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Abstract

In this article, we describe our system for the CHEMPROT task of the BioCreative VI chal-

lenge. Although considerable research on the named entity recognition of genes and

drugs has been conducted, there is limited research on extracting relationships between

them. Extracting relations between chemical compounds and genes from the literature is

an important element in pharmacological and clinical research. The CHEMPROT task of

BioCreative VI aims to promote the development of text mining systems that can be used

to automatically extract relationships between chemical compounds and genes. We tested

three recursive neural network approaches to improve the performance of

relation extraction. In the BioCreative VI challenge, we developed a tree-Long Short-Term

Memory networks (tree-LSTM) model with several additional features including a position

feature and a subtree containment feature, and we also applied an ensemble method.

After the challenge, we applied additional pre-processing steps to the tree-LSTM model,

and we tested the performance of another recursive neural network model called Stack-

augmented Parser Interpreter Neural Network (SPINN). Our tree-LSTM model achieved an

F-score of 58.53% in the BioCreative VI challenge. Our tree-LSTM model with additional

pre-processing and the SPINN model obtained F-scores of 63.7 and 64.1%, respectively.

Database URL: https://github.com/arwhirang/recursive_chemprot

Introduction

There is an increasing interest to find relationships between

biological and chemical entities in the literature and store

the relationship information in the form of a structured

knowledgebase. An accurate and comprehensive knowledge-

base can play an important role in many downstream appli-

cations in precision medicine. However, the gap between the

information curated in the existing knowledgebases and

the information available in the literature widens every day

as the volume of biomedical literature rapidly increases. On

average, >3000 papers are published daily in the biomedi-

cal domain alone. Although manual curation approaches

are still widely used to ensure the quality of the contents in

knowledgebases, completely manual approaches are too

VC The Author(s) 2018. Published by Oxford University Press. Page 1 of 11

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2018, 1–11

doi: 10.1093/database/bay060

Original article

https://github.com/arwhirang/recursive_chemprot
https://academic.oup.com/


costly and cannot be scaled (1). An automated text mining-

based relation extraction method can help speed up the

curation process by automatically extracting relation

candidates and providing them to human curators for

verification.

The CHEMPROT track in BioCreative VI (2) aims to fa-

cilitate the development of text mining systems that auto-

matically extract chemical–gene relationships from the

literature. The organizers of the CHEMPROT track in

BioCreative VI manually annotated chemical–gene entity

relations in abstracts and divided the relations into 10

groups (http://www.biocreative.org/resources/corpora/chem

prot-corpus-biocreative-vi/). Although all the groups are im-

portant in the biochemical and pharmacological perspective,

only five groups were used for the evaluation. Table 1 shows

the five groups and an example sentence for each group.

The text given in the CHEMPROT challenge consisted of

abstracts, entities and relations between two target entities.

Since the main objective of this task was relation extraction,

explicit named entity recognition was not required.

The CPR:3 group was usually related to upregulation and

words such as ‘activate’, ‘promote’ and ‘increase activity of’.

The CPR:4 group was usually associated with downregula-

tion and words such as ‘inhibitor’, ‘block’ and ‘decrease ac-

tivity of’. The CPR:5 and CPR:6 groups were related to

agonist and antagonist, respectively. Agonist and antagonist

relationships are important for drug discovery and drug de-

sign. These four groups all have distinctive features.

However, when multiple entities co-occur in a sentence, it is

difficult to determine if a relationship exists between two tar-

get entities of interest. The CPR:9 group was related to sub-

strate metabolic relations. Unlike the above four groups, the

CPR:9 group did not have noticeable features, and thus the

relations in this group were difficult to extract.

In the CHEMPROT challenge, almost all the relations

occur between two entities in the same sentence. In the

pre-processing step, we split an abstract into sentences and

assumed a sentence with two entities to have a candidate

relationship. In this challenge, most entities that have a re-

lation are in the same sentence. Although relationships

may exist between target entities in different sentences, we

leave such cases for future work.

