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Abstract—In the present epidemic of the coronavirus
disease 2019 (COVID-19), radiological imaging modalities,
such as X-ray and computed tomography (CT), have been
identified as effective diagnostic tools. However, the sub-
jective assessment of radiographic examination is a time-
consuming task and demands expert radiologists. Recent
advancements in artificial intelligence have enhanced the
diagnostic power of computer-aided diagnosis (CAD) tools
and assisted medical specialists in making efficient di-
agnostic decisions. In this work, we propose an optimal
multilevel deep-aggregated boosted network to recognize
COVID-19 infection from heterogeneous radiographic data,
including X-ray and CT images. Our method leverages mul-
tilevel deep-aggregated features and multistage training
via a mutually beneficial approach to maximize the overall
CAD performance. To improve the interpretation of CAD
predictions, these multilevel deep features are visualized
as additional outputs that can assist radiologists in val-
idating the CAD results. A total of six publicly available
datasets were fused to build a single large-scale hetero-
geneous radiographic collection that was used to analyze
the performance of the proposed technique and other base-
line methods. To preserve generality of our method, we
selected different patient data for training, validation, and
testing, and consequently, the data of same patient were
not included in training, validation, and testing subsets.
In addition, fivefold cross-validation was performed in all
the experiments for a fair evaluation. Our method exhibits
promising performance values of 95.38%, 95.57%, 92.53%,
98.14%, 93.16%, and 98.55% in terms of average accuracy,
F-measure, specificity, sensitivity, precision, and area un-
der the curve, respectively and outperforms various state-
of-the-art methods.

Manuscript received January 4, 2021; revised March 4, 2021; ac-
cepted April 6, 2021. Date of publication April 9, 2021; date of cur-
rent version June 4, 2021. This work was supported in part by the
National Research Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (MSIT) through the Basic Science Research Pro-
gram (NRF-2020R1A2C1006179), in part by the MSIT, Korea, under
the ITRC (Information Technology Research Center) Support Program
(IITP-2021-2020-0-01789) supervised by the IITP (Institute for Informa-
tion & Communications Technology Planning & Evaluation), and in part
by the NRF funded by the MSIT through the Basic Science Research
Program (NRF-2019R1A2C1083813). (Corresponding author: Kang Ry-
oung Park.)

The authors are with the Division of Electronics and Electrical
Engineering, Dongguk University, Seoul 04620, Korea (e-mail:
malikowais266@gmail.com; lyw941021@dongguk.edu; tahirmahmood
@dongguk.edu; adnanhaider@dgu.ac.kr; haseebsltn@gmail.com;
parkgr@dgu.edu).

Digital Object Identifier 10.1109/JBHI.2021.3072076

Index Terms—Lung disease, computer-aided diagnosis,
artificial intelligence, classification, COVID-19 recognition.

I. INTRODUCTION

THE RECENT coronavirus disease 2019 (COVID-19) epi-
demic has brought the whole world to the verge of destruc-

tion. On March 11, 2020, the World Health Organization (WHO)
asserted COVID-19 infection to be a global pandemic [1]. Ac-
cording to their report, as of February 25, 2021, approximately
111762965 patients of COVID-19 virus have been confirmed, in-
cluding 2479678 deaths with an average mortality rate of 2.22%
[2]. Meanwhile, various trial vaccines are still undergoing devel-
opment and clinical assessments to ensure their efficiency and
safety before they can be officially approved. For the diagnosis of
COVID-19, the reverse transcription-polymerase chain reaction
(RT-PCR) test is considered the reference standard [3]. However,
subjective evaluations and stringent testing requirements may
restrict the speed and accuracy of screening people suspected to
be infected with the virus. In this regard, radiological modalities,
such as X-ray and computed tomography (CT), have exhibited
effectiveness in the early diagnosis of COVID-19 [3], [4]. A
recent clinical study [3] showed that chest CT image-based
analysis achieved a 97% sensitivity for COVID-19 detection
with reference to RT-PCR results. Similar observations have
also been reported in [4], [5], implying that radiological imaging
modalities may be useful in the early diagnosis of the disease.
However, radiologists have to devote considerable time and
effort to assess radiographic scans before effective diagnostic
decisions can be made. Therefore, in epidemic regions with
limited resources, this method may not be suitable.

Recent breakthroughs in artificial intelligence (AI) technol-
ogy have significantly contributed to the advancement of tools
for computer-aided diagnosis (CAD) [6]–[20]. In particular,
the methods for deep learning-driven CAD have exhibited re-
markable performance gains in various medical fields, including
radiology. These state-of-the-art methods can mimic the human
brain’s capability to make effective diagnostic decisions sim-
ilar to those of medical professionals. Moreover, these tech-
niques can outperform real-time population screening applica-
tions where human assessment is not feasible. The generalized
workflow cycle of a CAD tool is shown in Fig. 1 to illustrate its
clinical usability in making diagnostic decisions.

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

https://orcid.org/0000-0001-7679-081X
https://orcid.org/0000-0003-3253-7593
https://orcid.org/0000-0003-2240-2708
https://orcid.org/0000-0002-3562-3369
https://orcid.org/0000-0002-1214-9510
mailto:malikowais266@gmail.com
mailto:lyw941021@dongguk.edu
mailto:tahirmahmoodpenalty -@M @dongguk.edu
mailto:adnanhaider@dgu.ac.kr
mailto:haseebsltn@gmail.com
mailto:parkgr@dgu.edu


1882 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021

Fig. 1. Simple workflow diagram of computer-aided diagnosis (CAD)
tool for visualizing clinical interpretation and usability in making effective
diagnostic decisions.

In general, among the different deep learning algorithms,
convolutional neural networks (CNNs) have attracted consid-
erable attention in medical image processing applications. In
the present COVID-19 outbreak, these CNN models can also be
trained to differentiate between positive and negative cases in
a real-time environment using radiographic data, such as X-ray
or CT images. Though, to train CNN models, independent data
are necessary—a requirement which can regarded as a major
constraint in the deep learning domain. The internal structure
of these models mainly includes a stack of convolutional and
fully connected (FC) layers to extract deep features and then
perform classification, respectively. Other layers are also present
for different purposes, as defined in [21]; however, convolutional
and FC layers are the core components that incorporate a number
of trainable parameters. These parameters are initially trained
using a dataset. Subsequently, a trained network capable of
analyzing testing data and yielding desired results is derived.

