterior
intraparietal area (AIP)31–34, lateral intraparietal area (LIP)35, and
caudal intraparietal sulcus (cIPS)36, areas for which human homo-
logues have been proposed37. These areas are postulated to be
involved in the extraction of 3D shape for visuomotor transforma-
tions associated with the control of action38. Given that human dorsal
stream areas show fMR-A with repeated 2D object images4, 5, and
respond strongly to 3D objects39, such areas may be expected to show
larger responses and stronger repetition effects in the context of real-
world objects.

Results
We investigated neural object representations associated with 2D
pictures and real 3D stimuli within known object selective areas of
human cortex. Previous fMR-A paradigms have reported robust
repetition effects within the LOC when comparing repeated versus
different 2D object images. Here we asked whether real 3D objects
elicit a similar pattern. A slow event-related fMR-adaptation design
(Figure 1c) was employed in which two objects appeared sequen-
tially on each trial. Blood-oxygen-level dependent (BOLD) responses
were compared across trials in which paired objects had the same
identity (‘Repeat’ condition) versus trials where they were not the
same (‘Different’ condition). Repetition effects were measured across
two classes of stimuli: real-world 3D objects and 2D colour photo-
graphs of the same objects (Figure 1a,b) that were matched in all
possible respects for size, distance, viewpoint, and illumination. We
examined repetition effects across the whole brain, and within inde-
pendently defined sub-regions of object-selective LOC.

Region of interest (ROI) analyses. Because of the wealth of past
studies showing object selectivity and fMR repetition effects for
object images in LOC, our initial analyses utilized a region of
interest (ROI) approach to identify LOC within individuals based
on an independent localizer run and then extract its pattern of
activation from separate experimental runs. LOC was localized by
contrasting epochs containing pictures of objects and shapes with
those of their scrambled counterparts (see Methods). In accordance
with early studies that reported fMR-A effects using 2D stimuli7, 19,
we searched within two sub-divisions of LOC: an anterior-ventral
portion in the posterior fusiform sulcus (pFS), and a posterior-dorsal
portion of LOC (LO). Based on previous findings we anticipated
that on Different trials where object identity changes BOLD
responses should be maximal, whereas on Repeat trials, where
paired objects shared the same identity, the BOLD response should
be comparatively attenuated. Importantly, we anticipated that the
pattern of repetition effects would be similar for 2D and 3D
stimuli (if not greater in magnitude for real 3D objects).

Figure 1 | Experimental setup, stimulus items and fMRI trial sequence.
(a) Participants lay supine in the MR scanner with the head supported

within the lower portion (6 elements) of an inclined 12-channel head coil.

A 4-channel flex coil was positioned over the front of the head. The head

coil was tilted forward by ,30o to enable direct viewing of stimuli. 2D

pictures and 3D object stimuli (illustrated above) were mounted by the

experimenter on a turntable positioned over the waist. The experiment was

conducted in complete darkness and all trials recorded using an infra-red

camera. Stimulus presentation duration was controlled by an LED

(illuminator). Participants were asked to identify the objects presented on

each trial while maintaining fixation on a single red LED positioned just

above the stimulus plane. (b) Six sets of 5 stimulus exemplar objects were

used in the fMRI-A experiment (30 in total). A different set of stimulus

items was used in each run to prevent cross-adaptation. 3D stimuli from

‘Set 1’ are depicted in (a) and (c). (c) Example trial sequence. Each stimulus

item was presented for 500ms within a 3 sec inter-stimulus interval.

Stimuli for each upcoming trial were positioned on the turntable during

the 20 sec inter-trial interval.
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To validate our design and procedure, fMRI signals were first
compared on event-related trials involving 2D pictures. Time courses
of fMRI signals on Different versus Repeat trials involving pictures
are displayed in Figure 2, for LO and pFS (left upper and lower
panels, respectively). To quantify repetition effects and compare
them across the different stimulus types, we used an adaptation index
(AI) which estimates response difference between Repeat and
Different conditions relative to the overall fMRI response to a given
stimulus4. Positive index values reflect higher responses on Different
than Repeat trials; negative values indicate the reverse pattern and
values around zero indicate a lack of repetition effects. AIs were
calculated using mean activation (b coefficients) in the Different
versus Repeat conditions for each stimulus type, and the magnitude
of repetition effects contrasted using a one-sample t-test against zero
and paired-samples t-tests.

Figure 3 plots the AIs for 2D pictures and 3D objects in LO and
pFS. To provide meaningful data interpretation in a within-subjects
design40, 41 error bars in Figure 3 represent 95% confidence interval
(CI) of the difference from zero. Robust repetition effects for 2D
pictures was observed within both LO (t(12) 5 3.68, p50.003) and
pFS (t(12) 55.38, p ,0.0001) sub-regions of LOC. These findings
replicate those of previous studies4, 5, 7, 10, 12 and confirm that our
design and stimuli were sufficiently sensitive to demonstrate repe-
tition effects.