We built a relation extraction system for the

CHEMPROT track in BioCreative VI using Recursive

Neural Network based approaches. In this article, we in-

troduce three Recursive Neural Network approaches that

use the syntactical features of each node in a parse tree,

exploiting the recursive structure of natural language sen-

tences (3). The first approach uses tree- long short-term

memory (LSTM) (4), a Recursive Neural Network model

with dynamic batching. We implemented a position feature

and a subtree containment feature to represent the loca-

tions of target entities. We used the first approach in the

CHEMPROT challenge. After the CHEMPROT challenge,

we conducted experiments using two additional

approaches. The second approach uses the same model as

Table 1. Five groups of CHEMPROT relations to be used for evaluation

Groups CHEMPROT relations Sentence example

CPR:3 UPREGULATORjACTIVATORj <BC6ENT1>Amitriptyline</BC6ENT1>, but not any other tri-

cyclic or selective serotonin reuptake inhibitor antidepressants,

promotes <BC6ENT2>TrkA</BC6ENT2> autophosphoryla-

tion in primary neurons and induces neurite outgrowth in PC12

cells.

INDIRECT_UPREGULATOR

CPR:4 DOWNREGULATORjINHIBITORj Ginseng total saponins, <BC6ENT1>ginsenosides Rb2, Rg1 and

Rd</BC6ENT1> administered intraperitoneally attenuated the

immobilization stress-induced increase in plasma

<BC6ENT2>IL-6</BC6ENT2> level.

INDIRECT_DOWNREGULATOR

CPR:5 AGONISTjAGONIST-ACTIVATORj At 10(-6)M in transcription assays, none of these compounds

showed progestin agonist activity, whereas

<BC6ENT1>mifepristone</BC6ENT1> and its monodeme-

thylated metabolite manifested slight

<BC6ENT2>glucocorticoid</BC6ENT2> agonist activity.

AGONIST-INHIBITOR

CPR:6 ANTAGONIST In another experiment, <BC6ENT1>cyanopindolol</BC6ENT1>,

an antagonist of the <BC6ENT2>serotonin terminal

autoreceptor</BC6ENT2>, also prolonged the clearance of 5-

HT from the CA3 region.

CPR:9 SUBSTRATEjPRODUCT_OFj Leukotriene A(4) hydrolase (<BC6ENT1>LTA(4)H</BC6ENT1>)

is a cystolic enzyme that stereospecifically catalyzes the transfor-

mation of <BC6ENT2>LTA(4)</BC6ENT2> to LTB(4).

SUBSTRATE_PRODUCT_OF
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the first approach but performs additional pre-processing.

The third approach uses a new model called Stack-

augmented Parser Interpreter Neural Network (SPINN) (5).

The original Recursive Neural Network is computation-

ally inefficient mainly because its recursive tree parsing

functions are incompatible with the batch operation. We

use TensorFlow Fold (6) and SPINN to address this issue.

TensorFlow Fold employs dynamic batching which adds

another layer to enable batch operations, and SPINN uses

a stack-based approach.

Materials and methods

Relation extraction using text mining is a widely employed

method in the biomedical field. The types of relation

knowledge include protein-protein interaction (7, 8), muta-

tion- (9) and chemical-disease (10) relations. In our previ-

ous work (11), we extracted drug–drug interactions (DDIs)

using tree-LSTM with position and subtree containment

features for a DDI task (12) that involved extracting four

relations that can occur between two drugs. When com-

pared with the DDI task, the CHEMPROT challenge was

more difficult because it involved extracting five relations

and typically had more numbers of entities in the text.

However, the CHEMPROT challenge is similar to the DDI

task in that it deals with the relationship between two enti-

ties. Thus, we used the same tree-LSTM model, which

achieved competitive performance on the DDI task in the

CHEMPROT challenge. After the challenge, we were able

to improve the performance of the tree-LSTM model using

the new pre-processing method. We also investigated the

new recursive neural network model SPINN to further im-

prove the performance.

The overall architecture of our system is presented in

Figure 1. Each subcomponent of our tree-LSTM based

model is explained in subsequent sections. The tree-LSTM

model with additional pre-processing and the new SPINN

model are discussed in the Post-Challenge Enhancements

section.

Pre-processing

Pre-processing involves sentence splitting and anonymizing

target entities and chemical compounds. Abstract data usu-

ally consists of several sentences. However, we found that

almost all the gold-standard relations exist between two

target entities in the same sentence. Therefore, we split an

abstract into sentences and assumed that a sentence had a

candidate relationship if it contained at least two entities.

We used only the sentences with candidate relationships

and ignored the other sentences. Among the candidate rela-

tionships, we labeled the gold-standard relations as true

instances and the others as negative instances. An example

of a true instance is provided in Figure 1a.