Many researchers have recently proposed the use of different
deep learning-based CAD methods to recognize COVID-19
pneumonia through radiological imaging modalities [6]–[20].
In most of the existing studies, deep classification networks act
as black boxes that merely provide the final diagnostic decision
(i.e., whether or not a patient is infected with COVID-19)
without providing supplemental information that may assist
radiologists in validating the CAD. To give visual insight about
the decision of our model, the evolution of deep features was
visualized as an additional output with the diagnostic decision.
Moreover, these existing methods only employ single-modality
data (either X-ray or CT scans) with including limited number
of COVID-19 positive samples. In contrast, in this study, large-
scale heterogeneous radiographic data, including both X-ray and
CT scans, is considered by combining a total of six publicly
available datasets [24]–[28]. Although, the total number of sam-
ples are not significantly large in context of a recent deep learn-
ing paradigm. However, in context of the recent pandemic of
COVID-19 infection, our study included sufficient large number
of positive samples in comparison with existing methods. Table I
presents a brief comparison based on the number of positive
and negative samples between proposed and various state-of-
the-art methods. Finally, an efficient multilevel deep-aggregated
boosted network (MDA-BN) including the optimal number of
trainable parameters is proposed. Quantitative analysis shows
the superior results of our model over various existing methods.
The key contributions of this study are presented as follows:

1) To the best of our knowledge, this is the first study
that simultaneously considers large-scale heterogeneous

TABLE I
COMPARISON BASED ON NUMBER OF POSITIVE AND NEGATIVE SAMPLES

BETWEEN PROPOSED MULTILEVEL DEEP-AGGREGATED BOOSTED
NETWORK (MDA-BN) AND VARIOUS STATE-OF-THE-ART METHODS. “N/A”

MEANS “NOT AVAILABLE”

radiographic data from X-ray and CT images to diagnose
COVID-19 infection without influencing the overall diag-
nostic. CT and X-ray images are not combined together to
be fed into the MDA-BN model. Instead, either X-ray or
CT image is used as input to our MDA-BN model. Orig-
inally, the proposed model is trained for heterogeneous
radiographic data including both X-ray and CT images
which can be obtained from different patients. It means
that we do not consider the strict requirement of both
X-ray and CT images from same patient. In addition, our
trained model does not require both X-ray and CT images
at the same time, but it uses only single modality data
(either X-ray or CT image) in the testing phase.

2) For optimal memory consumption and fast execution
speed, we utilize the strength of depth-wise (DW) convo-
lution in our network design and propose an optimized
deep network (with a total of 1.76 millions parame-
ters) specifically for processing heterogeneous COVID-
19 data.

3) Besides the use of existing blocks (Blocks A and B) in
our network design, a new deep-aggregated block (Block
C) is mainly introduced to incorporate the contribution of
low-level and intermediate-level features with high-level
deep features and provide an additional performance gain
at a minimal increase in the total number of parameters.
Additionally, our model leverages multistage training and
multilevel deep-aggregated features in a mutually bene-
ficial manner by performing individual training of both
subnetworks named as boosted network (BN) and multi-
level deep-aggregated network (MDA-N) to optimize the
overall diagnostic performance.

4) Intermediate feature maps are visualized as a stack of
multiple class activation map (CAM) images along with
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the diagnostic decision. Such additional output images
provide visual insight into the conclusion reached by
CAD and may assist radiologists in cross-validating the
decision, particularly when such predictions are ambigu-
ous.

5) Finally, to conduct future research and fair comparisons,
the proposed model/code has been made publicly acces-
sible freely via [22].

The remainder of this paper is organized as follows. Section II
presents the background of different CAD methods related to
COVID-19. Section III explains the proposed methodology by
focusing on network architecture and optimal training scheme.
Section IV briefly discusses the experimental setup and results.
Finally, Section V summarizes the conclusion and future work.

II. RELATED WORK

This section explores the literature on state-of-the-art methods
related to AI-driven CAD [6]–[20] for the COVID-19 infection.
In particular, the main objective of previous studies has been to
analyze the given radiographic data and identify discriminative
patterns that can differentiate between COVID-19 positive and
negative patients. These studies mainly applied segmentation,
detection, or classification algorithms to reach their final diag-
nostic decision. For example, in a recent study, Minaee et al.
[6] prepared a binary class dataset consisting of 5184 chest
X-ray images. Then, they performed transfer learning to four
existing CNN models, DenseNet121 [44], SqueezeNet [39],
ResNet18 [42], and ResNet50 [42], to check their individual
results in detecting the COVID-19 infection. Similarly, Khan
et al. [7] also analyzed the performance of four different models
(i.e., VGG16 [40], VGG19 [40], ResNet50, and DenseNet121
[44]) for diagnosing patients as COVID-19 positive or negative
based on X-ray scans. Given results demonstrated the superior
performance of VGG16 and VGG19 compared with the other
two networks above.

In another study, Martínez et al. [8] evaluated the performance
of the NASNet [41], an existing deep network, in recognition of
COVID-19 infection based on chest X-ray scans. Thereafter,
Misra et al. [9], Farooq et al. [10], and Ardakani et al. [11]
used different versions of the ResNet model in their studies to
distinguish COVID-19 positive patients from negative patients
and those with other types of disease. In [9], three ResNet
models were combined and fine-tuned using X-ray dataset to
discern COVID-19 positive and negative patients, and patients
with pneumonia using a one-on-one framework. Subsequently,
Farooq et al. [10] presented a three-step approach to fine-tune
the ResNet50 architecture in three different stages. In each stage,
the same data with different spatial sizes were used for network
training. In [11], the performance of ten different CNN models
was analyzed to discern COVID-19 patients based on their chest
CT scans. According to the results, the ResNet101 [42] and
Xception models achieved superior performance over all the
other networks.

In the context of limited datasets, Oh et al. [12], Singh
et al. [13], and Li et al. [14] devised methods to perform
the optimal training of a deep network. In [12], the authors

applied patch-level training rather than using the entire X-ray
image at once. In the preprocessing stage, a FC dense network
was used to segment the lung regions. Similarly, Singh et al.
[13] presented a novel training method to obtain an optimal
pre-trained CNN model. Subsequently, Li et al. [14] presented
a self-supervised learning method to perform optimal training
of a COVID-19 recognition model using CT dataset. In another
study, Pereira et al. [15] combined handcrafted and deep features
for diagnosis of COVID-19 positive patients using X-ray images.
Additionally, a resampling algorithm was proposed to perform
data augmentation and overcome the class imbalance problem.