Next we examined whether similar effects would be observed on
3D object trials that were randomly intermixed with 2D picture trials.
Time courses of fMRI signals for 3D objects on Different versus
Repeat trials within LO and pFS are displayed in Figure 2 (right
upper and lower panels, respectively). Although a qualitatively small
change in BOLD signal was evident in the time courses of the Repeat
condition relative to the Different condition, the magnitude of this
effect was qualitatively attenuated compared to that observed for 2D
pictures. Planned comparisons confirmed that for 3D objects, repe-
tition effects did not reach statistical significance in LO (t(12) 5 0.88,
p 5 0.392). In pFS, repetition effects also did not reach statistical
significance (t(12) 5 1.99, p 5 0.057), although there was a clear
trend in this direction in this more anterior sub-portion of the LO
complex. Finally, a paired-samples t-test contrasting the AIs for 2D
versus 3D stimuli in each ROI revealed a trend toward significance
between the AIs for 2D versus 3D stimuli in LO (t(12) 5 2.04, p 5

0.06), but no significant differences between AIs in pFS (t(12) 5 0.05,
p 5 0.29).

As an index of between-subject consistency the proportion of
observers who showed greater fMRI BOLD response on Different
versus Repeat trials was calculated for each stimulus type and ROI.
The observed direction of b coefficients (e.g., a binary score reflecting
Different . Repeat, or Repeat . Different) across all participants
was compared to the distribution of scores to be expected by chance

Figure 2 | Timecourse of fMRI signals within LO and pFS for 2D-pictures and 3D-objects. Data are group results (n513). (a–b) Upper panels show

responses within LO for Different versus Repeat 2D-pictures (left) or real 3D-objects (right). (c–d) Lower panels show responses within pFS for Different

versus Repeat 2D-pictures (left) or real 3D-objects (right). (—) Trials in which a different stimulus appeared on each trial (Different condition). (---)

Trials in which identical stimuli appeared (Repeat condition).

www.nature.com/scientificreports
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alone (e.g., a test of the null hypotheses that Different . Repeat in
50% of subjects) using Pearson’s chi-square test. For 2D picture
trials, 12/13 subjects showed effects in the expected direction (i.e.,
Different . Repeat) within LO (x2 5 9.31, p,0.005), and all subjects
showed this pattern within pFS, indicating that the frequency of the
pattern was not attributable to chance alone. Conversely, for 3D
object trials fewer subjects showed effects in the expected direction.
The observed proportions were not significantly above chance levels
in LO (8/13 subjects; x2 5 0.69, p.0.40), or pFS (10/13 within pFS;
x2 5 3.77, p.0.05), although there was a trend toward significance
in pFS.

In summary, we found robust repetition effects for repeated 2D
pictures within both LO and pFS sub-regions of LOC, and this pat-
tern was highly consistent across individuals. Surprisingly, however,
repetition effects were attenuated for trials involving real 3D objects;
we did not observe significant repetition effects within LO or pFS
sub-regions of object-selective cortex. Furthermore, the direction of
effects in Different versus Repeat conditions varied across subjects in
both ROIs suggesting that changes in 3D object identity did not have
a reliable influence on the BOLD response.

Voxel-wise group analyses. Group-based voxel-wise GLM analyses
were subsequently performed to explore repetition effects at the
whole-brain level, and specifically to determine whether there was
evidence for repetition-based BOLD changes on 3D object trials

outside of LOC. We first ran the contrast [12D Different 22D
Repeat] to identify regions showing significant repetition effects for
2D pictures (using a threshold of p,0.005, cluster size threshold
corrected). Figure 4 illustrates the group results displayed on
the cortical surface of a representative participant. As expected,
significant areas of activation were observed within established
regions of object-selective cortex. Large bilateral clusters were
observed along lateral and ventral occipito-temporal cortex,
including fusiform, lingual, lateral occipital and inferior temporal
regions. Similar activation was also evident within ‘dorsal stream
object areas’, extending from the expected location of anterior V3,
dorsally into the intraparietal sulcus (IPS) anterior to the expected
location of IPS-042. In sharp contrast, an analogous comparison for
3D stimuli (using the contrast [13D Different 23D Repeat] at the
same p-value threshold) revealed no significant areas of positive
activation, either cortically or sub-cortically (Table 1). In fact, the
reverse contrast [13D Repeat 23D Different] revealed several
clusters of significant activation consistent with a pattern of
‘repetition enhancement’ (i.e., greater BOLD response on Repeat
than Different trials).

We then searched for areas in which activation was significantly
different for 2D than 3D stimuli (collapsed across Repeat and
Different trials) using the contrasts [12D23D], and [13D22D]
(Table 1). The comparison [12D23D] revealed two small clusters
of positive activation: one cluster centered at the occipital pole (V1)
of the RH calcarine sulcus, and another in the inferior temporal
gyrus of the RH. The comparison [13D22D] revealed no positive
activation. The representation of our 2D pictures and real-world 3D
instances of the same objects therefore shared the same anatomical
loci. Finally, any interaction between Stimulus Type and Repetition
was examined using the contrasts (a): 13D Different 23D Repeat
12D Different 12D Repeat (i.e., greater repetition effects for
3D than 2D stimuli), and (b): 12D Different 22D Repeat 23D
Different 13D Repeat (i.e., greater repetition effects for 2D than
3D stimuli). Brain areas showing greater repetition effects for
2D than 3D stimuli again included largely bilateral swathes of activa-
tion around the lingual and fusiform gyri and superior temporal
sulci, as well as clusters in the left parieto-occipital fissure and middle
frontal gyrus of the RH. The reverse interaction contrast (i.e., greater
repetition effects for 3D than 2D stimuli) revealed no positive activa-
tion clusters.