Biochemical entities usually have long and complex

names. For simplicity, we replaced the names of target en-

tities with placeholders such as ‘BC6ENT1’, ‘BC6ENT2’

and so on. Also, we employed the ChemDataExtractor

(http://chemdataextractor.org/download) to find chemical

entities, and we replaced the names of the chemical entities

with ‘CHEM’ (13). An example of this anonymization pro-

cess is given in Figure 1b.

Figure 1. Overall system pipeline and data examples. We applied pre-processing and sentence parsing to the challenge data. The examples (a–c) are

the input sentence, pre-processing, and parsing results, respectively. We also extract the subtree containment feature and the position feature for the

tree-LSTM model and extract the transition list for the SPINN model. The steps labeled with ‘Post-challenge’ indicate the additional work done after

the challenge to further enhance the performance.
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Parsing sentences

Recursive Neural Network models use the syntactical fea-

tures of each node in a constituency parse tree. We used

the Stanford NLP library (14) to transform a sentence into

a constituency parse tree. After the parsing process, we

used the ‘binarizer’ provided by the Stanford Parser to con-

vert the constituency parse tree into a binary tree. A binary

tree is provided in Figure 1c.

Subtree containment feature generation

We calculated the subtree containment feature in the pars-

ing stage. The subtree containment feature indicates that a

certain subtree contains an important entity. When one of

the target entities exists in the leaves of the current node,

the subtree containment feature is given a value of one;

otherwise, it is given a value of zero.

During the training process, we consider the effect of each

feature through the vector representation of features. Since

the dimension size of the word embedding is larger than 100,

it is not desirable to represent the subtree containment fea-

ture using only one-digit feature. The effect of one-digit fea-

ture can be dominated by features with higher dimensions

such as word embedding feature. To avoid this problem, we

converted the subtree containment feature into a vector with

a size of 10 in the tree-LSTM model. We decided the size of

the feature vector by a hyperparameter search process de-

scribed in Table 4. If the value is one, every element of the

vector is one; otherwise, every element in the vector is zero.

This subtree containment feature is not used for the SPINN

model. A more detailed explanation about this feature gener-

ation process is given in the Supplementary Material.

Position feature generation

Position feature embedding represents the relative distance

from each word position in a sentence to target entities

(15). Every word in a sentence has two relative distances

[d1, d2], where di is the relative distance from the current

word to i th target entity. For example, in Figure 2, the

word ‘dual’ is the fourth word that follows the first target

entity and it is located right before the second target entity.

Therefore, the node of the word ‘dual’ has the position fea-

ture of [4, �1].

In the training phase, each relative distance is converted

into a vector with a size of 10 for the same reason that the

Figure 2. The architecture of our tree-LSTM model. (1) The target words in the sentences are underlined. (2) Vector representations of words from a

pre-trained word embedding. (3) Vector form of subtree containment feature for each leaf. (4) Position feature vectors. PV _1 and PV _2 are the rel-

ative distances of the first and second target words from the current word, respectively. (5) An example of the position feature vector when the cur-

rent word is ‘dual’.
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subtree containment feature is converted into a size-10 vec-

tor. Table 2 shows the vector representation based on the

relative distances. Note that when the distance difference is

5 or less, the vector is assigned to each difference value. If

the distance is >5, the same vector is given in units of 5.

We skip the columns ranging from �5 to �1 of the rela-

tive distance due to space limitations. Since there are two

distances, the total vector size of the position feature em-

bedding is 20. This position feature is not used for the

model SPINN. A more detailed explanation on this feature

generation process is given in the Supplementary Material.

Word embedding

Word embedding is a set of vectors that are trained by an

unsupervised language model. Using word embedding with

a neural network is a widely employed method for improv-

ing NLP performance (16, 17). We used the PubMed-

and-PMC-w2v word embedding, which was obtained from

published materials (http://evexdb.org/pmresources/vec-

space-models/) (18). The source data of the word embed-

ding was collected from biomedical texts, and 229 810

015 source sentences were used for the word embedding.

We also tested other word embeddings with different

dimensions obtained from different sources, but this word

embedding performed the best because it was trained on

the largest amount of data. The word embedding is initial-

ized using the gensim Word2Vec library (19). The dimen-

sion size of the word embedding is 200.