In recent studies [16], [17], multiclass diagnostic methods
were proposed to further make class-specific decisions in the
case of negative prediction. For example, Das et al. [16] pre-
sented an optimized version of the standard InceptionNet model
[45] to categorize input X-ray scan into one of the following
four categories: 1) COVID-19 positive, 2) pneumonia, 3) tu-
berculosis, and 4) healthy case. Subsequently, Khan et al. [17]
proposed another deep network, named CoroNet (including the
Xception network and additional dense blocks), to categorize
X-ray data samples into four different classes. To perform a
comparative analysis of existing CNN models for COVID-19
infection detection, Asnaoui et al. [18] evaluated the collective
response of seven different networks using X-ray images. All the
networks were trained to classify the given X-ray scan into one of
the following categories: 1) bacterial pneumonia, 2) COVID-19
positive, and 3) healthy case. The experimental results show
the higher performance of InceptionResNet [43] compared with
other networks. Thereafter, Brunese et al. [19] used two ex-
isting VGG16 networks in sequential order. The first VGG16
network differentiated between healthy and infected cases, and
the second model further distinguished between COVID-19 and
other type of infections. To reduce the number of trainable
parameters, Owais et al. [20] utilized the capacity of DW
convolution and proposed a light-weighted ensemble network
using X-ray and CT data. However, in [20], the performance
of each radiographic dataset was evaluated separately. Besides
the automated diagnosis of COVID-19, there are some other
studies [32]–[34] related to other medical diagnostic domains
based on the fusion of different CNN models. These methods
mainly utilized the concept of deep information fusion [35] to
improve the overall CAD performance. We also utilized the
strength of deep information fusion in this study and proposed
an optimal MDA-BN model to recognize COVID-19 infection
from large-scale heterogeneous radiographic data. Our method
exhibits superior performance in terms of accuracy and compu-
tational cost over various state-of-the-art methods.

III. PROPOSED METHOD

This section presents the overall development cycle of the pro-
posed framework. In the first step, the overall architecture of the
proposed MDA-BN model is defined. Thereafter, the selected
training mechanism for performing optimal training in this study
is explained. A detailed explanation of each development stage
is provided in the subsequent subsections.
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Fig. 2. Comprehensive workflow diagram of proposed diagnostic
framework in training and testing phases.

A. Overview

A comprehensive workflow of our method is presented in
Fig. 2. The complete network architecture is designed based on
the following two objectives: 1) optimal memory consumption
and 2) fast execution speed at a minimal cost in terms of error.
To achieve these two characteristics, the capacity of the basic
building units (blocks A and B; Fig. 3) of MobileNet (MN) [23]
was employed in developing the first subnetwork architecture
called BN. Subsequently, a new deep-aggregated block (block
C; Fig. 3) was introduced and a second subnetwork architecture,
i.e., MDA-N, was defined. The proposed MDA-N incorporates
low-level and intermediate-level structural information with
high-level deep features (obtained from the first BN) for making
the final diagnostic decision. The experimental results show that
the conjunction of low-level, intermediate-level, and high-level
features results in additional performance gain at a minimal
computational cost. Additionally, in the testing phase, the de-
fined deep-aggregated block generates the visual representation
of multilevel features as a stack of multiple CAM images (levels
1–5; Fig. 2) for each input data sample. Such supplemental
information can visually validate the CAD decision and further
assist radiologists in identifying the lesion regions.

B. Model Development

The comprehensive architecture and layer-wise configuration
of the proposed MDA-BN model are presented and summarized
in Fig. 3 and Table II, respectively. The MDA-BN architecture
includes two subnetworks, namely BN and MDA-N, responsible
for multilevel features extraction, and a multi-layer perceptron
(MLP) classifier to reach the final diagnostic decision based
on extracted features. Both subnetworks comprise a total of
16 building blocks (including 6, 5, and 5 blocks of A, B,
C, respectively) with some additional layers (labeled as conv,
DW-conv, and avg. pooling layers in Fig. 3). The structure and
workflow of BN, MDA-N, and MLP-classifier are explained in
detail in the following.

1) BN Structure and Workflow: To exploit the high-level fea-
ture (f6; Fig. 3), the input image passes through BN, comprising
a stack of multiple A and B building blocks and some additional
layers. Blocks A and B (top left corner; Fig. 3) consist of three

TABLE II
LAYER-WISE CONFIGURATION DETAILS OF OUR PROPOSED MODEL. (N:
NUMBER OF NODES IN FC LAYER; NOTATIONS: x2, y = x× x× y, AND

x2 = x× x)

∗Input feature vectors fed to Depth con. layer.

layers: 1) an expansion layer in which a 1× 1 convolutional layer
increases the depth of the input tensor by a factor of six; 2) a 3× 3
DW convolutional layer that further processes the input tensor
without changing its depth size; and 3) a projection layer (1 × 1
convolutional layer) that reduces the depth of the input tensor
by a factor of six. The key difference between blocks A and B
is the presence of a residual connection in block B to avoid the
gradient-vanishing problem. Mathematically, these three layers
transform the wi × hi × di input tensor (F i) as follows: wi ×
hi × 6di → wi/2 × hi/2× 6di → wi × hi × di (in block
A) and wi × hi × 6di → wi × hi × 6di → wi × hi × di (in
block B).

In particular, the use of DW convolution in blocks A and
B results in optimal memory consumption and fast execution
speed; therefore, these building blocks are employed to develop
the network architecture. In general, a standard convolutional
layer [21] transforms a wi × hi × di input tensor (F i) into a
wi × hi × dj output tensor (F j) by applying a convolutional
kernel, K ∈ Rk×k×di×dj . In this operation, a total computa-
tional cost of wi × hi × di × dj × k × k is required [21]. In
contrast, a similar operation is performed with a total computa-
tional cost of wi × hi × di(k

2 + dj) in the DW convolutional
layer. Thus, the DW convolution operation compared with the
standard convolution operation reduces the average computa-
tional cost by a factor of k2. In the proposed model, each DW
convolutional layer mainly includes a 3 × 3 kernel size (k = 3);
hence, the total computational cost is eight to nine times lower
than that of the standard convolutional layer.
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Fig. 3. Overall architecture of proposed multilevel deep-aggregated boosted network (MDA-BN). (B.N: batch normalization layer; CReLU: clipped
rectified linear unit layer).

Initially, a simple convolutional layer followed by a DW
convolutional layer (each layer has a total of 32 3 × 3 filters)
processes the input image (F ) and generates output activation
maps with a size of 112 × 112 × 32. Then, a projection layer
(1 × 1 convolutional layer with a total of 16 filters) further
processes this output (generated by the previous DW Conv layer)
and transformed it into another output tensor with a size of
112 × 112 × 16.

After these layers, a stack of 11 building blocks (Blocks
A-1–A-6 and B-1–B-5; Fig. 3) exploit more abstract features.
These blocks process the output tensor of the preceding layer
or block them one by one; ultimately, an output tensor with a
size of 7 × 7 × 320 from the last building block (Block A-6;
Fig. 3) is obtained. Thereafter, an expansion layer (a 1 × 1
convolutional layer with a total of 1280 filters) increases its
(i.e., output of Block A-6) depth and converts into another
7 × 7 × 1280 activation map, which is further transformed into
a single 1 × 1 × 1280 feature vector (f6; Fig. 3) after passing
through a 7 × 7 average pooling layer.