Comparisons with Foci from Prior Studies. Finally, we sampled
group activation within a number of additional ROIs that correspond
to areas previously implicated in 3D form processing4, 39, 43 (see
Figure 5). Across a total of 14 ROIs spanning early visual, temporal,
and parietal cortex, we found significant 3D repetition effects in just
two areas; one roughly corresponding to V3A, and another within left-
sided ‘LOtv’ – a putative visuo-tactile ‘multimodal’ sub-component
of the LO complex situated along the ventro-lateral bank of the
temporal lobe43. In contrast, significant (or close to significant) 2D
repetition effects were found in almost all of the additional ROIs (see
Supplementary Table 1).

Discussion
Here we used slow event-related fMRI to contrast repetition-related
changes in fMRI responses to 2D pictures of objects with real-world
3D exemplars. Whereas presentation of 2D pictures elicited strong
repetition-related changes in the BOLD response, the same effect was
surprisingly weak, if not absent, in the context of real-world 3D
objects. We searched for repetition effects within discrete regions
of object-selective cortex and across the whole brain. Contrary to
our expectations, manipulating 3D object identity (using Repeated
versus Different objects) did not produce a significant change in
BOLD response within LOC. Further, within this area there was
marked variability across participants in the relative magnitude of

Figure 3 | Repetition effects for 2D pictures and 3D objects within LO
and pFS. The magnitude of repetition effects for each stimulus type within

each region was quantified using an Adaptation Index (AI)4, 93. The AI

represents differences in responses between Repeat and Different

conditions relative to the overall fMRI response, thereby providing a

measure of repetition effects scaled according to activation levels for each

stimulus in each ROI. Positive index values reflect higher responses on

Different than Repeat trials; negative values indicate the reverse pattern

and values around zero indicate a lack of repetition effects. To provide

meaningful data interpretation in a within-subjects design, error bars for

the difference scores are based on the 95% confidence intervals, which

indicate whether or not the average difference was significantly greater

than zero (with probabilities equal to those from the t-test).
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the BOLD response in Repeat versus Different 3D object conditions.
Indeed, within area LO individual participants were just as likely to
show a stronger BOLD response on Repeat object-identity trials for
3D objects than on Different trials for 3D objects – a pattern some-
times labeled as ‘repetition enhancement’2, 7, 22, 24, 44–47. In line with
these results, an analysis of group effects at the whole brain level also
revealed no evidence of fMR-repetition effects on 3D object trials.

The results for real-world 3D objects contrast sharply with those
for 2D object images. In line with previous reports, participants in
our study showed robust fMRI repetition-based changes on ran-
domly interleaved trials that involved 2D pictures. In the ROI ana-
lyses, significant 2D repetition effects were observed within both
LO and pFS sub-regions of LOC, and BOLD response patterns were
highly consistent across observers. Accordingly, whole-brain
analyses revealed robust repetition effects for 2D objects that
spread anteriorly and bilaterally along classical ventral stream
object-selective cortex and dorsally along putative object-selective
cortex in the vicinity of the IPS. Finally, we found evidence for 2D
repetition effects within a number of additional ROIs that corre-
spond to areas previously implicated in 3D form processing4, 39, 43.
The same pattern was not observed for 3D stimuli.

Whole brain analyses confirmed that activation patterns were
strikingly similar for our 2D pictures and 3D object trials, confirming
that our stimulus sets were matched for low-level properties (includ-
ing illumination, size, colour and viewpoint). We further quantified
repetition effects using an adaptation index to account for possible
underlying differences in responsivity across different brain areas to
our paired 2D and 3D stimulus events4. The effect we observed for 2D
vs. 3D stimulus classes is unlikely to be attributable to differences in
eye movement patterns or shifts of attention. Our tilted-head setup
precluded the use of an eye-tracker; however, all participants
reported that they were able to easily discriminate all stimuli while
maintaining their gaze on the fixation point. Moreover, no activation
differences between 2D and 3D objects were found in eye-move-
ment- and attention-related areas, such as the frontal eye fields or
parietal cortex48–50. Further, given that participants merely passively

viewed the stimuli, differences in task-related attentional demands
were also unlikely. It is possible that observers found the 3D objects
‘‘more interesting’’ than their 2D counterparts. If that were the case,
however, then one would have expected to see greater activation in
LOC and other object-related areas with 3D as opposed to 2D and
amplified repetition effects for 3D compared to 2D stimuli51, 52. But
we found exactly the opposite.