Recursive neural network with tree-LSTM

LSTM is a popular variation of the recurrent neural net-

work (20). General LSTM is used for sequential data such

as sentences. We implemented tree-LSTM to apply the

LSTM architecture to our tree-structured data (4). A node

in tree-LSTM receives input from two children nodes and

updates the hidden state of the current node using the in-

put. The architecture of our tree-LSTM model is presented

in Figure 2.

The input of tree-LSTM for a node is always the node’s

word and the state values (memory cell and hidden state)

of the two children nodes. After receiving a parse tree to

train our model, we look up the pre-trained word embed-

ding to assign real-valued vectors to each word. If a node is

not a leaf and does not have an associated word, the word

vector is filled with zero. If a node is a leaf and does not

have children nodes, state values are filled with zero. Our

model is based on the recursive neural network architec-

ture of the child sum tree-LSTM model (4).

Let xj denote the concatenation result of the vector rep-

resentation of a word with feature vectors. For any node j,

we have two forget gates (one for each child) and denote

the sub-node expression of the forget gates for kth child as

fjk. The B(j) is the set of values (including hk and ck) from

the children of node j, and the size of B(j) is 2 since we use

a binary tree. Also, i, f, o, c and h are the input gate, forget

gate, output gate, memory cell and the hidden state, re-

spectively. In the expression of each gate, ej is the result

vector of tracking LSTM which is required for SPINN.

Since the tree-LSTM model does not use this vector, the

vector is filled with zero for tree-LSTM model. uj is a tem-

porary vector used in the computation of the memory cell

state, and drop(x) is a recurrent dropout function (21).

Recurrent dropout improves performance by minimizing

memory loss which is common when dropout is applied to

a recurrent neural network. The mask is a sampled vector

from the Bernoulli distribution with the success probability

keep_p. Our tree-LSTM equations are described below.

~hj ¼
X

k2B jð Þ
hk; (1)

ij ¼ rðWi xj; ~hj ; ej

h i
þ biÞ (2)

Table 2. Vector representation according to the distance between one of the target entities and the current word

Relative

distance

�5 �4 �3 �2 �1 0 1 2 3 4 5 6–10 11–15 16–20 21–1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
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fjk ¼ rðWf xj; hk; ej

� �
þ bf Þ (3)

oj ¼ rðWo xj; ~hj ; ej

h i
þ boÞ (4)

uj ¼ tanhðWu xj; ~hj ; ej

h i
þ buÞ (5)

cj ¼ ij � drop
�

ujÞ þ
X

k2BðjÞ
fjk � ck (6)

hj ¼ oj � tanhðcjÞ (7)

drop xð Þ ¼
mask � x; if train phase;

x otherwise

(
(8)

Equations (9) and (10) represent the fully connected

layer we use as the output layer. The fully connected layer

output size is the number of groups (one false group and

five classification groups). At each node j, we choose the

predicted label byj for a given output. However, since the

predicted value of the internal nodes in the tree is not im-

portant, we take only the predicted values from the root

node of the entire sentence when the final score is calcu-

lated. We use the softmax cross-entropy classifier to calcu-

late the cost function, m is the total number of items in the

training set.

~p yjxj

� �
¼ WðfcÞhj þ bðfcÞ (9)

~y ¼ argmax ~p yjxj

� �
(10)

J hð Þ ¼ � 1

m

Xm
k

yklog softmax ~p ykjxk
� �� �� �

(11)

We use the Adam optimizer for gradient descent optimi-

zation. The input vector of a node in a tree uses the subtree

containment feature vector, the position feature vector and

the vector representation of a word in a sentence. The size

of the whole input vector xj is 230 (10 þ 20 þ 200).

The original tree-LSTM model (4) used l2 regulariza-

tion. We implemented our tree-LSTM model using recur-

rent dropout (21) instead of l2 regularization and found

that recurrent dropout is equally effective.

Ensemble method

Random weight initialization typically affects the results of

neural networks. In the CHEMPROT challenge, it is diffi-

cult to build a robust neural network model that can pro-

duce consistent results. The prediction results of

ambiguous instances can vary depending on how the

model is trained. We resolve this problem to some extent

by reducing the variance of our model using the ensemble

method (22). We sum the output probabilities (logits) of

ensemble members, which are generated using the same

neural network model with random weight initialization.

Our tree-LSTM model used in the BioCreative VI challenge

employs six ensemble members. The two post-challenge

enhancements use 10 ensemble members. A more detailed

explanation on the ensemble process is given in

Supplementary Material.