2) MDA-N Structure and Workflow: To exploit the low-
level and intermediate-level features (f1–f5; Fig. 3), the in-
put image passes through MDA-N, comprising a total of five
deep-aggregated blocks (Blocks C-1– C-5; Fig. 3). Block C is
mainly designed to incorporate the contribution of low-level
and intermediate-level features (f1–f5; Fig. 3) with high-level
deep features (f6; Fig. 3) in making more effective diagnostic
decision. In an ablation study, experimental analysis has also
proved that the aggregation of multilevel features offers an
additional performance gain at a minimal increase in the total
number of parameters.

Block C includes a projection layer (1 × 1 convolutional
layer) that transforms the three-dimensional input tensor into

a two-dimensional (2D) activation map. Then, a FC layer iden-
tifies the larger patterns in the 2D activation map by combining
all the feature values into a one-dimensional feature vector,
f i. Mathematically, this block processes the wi × hi × di in-
put tensor (F i) as follows: wi × hi → 1 × 1× k. Here, k is
the growth rate hyperparameter that controls the weights of
the low-level and intermediate-level features (i.e., f1–f5) and
linearly increases from the low-level to high-level features. In
addition, two additional layers, batch normalization (B.N) and
clipped rectified linear unit (CReLU), are included after each
convolutional layer.

In Fig. 3, the given input image is observed to be progressively
downsampled into five different spatial sizes (i.e., 112 × 112,
56× 56, 28× 28, 14× 14, and 7× 7) after passing through mul-
tiple A and B building blocks. To benefit from the different res-
olutions, these intermediate tensors of five different spatial sizes
were selected to extract additional low-level and intermediate-
level features (f1–f5) by including a total of five deep-aggregated
blocks (Blocks C-1– C-5; Fig. 3) in five different locations
(Blocks A-1, A-2, A-3, A-5, and the last 1 × 1 convolutional
layer in Fig. 3). Thus, MDA-N generated a weighted contribution
of multiresolution feature maps (F1–F5; Fig. 3) as low-level and
intermediate-level features (f1–f5; Fig. 3). In classification part,
these multiresolution features (f1–f5) jointly contribute with
high-level deep features (f6) and make a diagnostic decision
for input image.

3) MLP Classifier: In this stage, a depth concatenation layer
combines all these low-level, intermediate-level, and high-level
feature vectors (i.e., (f1–f6) along the depth direction and pro-
vides a feature vector, fLIH , with a size of 1 × 1 × 1310.
Furthermore, a MLP classifier consisting of a stack of four
additional layers (FC6, FC7, SoftMax, and classification layers;
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Fig. 3) reach the final diagnostic decision based on fLIH .
The initial FC6 layer (including 32 nodes) further explore the
more discriminative features in fLIH and transform into a low-
dimensional feature vector, f

′
LIH , with a size of 1 × 1 × 32.

Then, the FC7 layer, including two nodes (the same as the total
number of classes), identify the larger patterns in f

′
LIH by

multiplying f
′
LIH by the trainable weights (W ) and adding

a bias vector (b) (i.e., f = W · f
′
LIH + b , whereas f =

[fi|i=12] ). Subsequently, the SoftMax layer applies the soft-
max function as f

′
i = efi/

∑2
i=1 e

fi [21] and transforms f in
terms of probability. Finally, the classification layer assigns each
feature value (f

′
i) to one of the two mutually exclusive classes

(i.e., COVID-19 positive or negative) using a cross-entropy
loss function, LCE (W , b) =

∑2
i=1 f

∗
i × ln(f

′
i) [21]. Here, f ∗i

indicates the actual class label of the ith class during the training
procedure, and W and b represent all the trainable parameters.

C. Multistage Network Training

The multistage training of the network was performed to
exploit multilevel deep-aggregated features and obtain the op-
timal learnable parameters of the proposed model. In the first
phase, the BN model was independently trained with the defined
training (denoted as 〈[FT ]

p
i=1, [lT ]

p
i=1〉) and validation (notated

as 〈[FV ]
q
i=1, [lV ]

q
i=1〉) dataset having p training and q validation

images. After training, the optimal fine-tuned weights (w
′
HL) of

the BN (first subnetwork) were obtained for the target domain.
In the second phase, these optimal weights (w

′
HL) were used to

initialize the weights of the BN in the proposed MDA-BN model.
Additionally, the entire network was trained to obtain the optimal
weights of the MDA-N (second subnetwork) while freezing all
the BN weights by setting the learning rates to zero. The exper-
imental results exhibit the superior performance of the adopted
training approach compared with the conventional end-to-end
training method. In addition, an independent validation dataset,
〈[FV ]

q
i=1, [lV ]

q
i=1〉, was used to stop the training after achieving

optimal convergence in both the subnetworks. Upon satisfying
this criterion and if there is no increase in the validation accuracy
after a certain number of successive epochs, the network training
is automatically stopped. Therefore, training is performed up
to the optimal number of epochs (rather than completing a
time-consuming training in all epochs) to avoid the overfitting
problem. A simplified workflow of the defined training method
is also presented as a pseudo-code in Algorithm 1. The total loss
function of the proposed MDA-BN model can also be interpreted
as follows:

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min
w

′
HL

LCE (ψ1 (wHL, FT , Fv) , lT , lv) , Phase 1

arg min
w

′
ML

LCE

(
ψ2

([
w

′
HL, wML

]
, FT , Fv

)
, lT , lv

)
,

Phase 2,

(1)

where ψ1 and ψ2 denote the BN and MDA-BN as transfer func-
tions, respectively; FT , lT , and Fv, lv represent the training set
and validation data samples with their class labels, respectively
and LCE(·) is a cross-entropy loss function [21]. According to

Algorithm 1: Multistage Training Algorithm.
Input: trainable parameters, wHL, wML; learning rate η;
maximum epoch, N ; p training data samples notated as
〈[FT ]

p
i = 1, [lT ]

p
i = 1〉; and q validation data samples

notated as 〈[FV ]
q
i = 1, [lV ]

q
i = 1〉

Output: trained parameters w′
HL, w′

ML

1 Initialize parameters wHL (ImageNet pretrained
weights), wML (Gaussian random weights)

2 /∗ Phase 1: Training of BN model ∗/
3 for n = 12, 3, . . . , N do
4 obtain: l

′
T = ψ1 (wHL, FT ) and

l
′
V = ψ1 (wHL, FV )

5 update: wHL = wHL − η.∇LCE(l
′
T , lT )

6 check: if accuracy(l′V , lV ) converges do stop
training end

7 end
8 Output 1: optimal weights w′

HL for BN model
9 /∗ Phase 2: Training of final MDA-BN model ∗/

10 for n = 12, 3, . . . , N do
11 obtain: l

′
T = ψ2 ([w

′
HL, wML], FT ) and

l
′
V = ψ2 ([w

′
HL, wML], FV )