Given that explanations based on attention or eye-movements are
unlikely, our results may reflect differences in the way real world 3D
objects are processed as compared to 2D pictures. Real objects differ
from pictures in several important respects: (a) they possess addi-
tional shape information from stereoscopic cues such as vergence
and disparity, (b) both monocular and binocular cues to object shape
are consistent for real objects, and (c) 3D objects are tangible sub-
stances that exist in the environment. The possible contribution of
each of these differences between pictures and real objects to our
observed findings is considered in turn below.

Given that real objects possess additional shape information from
stereoscopic cues compared to pictures, this raises the question of
whether or not the same pattern observed for real objects would arise
with objects defined by stereopsis alone (i.e. stereograms) where the
percept of 3-dimensionality arises entirely from binocular disparity.
Neurophysiological studies have identified neurons that are sensitive
to shapes defined by binocular disparity within early visual areas53–59,
dorsal areas such as MT and parietal cortex60–65, and in the inferior
temporal cortex66–73. To our knowledge, no human fMRI studies to
date have directly compared repetition effects for stereo versus real-
world 3D objects, or stereo displays involving objects with 3D struc-
ture. Kourtzi and Kanwisher25, used stereo displays involving planar
shapes to show that responses within LOC were identical despite
changes in the stereoscopic depth of the shape. Similarly, Kourtzi
et al.,19 found equivalent BOLD responses on trials depicting identi-
cal silhouette shapes and trials where a 2D silhouette was followed by
a stereo silhouette image (so that the shape appeared to lie in front of
the fixation plane). These findings imply that object shape is pro-
cessed similarly within LOC, whether the shape is depicted in a

Figure 4 | Group functional activation for the contrast [2D-Different . 2D-Repeat] in the whole-brain voxel-wise analysis. Activation is overlaid

on the inflated cortical surface of a representative observer. Widespread repetition-based changes in activation for pictures of objects were

observed across temporal and parietal cortex. Conversely, no such activation changes were identified for real 3D objects [i.e., using the contrast

3D-Different . 3D-Repeat] at the same threshold. Dorsal surface (far left), Right Hemisphere (top middle), Left Hemisphere (lower middle) and Ventral

Surface (far right). Sulci are represented in dark grey and gyri in light grey.
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purely 2D format or with additional stereo cues. Importantly, how-
ever, the stimulus objects in these studies had no 3D structure; the
stimuli simply defined figure from ground and provided information
about the outer contours of the shape (i.e., first-order stereo). Unlike
real objects, they contained no information about intrinsic curvature
or shape (i.e., second-order stereo). Therefore, it remains an open
question as to whether the effects observed here for real world objects
would also emerge with stereo displays with objects that possess
different second-order shape cues.

Another important difference between pictures and real objects is
that the binocular and monocular cues to object shape are completely
consistent for 3D objects but are in conflict for 2D pictures. Looking
at a picture, binocular cues indicate that it is completely flat whereas
monocular cues such as shading, texture gradients, occlusion, specu-
lar highlights, and other pictorial cues signify a 3D representation.
It is possible that classical repetition and release effects typically
observed in picture viewing may be attributable to processes
associated with resolving such depth cue conflict. For example, the

additional processing required to decipher object identity from 2D
pictures as a result of cue conflict could result in a higher fMR
response (release from adaptation) on ‘Different’ 2D trials.
Further, the similarity in stereo information conveyed by pictures
may result in stereo cues being discounted in the analysis of object
shape, and other pictorial cues weighted more highly. Given that
some pictorial cues can be more effective than others in conveying
object shape for particular objects, these differences in the cues that
are used across trials would result in greater release from adaptation
on ‘different’ trials, because different sets of neurons, each tuned to
particular pictorial cues, would be engaged in each case. In contrast,
because binocular cues like stereo are such powerful indicators of
object shape in the case of 3D objects (which may therefore be
weighted more highly in the analysis of object shape), the same set
of stereo-sensitive neurons that analysis object shape would be
engaged – even for different objects.

Finally, our preliminary fMRI results raise the provocative sugges-
tion that the presence of real-world objects (i.e., as indicated initially
via stereoscopic cues) invokes qualitatively different computations to
those elicited by 2D images. Researchers in the field of behavioral
psychophysics have expressed long-standing concern about the
extent to which pictures of objects capture the properties of their
real-world counterparts (i.e., their ecological validity), with reserva-
tions as to their appropriateness as stimuli with which to examine the
nature of human object perception74, 75. Indeed, there are clear differ-
ences between pictures and objects that suggest some degree of cau-
tion in assuming equal neuronal response patterns between the two
stimulus classes. Whereas images consist merely of patterns of light
arising from a 2D projection surface, real objects are tangible sub-
stances that exist in 3D space with a definite texture, reflectance,
colour and shape. Real objects, unlike pictures, have an unambiguous
size, distance, and location relative to the observer – factors that are
known to alter single unit responses in macaque inferior temporal
cortex76. Moreover, as discussed earlier all the cues to depth structure,
both binocular and monocular, are congruent for 3D objects. Finally,
real objects have properties that relate specifically to the motives
and needs of the observer – that is, they provide affordances74. An
object placed within arm’s length affords reaching, grasping, and
manipulation. Indeed, fMRI studies demonstrate that information
about 3D form is critical for the visual control of grasping and
manipulation26, 29.