Implementation detail

We use TensorFlow to implement our three approaches

(23). Most deep learning libraries such as TensorFlow as-

sume that machine learning models are static, which makes

it difficult to use them for dynamic structure models such

as Recursive Neural Network. We implement our tree-

LSTM model using TensorFlow Fold which provides dy-

namic batching to solve the dynamic structure problem (6).

A node in a parsed tree has its own tree-LSTM operation.

Given parsed trees of diverse topologies, the dynamic

batching algorithm re-groups operations of the same depth

in a tree together. The re-grouped operations can be easily

batched for efficient computation. In fact, Looks et al. (6)

showed that in some cases dynamic batching can be up to

120 times faster than manual batching.

Post-challenge enhancements

Additional pre-processing

During the CHEMPROT challenge, we anonymized the

target entities with ‘BC6ENT1’, ‘BC6ENT2’ and so on.

Such sequential anonymization is good for generalization,

but this CHEMPROT challenge was focused on how

chemical entities affect gene entities. After the challenge,

we applied a different anonymization strategy; we replaced

the chemical entity with ‘BC6ENTC’ and the target gene

entity with ‘BC6ENTG’. In addition, any entities other

than the target entities were replaced with ‘BC6OTHER’.

When we looked up the embedding word vector, we

assigned a random vector to a word that did not exist in

the pre-trained embedding. Some words appear only once

or twice in the whole dataset, which may act as noise. To

reduce noise in the dataset, we filtered words that appeared

less than three times. The filtered word vectors were initial-

ized using a fixed random vector. We also applied this ad-

ditional pre-processing method to SPINN.

SPINN with additional pre-processing

Bowman et al. (5) introduced a new recursive neural net-

work model called SPINN. The SPINN model performed

well on the Stanford Natural Language Inference corpus

which is used to determine whether two sentences corre-

spond or contradict. With the help of the shift-reduce

parser, the SPINN model uses the sequential structure in-

stead of the recursive data structure.
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The shift-reduce parser uses the following three data

structures: a buffer that contains the words of a sentence, a

stack that contains incomplete trees, and a transition list

that contains a transition operation at each timestep. The

initial state of the buffer is the list of words in a sentence,

and the initial state of the stack is an empty list. For every

timestep, the parser retrieves one of the following two tran-

sition functions from the transition list: shift and reduce.

The shift function moves the top word of the buffer to the

stack. The reduce function merges the top two nodes from

the stack, and the pair of nodes become a subtree. Figure 3

describes the shift-reduce parser process.

We explain the transition list generation process of the

SPINN model. Given a set of parsed trees, we make the buf-

fers and the transition lists using the trees. When a word

appears, we add the shift function to the transition list, and

when the right parenthesis appears, we add the reduction

function to the transition list. These lists of data are sequen-

tial, and the batch operations can be applied to the list for

efficient computation. A node in a tree is enclosed in paren-

theses as shown in the following example:

The SPINN model implements the shift-reduce parser to

make a tree at each transition step, using the buffer and the

transition list. The main neural network layer of SPINN is

similar to that of our tree-LSTM model. The input of the

main network layer of SPINN is the top two nodes of the

stack. Also, SPINN has the tracking layer which is a simple

LSTM layer whose inputs are the top element of the buffer

and the top two elements of the stack. The authors of the

SPINN model stated that the tracking layer contains sup-

plementary feature information. The result of the tracking

layer is fed to the main tree-LSTM algorithm and it

becomes the ej in Equations (2–5). Since the tracking layer

is a simple LSTM layer, we skip the equations for the

tracking layer.

We do not apply the position or subtree containment

features to the SPINN model because it is difficult to im-

plement the features in a sequential manner.

Results

Data corpus

The CHEMPROT challenge organizers used the PubMed

abstracts published between 2005 and 2014 as the

CHEMPROT challenge data. Domain experts manually

annotated the corpus following the strict guidelines of the

organizers. After we pre-processed the given data, the

number of negative instances was more than three times

larger than the number of positive instances. Table 3 shows

the statistics of the pre-processed corpus. We filtered sev-

eral instances during the pre-processing. There are 14

instances in the training set where target entities are over-

lapped. There are 10 confusing instances which have two

or more relation groups with the same target entities.

Figure 3. The SPINN model which implements a shift-reduce parser for each transition step.