12 update: wML = wML − η.∇LCE(l
′
T , lT )

13 check: if accuracy(l′V , lV ) converges do stop
training end

14 end
15 Output 2: optimal weights w′

ML and w′
HL for

MDA-BN model

Eq. (1), the loss functions of BN and MDA-BN subnetworks
were sequentially minimized for our selected training dataset
〈[FT ]

p
i=1, [lT ]

p
i=1〉 to find their optimal weights w

′
HL(phase 1)

and w
′
ML (phase 2), respectively. In Eq. (1), the validation

dataset 〈[FV ]
q
i=1, [lV ]

q
i=1〉 was used to achieve the sufficient

convergence of both BN and MDA-BN (as explained in Algo-
rithm 1). In general, phase 1 training was carried out to exploit
the contribution of high-level feature (f6) in class prediction.
Then, phase 2 training further included the contribution of
intermediate-level features (f1–f5) along with f6 and resulted
in an additional performance gain. Thus, our multistage train-
ing performed the progressive training of a deep network (for
target domain) under the constraint of limited training data and
outperforms the conventional end-to-end training method.

IV. RESULTS AND ANALYSIS

A. Dataset and Experimental Setup

The quantitative analysis of the proposed method was made
using a collection of six publicly available datasets (including X-
ray and CT images) [24]–[28]. These were categorized into two
main classes (i.e., COVID-19 positive and negative) based on
their ground truth labels. Consequently, a considerable amount
of heterogeneous radiographic data (including 12910 images)
was obtained. The data consisted of COVID-19 positive and
negative categories (including healthy as well as other viral and
bacterial pneumonia cases). The COVID-19 positive collection
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included a total of 6550 images (including 3254 CT and 3296 X-
ray images) of 1660 different patients. The COVID-19 negative
collection consisted of a total of 6360 images (including 2217
CT and 4143 X-ray images) of 5272 different patients. Finally,
in the data preprocessing stage, all the images were resized to
224 × 224 as per the fixed size of the input layer in the proposed
network.

For model development and simulation, the MATLAB
R2019a coding framework (including a standard deep learning
toolbox) was employed. All the simulations were performed
using a desktop computer with an Intel Corei7 CPU, 16 GB
RAM, NVIDIA GeForce GPU (GTX 1070), and Windows 10
operating system.

In our optimization scheme, we used a stochastic gradient
descent (SGD) optimizer which has been used in most of the
existing studies [36]–[38] with an initial learning rate of 0.001
with a 0.1 learning rate drop factor. For the optimization scheme
for learning rate, we used the default scheme provided by
MATLAB R2019a. In detail, each time the specified number
of epochs elapses (in our experiments, we set it as 10 epochs),
the initial learning rate of 0.001 is reduced by being multiplied
with the learning rate drop factor of 0.1. For example, after 10
epochs, the learning rate becomes 0.0001 (0.001 × 0.1), after
20 epochs, it becomes 0.00001 (0.0001 × 0.1), etc.

In addition, the following hyperparameter settings were used
for all deep learning-based networks: mini-batch size as 10, L2-
regularization equal to 0.0001, and momentum factor as 0.9. In
all experiments, a fivefold cross-validation was performed using
70% (9037 images), 10% (1291 images), and 20% (2582 im-
ages) of the data for training, validation, and testing, respectively.
For a fair evaluation, different patient datasets were selected for
training, validation, and testing. Finally, in the testing phase, the
quantitative performance values of the proposed and baseline
methods were measured based on the following five metrics:
sensitivity (SEN), accuracy (ACC), precision (PRE), F-measure
(F1), specificity (SPE), and area under the curve (AUC) [21].

B. Results of Proposed Method

The quantitative results (i.e., ACC, F1, SPE, SEN, PRE, and
AUC) of the proposed method along with the performance of
the MN (baseline network) were evaluated and compared [23].
In the list in Table III, the proposed MDA-BN is observed
to outperform the MN model with average gains of 2.31%,
2.02%, 3.69%, 0.96%, 2.71%, and 1.12% in terms of ACC, F1,
SPE, SEN, PRE, and AUC, respectively. In the t-test analysis
between the MDA-BN and MN, a significant improvement of
the former (p < 0.01) over the latter (p-value = 0.004) is
observed. In addition, the t-test performance between the BN
(first subnetwork) and MN shows the significant gain of the
former (p < 0.05) over the latter (p-value = 0.012). In addition
to the quantitative performance gain, the number of trainable
parameters of MDA-BN (1.76 million) is found to be approx-
imately 21% lower than that of the MN model (2.24 million).
Such a significantly lowered number of trainable parameters
of the proposed MDA-BN model makes it compatible even
for low-cost hardware resources, such as handheld devices.

TABLE III
DIAGNOSTIC PERFORMANCE OF PROPOSED MULTILEVEL

DEEP-AGGREGATED BOOSTED NETWORK (MDA-BN) COMPARED WITH
BASELINE NETWORK MOBILENET (MN) [23]

TABLE IV
PROGRESSIVE PERFORMANCE GAIN OF PROPOSED MODEL BASED ON

AGGREGATION OF MULTILEVEL FEATURES

Although, it is not possible to obtain CT or X-ray images with
low-cost handheld devices. However, our proposed solution can
accomplish the following potential applications after getting CT
or/and X-ray data: 1) can make an effective diagnostic decision
at fast speed due to its reduced size of model, 2) can also be used
in implementing a fast retrieval-based diagnostic framework
for timely retrieval of relevant cases from existing large-scale
databases. In spite of the reduced size of the proposed model, a
detailed comparative study as shown in Table V also proved the
superior diagnostic performance of our MDA-BN model over
the existing large-sized networks such as ResNet18, ResNet50,
ResNet101, DenseNet201, InceptionV3, etc.

Moreover, due to the following reasons, we selected an op-
timized version of the standard MobileNet model as backbone
network: 1) comparable diagnostic performance for the target
domain (COVID-19) compared to other large-sized networks
[40]–[45] as shown in Table V, 2) reduced number of trainable
parameters, 3) required low-cost hardware resources and appli-
cable in real-time applications.

The performance differences between the MDA-BN and MN
as receiver operator characteristic (ROC) curves are further
highlighted in Fig. 4. For each model, the ROC curve presents
a tradeoff between the true positive (TP) rate (SEN) and false
positive (FP) rate (1− SPE) at different thresholds from 0 to 1
at 0.001 increments.
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TABLE V
DETAILED COMPARATIVE PERFORMANCE ANALYSIS BETWEEN PROPOSED MULTILEVEL DEEP-AGGREGATED BOOSTED NETWORK (MDA-BN) AND

VARIOUS STATE-OF-THE-ART METHODS

Fig. 4. Receiver operating characteristic curves of proposed multilevel
deep-aggregated boosted network (MDA-BN) versus baseline network
MobileNet (MN) [23].