Although comparatively few research studies have been carried
out with real-world objects than with 2D images in humans,
numerous findings point to the possibility that real objects are
cognitively distinct from their 2D counterparts. For example,
patients with visual agnosia often show a ‘real object advantage’ in
which identification of objects depicted as line-drawings or silhou-
ettes is impaired while recognition performance for real objects
remains intact77–81. Similarly, in healthy observers, the value applied
to objects is affected by the format in which they are viewed. For
example, Bushong et al.,82 gave university students a small monetary
endowment that could be used to purchase a range of test objects (i.e.,
food or trinkets). The test items were depicted in one of three for-
mats: text displays, high-resolution images, or actual real-world
objects. Surprisingly, students were willing to pay between 40–61%
more for objects they viewed as real-world exemplars over the same
items depicted in text format or image displays. Moreover, this effect
went away when the objects were placed behind a transparent
barrier, suggesting that the effect was driven by the potential for
interaction with the objects.

In summary, relative to previous research using 2D pictures5, 25, 83,
our findings indicate that the neural analysis of 3D objects may not fit
within the classically defined pattern, and that adaptation and cor-
responding release effects may not be an obligatory consequence of
object repetition manipulations13. Our results further suggest that the
analysis and/or representation of object structure does not proceed

Table 1 | Voxelwise Group Results. Talairach coordinates and
cluster size for identified regions.

Talairach
Coordinates

Cluster
Size

Contrast

Region x y z
Volume
(mm3)

Different . Repeat
2D Pictures: [2D Different . 2D Repeat]
(*See Figure 4)
3D Objects: [3D Different . 3D Repeat]
- - - - -

Repeat . Different
2D Pictures: [2D Repeat . 2D Different]
- - - - -
3D Objects: [3D Repeat . 3D Different]
Right superior temporal sulcus 47 235 3 433
Right insula 39 10 21 204
Right inferior frontal gyrus 49 15 17 542
Right cingulate sulcus / superior frontal gyrus 12 38 28 238

MAIN EFFECTS
Main Effect Stimulus Type [2D . 3D]
Right V1 (posterior calcarine) 9 296 22 318
Right Inferior temporal gyrus 52 218 214 149
Main Effect Stimulus Type [3D . 2D]
- - - - -

INTERACTION EFFECTS
Interaction Effect: 2D-Repetition Effects . 3D-Repetition Effects
[2D Different 1 3D Repeat . 2D Repeat 1 3D Different]

Left lingual gyrus 217 239 26 55
Left fusiform gyrus 220 248 23 647
Right fusiform gyrus 38 253 23 284
Left parieto-occipital fissure 214 260 8 916
Left superior temporal sulcus 250 247 10 557
Right superior temporal sulcus 2 anterior 59 236 9 401
Right superior temporal sulcus 2 posterior 49 248 17 322
Right thalamus 13 224 8 208
Right precuneus 10 248 29 210
Right middle frontal gyrus 47 22 39 195
Interaction Effect: 3D-Repetition Effects . 2D-Repetition Effects
[3D Different 1 2D Repeat . 3D Repeat 1 2D Different]

- - - - -

Regions for each contrast were identified using p,0.005 in a random-effects voxelwise analysis,
and cluster size threshold of 5 functional voxels of 3 mm3 each. ‘‘-‘‘ signifies that no activation was
observed that met threshold. Activated areas for the contrast [2D Different . 2D Repeat] (i.e., 2D-
repetition effects) was extensive and is therefore displayed in Figure 4.
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independently of the cues that define the object – in this case, when
the term ‘object’ is extended to include actual real-world exemplars.
The neural mechanisms involved in the perception of real-world 3D
objects may therefore be distinct from those that arise when we
encounter a 2D planar representation of the very same items.
Furthermore, such processes may also change with environmental
context – such as whether an object is located within reachable
space29. We have highlighted a number of possible routes for future
investigation to further elucidate the cognitive and neural mechan-
isms responsible for the pattern of repetition effects reported here for
2D versus 3D objects. As we have argued, many of the simpler expla-
nations seem unlikely (eye movements, attention), leaving the pos-
sibility of inherent differences in the processing of real objects vs.
photographs. Whether the invariant neural response we observed for
real-world 3D objects is attributable to the additional depth cues
provided by binocular vision or the physical presence of the objects,
the important finding here is that the underlying response pattern is
different from that observed in the context of 2D planar images.
Although many fMRI studies have used repetition designs to probe
neural sensitivity to different types of stimuli, the computational
mechanisms that underlie this effect are not fully understood84–89.
Regardless of which particular mechanisms account for repetition
effects, however, there is no doubt that differential adaptation effects
for 2D pictures and 3D objects reflect differences in neuronal proces-
sing and interactions.