Parsed Tree: (BC6ENT1 (is (an inhibitor) (of BC6ENT2)))

Buffer: [BC6ENT1, is, an, inhibitor, of, BC6ENT2]

Transition list: [shift, shift, shift, shift, reduce, shift, shift,

reduce, reduce, reduce]
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We found that the test and the development sets also have

confusing instances. If there were many confusing instan-

ces in the training set, we would have to include the instan-

ces in the training phase. However, since only 10 instances

exist, we filtered them to reduce noise.

For the CHEMPROT challenge, the organizers

appended dummy data to the test set to prevent partici-

pants from manually annotating. We combined the train-

ing and development sets, and trained our model on the

combined set for the final evaluation.

Hyperparameter

Training in machine learning involves adjusting values in

weight vectors for a specific task. Apart from the weight

vectors, almost all machine learning models have hyper-

parameters that determine how the models’ training should

work. For example, the hidden unit size is one of the

hyperparameters in deep learning models. The hidden unit

size refers to the number of nodes of a hidden layer be-

tween the input and output layers. Generally, as the hidden

unit size increases, a trained model can handle more com-

plicated tasks. But if the hidden unit size is too large, the

trained model can overfit the training samples, which

makes it difficult to apply the model to new data. When

testing a set of hyperparameters, we train the model on the

training set with specific hyperparameter values, and

evaluate the model’s performance on the validation set.

To find the optimal hyperparameters, we conducted two

rounds of experiments. The first round of experiments uses

a randomized approach. Because the search space consist-

ing of all the possible combinations of parameter values is

too large, we repeated the random selection of parameter

value combinations, and trained and validated the model.

In the first round, we chose the best performing parameter

values. Since the random selection of values is the sparse

approximation of the optimal values, we need to perform

more in-depth experiments. We then conducted another

round of experiments to find the optimal parameters

within the small search space near the hyperparameters

found in the first round. A test unit is a measurement unit

used for the hyperparameter search process. Table 4 pro-

vides the test ranges and test units of the hyperparameter

search process. Because the CHEMPROT challenge pro-

vides both the training set and the development set, we

tested the hyperparameters on the development set, while

our models were trained on the training set. We also found

the optimal hyperparameters for the SPINN model; the

other hyperparameters were set to default values.

Performance

We report the average of the five repeated results of the single

models. The performance of the ensemble method is shown

as well. The experimental results on the test set are shown in

Table 5. In the CHEMPROT challenge, although each team

Table 3. The statistics of the BioCreative VI CHEMPROT cor-

pus after pre-processing

Dataset Abstract Positive Negative Ratio

Train_orig 1020 4157 16 964 1:3.08

Develop_orig 612 2, 416 10, 614 1:3.39

Test_orig 3399 58, 523a

Train 1020 4133 16, 522 1:2.99

Devel 612 2412 10 362 1:3.29

Test 3399 3444 10 999 1:3.19

The first three datasets are the original datasets used during the challenge.
aThe challenge organizers appended dummy data to the test set to prevent

from manual annotation by participants.

Table 4. Process for finding the best hyperparameter

Model Parameter Test range Test unit Selected

TreeLSTM Batch size 64–512 64 256

Hidden unit size 64–512 64 256

Learning rate 0.0005–0.01 0.0005 0.001

Keep probability 0.5–0.9 0.1 0.5

Subtree containmenta 2–10 2 10

Epoch 500–1000 100 1000

SPINN Batch size 64–256 64 256

Hidden unit size 64–256 64 256

MLP dropout 0.5–0.9 0.1 0.5

MLP, Multi-Layer Perceptron.
aSubtree Containment Size.

Table 5. Comparison between the results of our Recursive

Neural Network systems and other top three CHEMPROT

challenge results

Rank/Team ID (model) P (%) R (%) F (%)

Challenge results

1 TEAM_430 72.6 57.3 64.1

2 TEAM_403 56.1 67.8 61.4

3 TEAM_417 66.0 56.6 60.9

4 Our Tree-LSTM (ensemble) 67.0 51.9 58.5

Our Post-Challenge Enhancements

Tree-LSTM (single) þpp 65.7 58.1 61.7

Tree-LSTM (ensemble)þpp 70.0 58.4 63.7

SPINN model (single)þpp 61.5 58.9 60.2

SPINN model (ensemble)þpp 74.8 56.0 64.1

Note: P, R and F denote Precision, Recall and F1 score, respectively; pp

denotes the new pre-processing method applied to only the post-challenge

models; (ensemble) is the weighted voting of 10 instances of the same models

that are independently trained with randomly initialized weights; (single) rep-

resents the result of a single model instance.
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could submit up to five results, we report only the top result

of each team. A total of 13 teams participated and our team

placed fourth in the CHEMPROT challenge. The micro-

averaged F1-score of our tree-LSTM model was 58.5%. We

report the scores of the other two enhancements below.