From the classification thresholds, 0.501 is taken as the op-
erating point (Fig. 4); this indicates the optimal performance
of both networks. In detail, this operating point implies that
any radiographic image with a class probability greater than (or
equal to) 0.501 is classified as a COVID-19 positive case whereas
that less than 0.501 is classified as a COVID-19 negative case.
To determine optimal threshold, we evaluated all the validation
accuracies of our model for different thresholds from 0 to 1
at 0.001 increments. Then, based on the maximum validation
performance, a classification threshold of 0.501 was selected as
the operating point.

However, in contrast with the MN, the proposed MDA-BN
model significantly reduced the FP rate (1 − SPE) from 11.16%
to 7.47% with an average gain of 3.69% and increased the TP rate
(SEN) from 97.18% to 98.14% with an average gain of 0.96%.
Additionally, the ROC performance of both networks was also
evaluated for another operating point, resulting in the maximum
TP rate (i.e., SEN = 100%). The additional gain resulted in
increases in the FP rates (1 − SPE) from 7.47% to 12.75%
and 11.16% to 18.12% for the MDA-BN and MN models,
respectively. Nevertheless, the FP rate of the proposed method

Fig. 5. Performance comparison of proposed multilevel deep-
aggregated boosted network (MDA-BN) versus baseline network Mo-
bileNet (MN) [23] in terms of confusion matrices: (a) MN and (b) MDA-
BN.

(12.75%) remains lower than that of the BN model (18.12%)
with an average gain of 5.37%. The performance comparison
between the MDA-BN and MN in terms of confusion matrices
is shown in Fig. 5. In particular, these matrices summarize
the predicted number of TP, true negative (TN), FP, and false
negative (FN) data samples for the MDA-BN and BN models. In
contrast with MN, the number of FP and number of FN samples
for the proposed MDA-BN model are significantly reduced from
142 to 95 and from 37 to 24, respectively. The number of TP
and number of TN samples also increased from 1273 to 1286
and from 1130 to 1177, respectively. On average, the proposed
network (TP + TN = 2463) compared with the baseline model
(TP+TN= 2403) correctly classified a total of 60 data samples.

C. Ablation Study

An ablation study was conducted to highlight the significance
of each subnetwork (i.e., the BN and MDA-N) in developing the
final MDA-BN architecture. The feature-level performance was
also progressively evaluated to show the significance of mul-
tilevel aggregated features. Table IV lists these ablated results
(i.e., feature level performance of MDA-BN) in order. Based on
the list, the concatenation of multilevel features (f1–f6) results
in progressive performance gain. Finally, a high-performance
MDA-BN model was obtained based on the aggregation of mul-
tilevel features. In addition, the aggregation of both subnetworks
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Fig. 6. Performance comparison between adopted multistage network
training and conventional end-to-end method.

resulted in further performance gains compared with their indi-
vidual results. On average, the performance difference between
the MDA-BN and MDA-N (second subnetwork with aggrega-
tions f1–f5) was higher with average gains of 2.26%, 2.05%,
3.82%, 0.75%, 3.16%, and 1.19% in terms of ACC, F1, SPE,
SEN, PRE, and AUC, respectively. Similarly, the performance
gains of the MDA-BN versus BN (first subnetwork including
f6) were 0.46%, 0.44%, 0.47%, 0.45%, 0.43%, and 0.68% in
terms of ACC, F1, SPE, SEN, PRE, and AUC, respectively.

Moreover, an end-to-end training of the proposed network was
also performed to demonstrate the significance of the adopted
multistage training approach (Algorithm 1) in terms of the
quantitative performance. These comparative results in terms of
all the performance metrics are shown in Fig. 6. The results indi-
cate that the training approach compared with the conventional
end-to-end training method exhibits superior performance with
average gains of 1.23%, 1.14%, 1.87%, 0.6%, 1.62%, and 0.81%
in terms of ACC, F1, SPE, SEN, PRE, and AUC, respectively.
Thus, an optimally trained network is derived by exploiting
multilevel deep-aggregated features and employing multistage
training via a mutually beneficial approach.

D. Comparison

This section presents a detailed comparative analysis to high-
light the superiority of the proposed solution over state-of-the-art
methods. In recent literature, different attempts have been made
to develop CAD-based solutions for the effective diagnosis of
the COVID-19 infection. Though, this is our first study based on
heterogeneous radiographic data. There are not standard bench-
marks in the existing literature for our selected heterogeneous
datasets. Therefore, for a fair comparison, we selected some
recent deep learning-based CAD methods [6]–[11], [18], [19],
[29]–[31] related to COVID-19 and evaluated their results with
our experimental datasets based on same experimental protocols
to ours rather than using their given results in comparison.
Therefore, the comparison is more comprehensive than that in
[6]–[20]; the results are summarized in Table V. It is observed
that our method outperforms all of these baseline methods in
terms of quantitative and computational performance. Tsiknakis
et al. [31] proposed a solution whose results were comparable to

those of the proposed technique and ranked second among those
of the other current methods [6]–[11], [18], [19], [29], [30].
However, the number of trainable parameters of the proposed
model is approximately 12.39 times lower than that in [31]
(i.e., proposed MDA-BN: 1.76 million<< Tsiknakis et al. [31]:
21.81 million). Such an optimal number of trainable parameters
of the proposed network makes it distinctive among all the
baseline methods. In another related study, Minaee et al. [6]
used an existing pre-trained network with an optimal number of
trainable parameters (i.e., 1.24 million), which was 0.52 million
less than those of the proposed MDA-BN method. Nevertheless,
the quantitative results of the method in [6] were outperformed
by those of the proposed method whose average gains were
6.6%, 6.58%, 5.2%, 7.96%, 4.35%, and 3.16% in terms of ACC,
F1, SPE, SEN, PRE, and AUC, respectively. In terms of the
confusion matrix of the proposed method versus that in [6], the
proposed technique significantly reduced the total number of
FPs and FNs from 161 to 95 and from 129 to 24, respectively;
the total number of TPs and TNs also increased from 1181 to
1286 and from 1111 to 1177, respectively. In conclusion, the
proposed method outperforms all existing methods [6]–[11],
[18], [19], [29]–[31] in terms of various performance aspects;
hence, it ranks first among all the models.