Due to the technical challenges associated with presenting real
world objects within the scanner, we used a slow event-related
design. It is possible that the different pattern of repetition effects
reported here for 2D versus 3D stimuli are specific to the temporal
dynamics of our stimulus presentation. Similarly, the paired adapta-
tion paradigm used in the present study may have a small dynamic
range and in the presence of noise, small but nevertheless significant
repetition effects may be missed. An important question for future

investigation therefore is whether or not the patterns observed here
also emerge in the context of different stimulus durations or alterna-
tive fMRI designs, such as blocked or rapid event-related designs
with more repetitions that yield stronger repetition effects. In any
case, if the statistical power of the present design were to be increased,
then it is likely that the differences that we have already observed
between 2D and 3D stimuli would be amplified rather than reduced.

Our ability to perceive real 3D objects from patterns of light that
project on the retina remains one of the most remarkable and yet
perplexing aspects of human vision. Yet our understanding of the
neural substrate of perception is largely based upon studies that have
utilized 2D images. The conventional use of 2D images in fMRI
research, in particular, may pose underestimated limits to our under-
standing of the neural underpinnings of human vision. The human
visual system has largely evolved to perceive and interact with a
3-dimensional environment, rather than pictures. Surprisingly, how-
ever, there is a paucity of controlled published studies involving real
objects, and fewer still that directly contrast behavioral or fMR mea-
sures across objects and images. We argue here that pictures might
represent a limited class of stimuli with which to characterize the
neural computations associated with human object recognition74.
Our findings for real 3D objects suggest some caution in extra-
polating experimental results based upon the presentation of abstract
or simplified stimuli, or findings drawn from within artificial or
constrained environments. Notwithstanding, these results provide
an important first step in understanding how real-world stimuli
are coded by the human brain and complement a growing body of
research90, 91 emphasizing the importance of studying behavior in
ecologically valid contexts.

Methods
Subjects. Sixteen healthy observers with normal or corrected-to-normal vision
participated in two scanning sessions, one for the fMR-A experiment, and one session

Figure 5 | Loci of additional group-based region of interest (ROI) analyses displayed on the inflated cortex of a representative subject. The cortex is

illustrated from a posterior-ventral viewpoint. Group-based region of interest analyses were conducted at the marked loci in each hemisphere (see

Supplementary Table 1). (A–I): Sites within occipital cortex, intraparietal sulcus, inferior temporal gyrus and premotor cortex in which second-order

disparity-selective neurons are thought to extract and process 3D depth structure from stereo39. Points (H–I) lie anterior to the central sulcus and are not

visible from the above viewpoint. (J–M): Topographically organized areas within the intraparietal sulcus (IPS) areas 1–4, as reported by Konen &

Kastner4. Using a variety of 2D greyscale picture stimuli these authors report significant adaptation effects within IPS1 and IPS2, but not more dorsally

within IPS 3 and IPS4. (K) Loci correspond to LOtv, located along the ventro-lateral bank of the temporal lobe43. Area LOtv is selective for both visual and

haptic object properties and is argued to support abstract 3D shape representations. (A) V3A complex (1); (B) V3A complex 2; (C) ITG; (D) VIPS/V7; (E)

POIPS; (F) DIPSM; (G) DIPSA; (H) dPrCS; (I) vPrCS; (J) IPS1; (K) IPS2; (L) IPS3; (M) IPS4; (N) LOTV. (See also Table S1.)
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for localizing LOC. The data from two subjects was removed due to excessive head
movement (between 2 to . 4mm translation or 2 to .4 degrees of rotation). Data
from an additional participant was eliminated due to technical problems with the
LED illuminators. Informed consent was obtained in accordance with procedures
approved by the University of Western Ontario’s Health Sciences Review Ethics
Board and of the Queen’s University Human Research Ethics Board. All participants
were naive with respect to the experimental hypothesis.

Visual stimuli. Stimuli for the fMR-A experiment comprised of a set of 30 easily
recognizable real 3D objects and a corresponding set of 30 2D coloured photographs
of the same objects (see Figure 1(b)). Although it was not our intention to directly
compare 2D-to-3D stimulus presentations within a given trial, the 2D photographs
were nonetheless closely matched to the 3D objects in aspects of luminance, shading,
position and orientation. Stimulus position and orientation were controlled using
mountings beneath each stimulus that attached to the viewing platform. The rear side
of each stimulus was fitted with a wooden pedestal block. The pedestal blocks fit into a
concave holder attached to the viewing platform. On each trial stimuli were mounted
on a black turntable placed over the participant’s waist and fixed to the scanner bed
(see Figure 1(a)). The turntable had a central divider, yielding two semicircular
platforms for stimulus presentation. The pedestal holders, one fixed to the midline of
each semicircular platform, held the stimuli firmly in place and ensured identical
viewing conditions within and between trials. The 2D stimuli were constructed by
photographing each 3D object with a Sony Alpha DSLR-A100 camera (with flash)
held on a tripod. Each object was photographed mounted on the viewing platform,
with the platform fixed at a comparable angle and viewing distance to that used in the
scanner. High resolution 2D colour images of each object were printed on matte paper
and mounted upon card backing that was cut to match the outline of turntable
divider. The paradigm and all object stimuli were pilot-tested in the scanner with an
inert phantom to ensure that they did not produce any artifacts (i.e., from turntable
movement or object transition).