After the CHEMPROT challenge, challenge organizers

provided the challenge results along with the evaluation

script. The evaluation script automatically computes the

micro-averaged F-score of a given prediction on the gold-

standard dataset. The SPINN single model and the SPINN

model with the ensemble method achieved F-scores of 60.2

and 64.1%, respectively. Our tree-LSTM single model

with additional pre-processing and our model with the

ensemble method achieved F-scores of 61.7 and 63.7%, re-

spectively. Our enhanced models using additional pre-

processing methods outperform the first tree-LSTM model.

Our tree-LSTM single model achieves better performance

than the SPINN single model because the position and sub-

tree containment features of the tree-LSTM model are

helpful in locating target entities. The performance of the

SPINN model with ensemble method exceeds that of

the tree-LSTM model with ensemble method. It seems that

the additional tracking layer is helpful. The SPINN model

yields fewer false positives and achieves higher precision.

Several researchers combined two or more different ma-

chine learning models to improve performance in biomedi-

cal relation extraction (24–26). For example, Zhou et al.

(24) utilized a linear combination of a feature-based

model, a kernel-based model and a neural network model.

Although it is difficult to achieve, we improved perfor-

mance using only one recursive neural network model.

Our model can be integrated with other models to further

improve performance.

Discussion

Error analysis

The most common type of error is predicting a gold-

standard class as a ‘False’ class. The confusion matrix of

the SPINN model (ensemble) obtained on the test set is

shown in Table 6.

Before describing error cases, we explain how all our

models make a candidate relation, which may help in un-

derstanding the process of finding a relation. There are sev-

eral entities in a sentence and we select one target gene and

one chemical to make a candidate relation. Any entity that

we do not select as a target entity can be a target entity in

another candidate relation. We considered all the possible

target gene–chemical pairs as candidate relations. For ex-

ample, the first row in Table 7 shows the candidate rela-

tion between ‘zinc’ and ‘histone deacetylase’. The

candidate relation between ‘zinc’ and ‘HDAC’ is also

possible.

In the Introduction section, we list the characteristic

words of each relation, but even if a characteristic word in

the list appears, it may not be directly related to the rela-

tionship between two target entities. We analyzed the error

cases of the SPINN model with the ensemble method.

Below, we introduce three representative error cases:

1. Failure to understand sentence structure

Table 6. Confusion matrix for the SPINN model (ensemble)

result on the test set

Gold False CPR:3 CPR:4 CPR:5 CPR:6 CPR:9

Preda

False 10 410 281 566 72 95 396

CPR:3 134 331 26 1 0 4

CPR:4 266 51 1064 0 4 6

CPR:5 16 0 0 107 4 0

CPR:6 30 0 1 3 189 0

CPR:9 100 1 1 0 0 238

aPred is the prediction result.

Table 7. Types of errors and corresponding example sentences from our SPINN model

Predicted results A representative example sentence

Answer: CPR:4 (INHIBITOR)

Predicted: -

Small molecules bearing hydroxamic acid as the <BC6ENTC>zinc</BC6ENTC> binding group

have been the most effective <BC6ENTG>histone deacetylase</BC6ENTG> inhibitors

(<BC6OTHER>HDAC</BC6OTHER> i) to date.

Answer: CPR:3 (ACTIVATOR)

Predicted: -

<BC6ENTC>CPT-11</BC6ENTC> and <BC6OTHER>SN-38</BC6OTHER> may also stim-

ulate the production of pro-inflammatory <BC6ENTG>cytokines</BC6ENTG> and

<BC6OTHER>prostaglandins</BC6OTHER> (<BC6OTHER>PGs</BC6OTHER>), thus

inducing the secretion of <BC6OTHER>Na(þ)</BC6OTHER> and <BC6OTHER>Cl(-)

</BC6OTHER>.