E. Discussion

This section discusses the key aspects of this study including
a few limitations that may influence the overall performance
of the system in a real-world scenario. An optimal deep net-
work, whose performance is better and computational cost is
lower compared with other methods, is mainly proposed to
diagnose COVID-19 infection from heterogeneous radiographic
data. Due to the following distinctive aspects, the proposed
model outperforms various state-of-the-art methods [6]–[11],
[18], [19], [29]–[31]: 1) considering the joint contribution of
low-level, intermediate-level, and high-level features in making
a final diagnostic decision, 2) considering the reduced number
of training parameters with the use of DW convolution, 3) then,
performing multistage training for efficient learning of these
parameters. Experimental results (Table V) prove that our opti-
mal network design leverages multilevel features and multistage
training in a mutually beneficial manner to optimize the overall
diagnostic performance and outperforms various baseline meth-
ods. In contrast, most of the existing studies [6]–[11], [18], [19],
[29]–[31] performed end-to-end training with a limited number
of training samples and considered only high-level features in
making a diagnostic decision. However, we observed that for
a limited dataset, the aggregation of multilevel features and
multistage training can learn the target domain effectively and
result in an additional gain in terms of high accuracy and/or low
computational cost.

In most CAD methods, a deep classification network acts as
a black box that only receives input and generates the output
without providing a visual indication regarding the diagnostic
decision. Accordingly, in this study, the progression of multi-
level deep features was visualized as a stack of CAM images
extracted from deep-aggregated blocks (Fig. 3) and added as
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Fig. 7. Visualization of predicted outputs of proposed network for given
sample images including both COVID-19 positive and negative cases.

Fig. 8. Illustration of false positive (FP) and false negative (FN) data
samples including predicted confidence scores.

output with the diagnostic decision. This additional output may
provide a visual interpretation of the CAD decision and assist
medical professionals in identifying the lesion regions more
easily. These multiple CAM images (output 2) and predicted
diagnostic decision (output 1) for a few testing data samples are
shown in Fig. 7.

These results may assist radiologists in answering the follow-
ing questions to reach a reasonable diagnostic decision. 1) In
case of a positive prediction, which areas may include lesion
patterns? 2) What is the confidence score (C.S of Fig. 7) of the
model for CAD for a particular decision? 3) Does the CAD
decision conform with that of a medical expert? The gener-
ated outputs (with optimal confidence score and multiple CAM
images corresponding to each data sample) of the proposed
network can answer the above queries to further support medical
professionals in making an effective diagnostic decision.

A few examples of misclassified data samples along with
their predicted diagnostic decisions as confidence scores are
shown in Fig. 8. First, these false predictions (i.e., FP and FN
cases) may occur because of the presence of analogous lesion
patterns in both COVID-19 positive and negative data samples.
Second, the poor annotation of data samples can also result
in false predictions by the CAD model. However, these can
be minimized through the visual assessment of the input data

samples and their predicted outputs (i.e., confidence score and
multiple CAM images) by a medical professional.

Despite the significant gain of our method, there are a few
challenges that may be encountered in the clinical setting. The
first is the generalizability problem, which may result from the
diversity of radiological imaging modalities. However, this is a
data-driven constraint that can be overcome by adding more
diversified and well-annotated COVID-19 infection datasets.
Second, the inclusion of multiple CAM images does not always
guarantee the identification of well-localized infectious regions.
In our selected datasets, well-localized annotations (such as
segmentation masks or boundary boxes) are not given, but only
actual class labels are provided for all data samples as ground
truths. Therefore, it is not possible to select and validate these
multiple CAM images with correct lesion regions. To provide
visual insight about the decision of our model, we just visualized
multiple feature maps (extracted from five different layers of F1

∼ F5 as shown in Fig. 3) corresponding to each testing sam-
ple. These multi-resolution feature maps simply highlight the
possibility of infected regions and provide clues that can further
assist radiologists in making effective diagnostic assessments.
In a future study, we will explore well-localized datasets related
to COVID-19 infection and intend to resolve these problems
thoroughly.

V. CONCLUSION AND FUTURE WORK

An optimal MDA-BN model to recognize the COVID-19
virus from chest radiographic scans (including X-ray and CT
images) is proposed in this paper. The optimal size of the
proposed network provides a cost-effective solution for real-time
screening applications. The experimental analysis shows that the
proposed solution outperforms various state-of-the-art methods
in terms of quantitative performance as well as computational
cost.

Even in the case that one patient has both CT and X-ray data,
he or she can provide only one of these data to our system because
our trained model does not require both X-ray and CT images at
the same time. If one patient has both CT and X-ray data, and the
diagnosing results of these two data sequentially obtained by our
method are opposite, one of the results, which has higher C.S by
our model, can be determined as a final result. Nevertheless,
more sophisticated method would be researched to combine
these two results in a future work. In addition, we aim to develop
a more comprehensive CAD framework that can more precisely
identify, localize, and quantify the infected regions from given
chest radiographic scans. Moreover, it is intended to increase the
number of multimodality datasets to enhance generalizability.

REFERENCES

[1] World Health Organization, WHO Director-General’s opening Remarks
At the Media Briefing On COVID-19- 11, Mar. 2020, (accessed 18 October
2020) [Online]. Available: https://www.who.int/dg/speeches/detail

[2] World Health Organization, WHO Coronavirus Disease (COVID-19)
Dashboard, (accessed 25 Feb. 2021) [Online]. Available: https://covid19.
who.int/

[3] T. Ai et al., “Correlation of chest CT and RT-PCR testing for coronavirus
disease 2019 (COVID-19) in China: A report of 1014 cases,” Radiology,
vol. 296, no. 2, pp. E32–E40, 2020, Art. no. 200642.

https://www.who.int/dg/speeches/detail
https://covid19.who.int/


OWAIS et al.: MULTILEVEL DEEP-AGGREGATED BOOSTED NETWORK TO RECOGNIZE COVID-19 INFECTION 1891

[4] Y. Fang et al., “Sensitivity of chest CT for COVID-19: Comparison to RT-
PCR,” Radiology, vol. 296, no. 2, pp. E115–E117, 2020, Art. no. 200432.

[5] M. -Y. Ng et al., “Imaging profile of the COVID19 infection: Radiologic
findings and literature review,” Radiol.: Cardiothorac. Imag., vol. 2, no. 1,
2020, Art. no. 200034.

[6] S. Minaee et al., “Deep-COVID: Predicting COVID-19 from chest X-ray
images using deep transfer learning,” Med. Image Anal, vol. 65, 2020,
Art. no. 101794.

[7] I. U. Khan, and N. Aslam, “A deep-learning-based framework for auto-
mated diagnosis of COVID-19 using X-ray images,” Information, vol. 11,
no. 9, 2020, Art. no. 419.

[8] F. Martínez, F. Martínez, and E. Jacinto, “Performance evaluation of the
NASNet convolutional network in the automatic identification of COVID-
19,” Int. J. Adv. Sci. Eng. Inf. Techn., vol. 10, no. 2, pp. 662–667, 2020,
Art. no. 662.