Procedure and design. The main fMR-A experiment had a 2 3 2 design with the
factors of Repetition (Repeat versus Different objects) and Stimulus Type (2D
pictures versus 3D objects). In the 2D-Repeat condition, both pictures within the trial
depicted the same object, while in the 2D-Different condition the two pictures
depicted different object identities. In the 3D-Repeat condition both stimuli within
the trial were the same real 3D object, while in the 3D-Different condition the objects
presented within a trial had different identities. Each scan consisted of 20 trials, 5 trials
for each of the four conditions. The order of conditions was counterbalanced so that
trials from a given condition were preceded equally often by trials from each of the
other conditions. The 60 stimuli were divided into 6 sets of 10 items, one set per scan
(five 3D objects plus five matching 2D pictures). Each stimulus object exemplar
appeared equally often in each of the four conditions, ensuring that activation
differences were due to the relationship between the paired stimuli and not
differences in the stimulus objects used in each condition. A new set of stimuli was
used for each scan to prevent long-term adaptation. Participants each completed 5–6
scans (depending on time constraints) and the order of scans (object sets) was
counterbalanced across subjects.

The setup (see Figure 1(a)) enabled participants to directly view the stimuli
without the need for a mirror. The experiment was conducted in complete darkness,
except for a small red LED fixation light positioned in-front of the stimulus plane. The
fixation point remained on throughout the entire scan but was too dim to illuminate
the scene. Each trial lasted for 24 s. Picture or object stimuli were presented for
500 ms with a 3 s inter-stimulus interval (Figure 1c). Stimulus duration was con-
trolled by the onset of a white LED ‘illuminator light’ positioned just above and in
front of the turntable. A 20 s inter-trial interval (fixation only) followed each stimulus
pair and served as the baseline against which to compare trial-related neural activity.
An additional 10 s of fixation baseline were collected at the start of each scan, and 20 s
at the end. Timing of stimulus illumination, fixation, and auditory events were
controlled using E-Prime software.

On each trial, stimuli were manually positioned in the turntable by the experi-
menter. The experimenter received an auditory cue via headphones as to which
objects or pictures to mount on the turntable on upcoming trials. Small glow-in-the-
dark shapes attached to the base of each pedestal block enabled the experimenter to
locate the relevant stimulus items. An infra-red MR-compatible bore camera (MRC
Systems GmbH) positioned just behind the participant’s head was used to record the
accuracy of the experimenter’s stimulus presentations. Participants were instructed to
observe and identify the objects presented on each trial, while maintaining their gaze
at fixation throughout the entire experiment, including the stimulus events.

All participants completed a separate LOC localizer scan (2 runs) in which visual
stimuli were presented using a video projector connected to a personal computer
laptop. Stimuli for the LOC localizer consisted of 300 3 300 pixel greyscale images
and line drawings of familiar and novel objects, and scrambled versions of each set,
each with overlapping grid-lines, as described in numerous previous studies5, 19, 25.
The images were back-projected onto a screen which was viewed via a mirror attached
to the top of the head coil. The LOC localizer had a blocked design with sixteen
stimulus epochs and interleaved fixation periods of 16 s each. Twenty images were
presented within each epoch. Images were presented for 250 ms with a blank interval
of 550 ms between stimuli. Participants were instructed to passively view the images
while fixating.

MRI acquisition. Scanning was carried out on a 3 Tesla Siemens Magnetom Tim Trio
imaging system. From the participants whose data were used in the analysis, ten
participants were scanned at Queen’s University (Kingston, Ontario, Canada), and
three participants were scanned on an identical machine at the Robarts Research
Institute at The University of Western Ontario (London, Ontario, Canada), each
using identical scanning parameters. For all participants in the fMR-A experiment,
the functional data were acquired with a T2*-weighted single-shot gradient-echo
echo-planar imaging sequence with interleaved slice acquisition. Rather than using a
standard head coil configuration, we positioned subjects within the tilted the
posterior half (6 channels) of a 12-channel (Siemens) receive-only head coil to enable
direct viewing of the stimuli. Participants scanned in London also had an additional
4-channel flex coil suspended over the front of the head to enhance signal-to-noise
ratio in anterior regions. Foam padding was used to reduce head motion.

For the main experiment the parameters for obtaining functional data were: field
of view (FOV) 5 211 mm 3 211 mm; in-plane resolution 5 3.3 mm 3 3.3 mm;
slice thickness 5 3.3 mm; 32 axial slices; echo time (TE) 5 30 ms; repetition time
(TR) 5 2000 ms; flip angle (FA) 5 78u. For the LOC localizer, subjects were
scanned using a 12-channel Siemens head coil (un-tilted). Scanning parameters for
the localizer were identical to that of the main experiment except for number of slices
(33). Functional data were aligned to high-resolution anatomical images obtained
using a 3D T1-weighted MPRAGE sequence (TE 5 2.98 ms; TR 5 2300 ms; TI
(inversion time)5 900 ms; FA 5 9u; 192 contiguous slices of 1 mm thickness;
FOV 5 240 mm 3 250 mm2).