Answer: CPR:4 (INHIBITOR)

Predicted: CPR:3

(ACTIVATOR)

<BC6ENTC>Dimemorfan</BC6ENTC> pre-treatment also attenuated the KA-induced

increases in <BC6ENTG>c-fos</BC6ENTG>/c-jun expression, activator protein-1 DNA-

binding activity, and loss of cells in the CA1 and CA3 fields of the hippocampus.
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As shown in the first row of Table 7, the chemical ‘zinc’

is an inhibitor of the target gene ‘histone deacetylase’.

Our model predicted the relation as ‘False’ because our

model could not understand the sentence structure. On

the other hand, our model correctly predicted the other

relation ‘zinc-HDAC’ in the sentence. It seems that our

model did not properly learn how the word ‘inhibitors’

represents the ‘CPR:4’ group in certain sentence struc-

tures. To solve this error type, more training instances

are required.

2. Failure to detect coordination

Coordination relation is expressed in various forms in

sentences, and we have identified cases where our

model does not properly detect coordination. Most of

the time, coordination relation is expressed with a

comma, parenthesis or special words such as ‘and’,

‘or’. In the second row of Table 7, the chemical ‘CPT-

11’ and the word ‘SN-38’ are both equally emphasized.

Since every possible chemical–gene candidate relation

is given to our model, ‘SN-38’ becomes a chemical

for another instance. Our model correctly extracted the

relation ‘SN-38–cytokines’. However, our model incor-

rectly predicted the second row of Table 7 as ‘False’

because it could not find the information indicating

that the chemical ‘CPT-11’ has coordination relation

with ‘SN-38’. An independent module that searches for

equally emphasized words may help prevent this type

of error.

3. Misclassifying inhibition as activation and vice versa.

As shown in Table 6, there are 26 cases where our

model predicts ‘CPR:4’ instances as ‘CPR:3’ instances.

Our model predicts the third row of Table 7 as ‘CPR:3’

largely because of the word ‘increases’. However, a hu-

man reader can see that ‘target gene expression’ is at-

tenuated by the chemical and the word ‘increases’ is

not related to the target entities. More training data

would help address this type of error.

In the case of the relation groups ‘CPR:5’ and ‘CPR:6’,

our model correctly predicts the relations most of the time

if our model does not predict the relation group to be

‘False’. However, our model confuses the relation groups

‘CPR:3’ and ‘CPR:4’, even if it does not predict the rela-

tion as ‘False’. Our model confuses these groups because

the representative words of the ‘CPR:3’ and ‘CPR:4’

groups are general words. While the representative words

of the ‘CPR:5’ and ‘CPR:6’ groups consist of a small num-

ber of specific words. For example, group ‘CPR:3’ instan-

ces occur with the words related to ‘ACTIVATOR’, such

as ‘increase’, ‘promote’ or ‘activate’, all of which are com-

mon words. On the other hand, group ‘CPR:5’ instances

occur with the words related to ‘AGONIST’, such as ‘ago-

nist’, which are uncommon.

Summary and future directions

To summarize, we have looked at three cases where our

model does not understand the structure of a sentence, or

the function of a coordinating conjunction, and does not

distinguish different class features. To address these prob-

lems, we plan to improve our models by using more train-

ing data, and by checking for coordinate conjunctions.

In addition, although it is not considered in this challenge,

it is important to extract cross-sentence relations in biomedi-

cal literature. Several studies (27, 28) introduced a framework

for cross-sentence relation extraction using a dependency tree

graph on several sentences. The main approach is to add a

link between two root nodes of adjacent sentences. The root

node is the top node of a dependency parsed sentence. This

approach was later adopted by Peng et al. (29). They also

proposed graph LSTM networks. Since our recursive neural

network models are based on a parsed tree structure, we be-

lieve that this approach can also be applied to our models to

tackle the cross-sentence extraction issue. We will further in-

vestigate and address this issue in our future work.

Conclusion

The CHEMPROT track in the BioCreative VI challenge of-

fered the valuable opportunity to improve chemical–gene

text mining. We implemented Recursive Neural Network

architectures to extract chemical–gene relationships from

sentences in natural language. We showed that simple re-

cursive neural network-based models can achieve perfor-

mance comparable to that of more complex models. For

future work, we plan to extract relations in abstracts

The source codes of our Recursive Neural Network

models are freely available at: https://github.com/arwhir

ang/recursive_chemprot

Supplementary data

Supplementary data are available at Database Online.
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