[9] S. Misra et al., “Multi-channel transfer learning of chest X-ray images for
screening of COVID-19,” Electronics, vol. 9, no. 9, 2020, Art. no. 1388.

[10] M. Farooq, and A. Hafeez, “COVID-ResNet: A deep learning framework
for screening of COVID19 from radiographs,” 2020, arXiv:2003.14395.

[11] A. A. Ardakani et al., “Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results of 10
convolutional neural networks,” Comput. Biol. Med., vol. 121, 2020,
Art. no. 103795.

[12] Y. Oh, S. Park, and J. C. Ye, “Deep learning COVID-19 features on CXR
using limited training data sets,” IEEE Trans. Med. Imag., vol. 39, no. 8,
pp. 2688–2700, 2020.

[13] D. Singh, V. Kumar, and M. Kaur, “Classification of COVID-19 patients
from chest CT images using multi-objective differential evolution–based
convolutional neural networks,” eur. J. Clin. Microbiol. Infect. Dis.,
vol. 39, pp. 1379–1389, 2020.

[14] Y. Li et al., “Efficient and effective training of COVID-19 classification net-
works with self-supervised dual-track learning to rank,” IEEE J. Biomed.
Health Inform., vol. 24, no. 10, pp. 2787–2797, Oct. 2020.

[15] R. M. Pereira et al., “COVID-19 identification in chest X-ray images on
flat and hierarchical classification scenarios,” Comput. Meth. Programs
Biomed., vol. 194, 2020, Art. no. 105532.

[16] D. Das, K. C. Santosh, and U. Pal, “Truncated inception net: COVID-19
outbreak screening using chest X-rays,” Australas. Phys. Eng. Sci. Med.,
vol. 43, pp. 915–925, 2020.

[17] A. I. Khan, J. L. Shah, and M. M. Bhat, “CoroNet: A deep neural network
for detection and diagnosis of COVID-19 from chest X-ray images,”
Comput. Meth. Programs Biomed., vol. 196, 2020, Art. no. 105581.

[18] K. E. Asnaoui, and Y. Chawki, “Using X-ray images and deep learning
for automated detection of coronavirus disease,” J. Biomol. Struct. Dyn.,
2020.

[19] L. Brunese, F. Mercaldo, A. Reginelli, and A. Santone, “Explainable
deep learning for pulmonary disease and coronavirus COVID-19 detec-
tion from X-rays,” Comput. Meth. Programs Biomed., vol. 196, 2020,
Art. no. 105608.

[20] M. Owais et al., “Light-weighted ensemble network with multilevel
activation visualization for robust diagnosis of COVID19 pneumonia
from large-scale chest radiographic database,” Appl. Soft. Comput., under
review.

[21] J. Heaton, “Artificial intelligence for humans,” Neural Netw. Deep Learn.,
vol. 3, 2015.

[22] M. D. A. Dongguk, BN Model For Effective Diagnosis of COVID-19
Infection, (accessed 23 Feb. 2021) [Online]. Available: https://github.com/
Owais786786/MDA-BN-Model.git

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[24] M. de la I. Vayá et al., “BIMCV COVID-19+: A large annotated dataset of
RX and CT images from COVID-19 patients,” 2020, arXiv:2006.01174.

[25] X. Yang et al., “COVID-CT-Dataset: A CT-scan dataset about COVID-19,”
2020, arXiv:2003.13865.

[26] K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and
operating a public information repository,” J. Digit. Imag., vol. 26,
pp. 1045–1057, 2013.

[27] S. Candemir et al., “Lung segmentation in chest radiographs using anatom-
ical atlases with nonrigid registration,” IEEE Trans. Med. Imag., vol. 33,
no. 2, pp. 577–590, Feb. 2014.

[28] J. P. Cohen et al., “Covid-19 image data collection: Prospective predictions
are the future,” 2020, arXiv:2006.11988.

[29] A. Jaiswal et al., “Classification of the COVID-19 infected patients us-
ing densenet201 based deep transfer learning,” J. Biomol. Struct. Dyn.,
pp. 1–8, 2020.

[30] I. D. Apostolopoulos, and T. A. Mpesiana, “Covid-19: Automatic detection
from X-ray images utilizing transfer learning with convolutional neural
networks,” Australas. Phys. Eng. Sci. Med., vol. 43, pp. 635–640, 2020.

[31] N. Tsiknakis et al., “Interpretable artificial intelligence framework
for COVID-19 screening on chest X-rays,” exp. Ther. Med., vol. 20,
pp. 727–735, 2020.

[32] X. Fan et al., “Multiscaled fusion of deep convolutional neural networks for
screening atrial fibrillation from single lead short ECG recordings,” IEEE
J. Biomed. Health Inform., vol. 22, no. 6, pp. 1744–1753, Aug. 2018.

[33] Q. Zhang, J. Zhou, and B. Zhang, “Graph based multichannel feature fusion
for wrist pulse diagnosis,” IEEE J. Biomed. Health Inform., Dec. 2020, doi:
10.1109/JBHI.2020.3045274.

[34] Q. Yan et al., “An attention-guided deep neural network with multi-scale
feature fusion for liver vessel segmentation,” IEEE J. Biomed. Health
Inform., Dec. 2020, doi: 10.1109/JBHI.2020.3042069.

[35] R. Wang, J. Fan, and Y. Li, “Deep multi-scale fusion neural network for
multi-class arrhythmia detection,” IEEE J. Biomed. Health Inform., vol. 24,
no. 9, pp. 2461–2472, Sep. 2020.

[36] D. A. Prabowo, and G. B. Herwanto, “Duplicate question detection in
question answer website using convolutional neural network,” in Proc.
IEEE Int. Conf. Sci. Technol., 2019, pp. 1–6.

[37] I. Kandel, and M. Castelli, “The effect of batch size on the generalizability
of the convolutional neural networks on a histopathology dataset,” ICT
Exp., vol. 6, pp. 312–315, 2020.

[38] R. Johnson, and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” Adv. Neural. Inf. Process. Syst., vol. 26,
2013, pp. 315–323.

[39] Iandola et al., “SqueezeNet: Alexnet-level accuracy with 50x fewer param-
eters and< 0.5 MB model size,” 2016, arXiv preprint arXiv:1602.07360.

[40] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015,
pp. 1–14.

[41] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 8697–8710.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[43] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning,”
in Proc. AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[44] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger, “Densely
connected convolutional networks,” 2017, pp. 4700–4708.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

https://github.com/Owais786786/MDA-BN-Model.git
https://dx.doi.org/10.1109/JBHI.2020.3045274
https://dx.doi.org/10.1109/JBHI.2020.3042069


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