Data Preprocessing and Analysis. Data were preprocessed and analyzed using Brain
Voyager QX (Version 1.10.2, Brain Innovation, Maastricht, Netherlands). Functional
data were assessed for head motion and/or magnet artifacts by viewing cine-loop
animation and examining motion detection parameter plots following 3D motion
correction algorithms on the untransformed two-dimensional data, aligned to the
functional volume closest in time to the anatomical scan. Any runs where head
motion exceeded 1 mm of translation and/or 1 degrees of rotation were excluded
from the analyses (5 runs in total across all 13 subjects). Functional data were
preprocessed with high-pass temporal filtering to remove frequencies below 3 cycles/
run. Functional volumes were then superimposed on anatomical brain images
transformed into Talairach space92.

Region of interest (ROI) analyses. We first performed ROI analyses to determine
whether neural populations within the LOC respond similarly to repetitions of 2D
and to 3D objects. As in previous object fMR-A studies7, 19, two subregions of the LOC
were identified: LO (lateral occipital) located at the posterior end of the inferior
temporal sulcus, and pFS (posterior fusiform sulcus). For each individual, ROIs were
identified by selecting voxels within these anatomically defined regions of ventral
occipitotemporal cortex that were activated more strongly by intact than scrambled
images of objects presented in the localizer scans. ROIs were isolated by first locating
the peak voxel of activation within each region. ROI size was constrained by setting
the threshold to a desired minimum (t.3.0) before selecting a volume of interest up
to 10 mm3 around the peak voxel. All single-subject analyses were performed on
unsmoothed data. fMRI signal time-courses and b weights were extracted for each
scan and hemisphere. The data were averaged to produce means for each condition in
the two ROIs. These data were then averaged across subjects to yield group results.
Repetition effects were quantified using an adaptation index (AI). The AI is defined
based on responses elicited in the Different versus Repeat conditions using the
following formula: AI 5 (Rdifferent 2 Rrepeat)/(Rdifferent 1 Rrepeat), where Rrepeat is the
mean fMRI signal obtained on Repeat trials and Rdifferent is the mean fMRI signal
obtained on Different trials4, 93. b weights were positive for all subjects in both ROIs;
consequently, no negative values were entered into the denominator term of the AI.
Statistical significance was assessed using single-sample t-tests against zero, and
paired samples t-tests.

Voxel-wise group analyses. We subsequently performed a whole-volume voxel-wise
analysis of the group data to determine the extent to which repetition-based effects
occurred for 2D and 3D objects at the whole-brain level. Data for each subject were
spatially smoothed (6 mm full-width at half-maximum Gaussian kernel), and
separate predictor functions generated for the four experimental conditions.
Predictor functions were generated for the four conditions by convolving a
rectangular wave function with a standard haemodynamic response function. Group
data were then analyzed using a random effects (RFX) general linear model (GLM).
The data were processed using a percentage signal change transformation.

Repetition effects were examined separately for each stimulus category (2D, 3D).
Activation in Different trials was contrasted with that on Repeat stimulus trials (e.g.,
1Different -Repeat). For each contrast, the resultant group activation maps were set
to a minimum statistical threshold (p,0.005) and minimum cluster size threshold of
5 functional voxels of 3 mm3 each, totaling 135 mm3 or greater (based on Brain
Voyager’s cluster threshold estimation plug-in). In addition, we examined whether
there was a main effect of Stimulus Type by searching for areas in which activation
was significantly different for 2D than 3D stimuli (and vice versa) using the contrast
(12D 23D). Finally, the interaction between Stimulus Type and Repetition was
examined using the contrasts (a): 13D Different 23D Repeat 22D Different 12D
Repeat (i.e., greater adaptation for 3D than 2D stimuli), and (b): 12D Different 22D
Repeat 23D Different 13D Repeat (i.e., greater adaptation for 2D than 3D stimuli).
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Comparisons with Foci from Prior Studies. Further to conducting the ROI analyses
for individual subjects, we then compared BOLD responses for our 2D and 3D
conditions across the group as a whole within brain areas identified in previous fMRI
studies of ‘3D object perception’4, 39, 43 (see Figure 5 & Supplementary Table 1).
Group activation for all 4 conditions of the main experiment were contrasted with
Fixation (i.e., 12D Different 12D Repeat 13D Different 13D Repeat). The resultant
activation map was set to a minimum statistical threshold (t.3.0) and displayed on
the anatomical surface of a representative observer. ROI size was constrained by
setting the activation threshold to a minimum (t.3.0) before selecting a volume up to
10 mm3 around the selected voxel (except for IPS points 1–4 in which, due to the
proximity of neighboring regions, a 5 mm3 cluster size was applied to prevent ROI
overlap). MNI co-ordinates of the nine regions involved in processing 3D depth
structure from stereo identified by Georgieva et al.,39 were converted to TAL points
using the MNI to Talairach Coordinate Converter (http://www.bioimagesuite.org/
Mni2Tal/index.html).
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