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Recently, phase-changematerials (PCMs) have gathered enormous attention in

diverse fields of medicine, particularly in bioimaging, therapeutic delivery, and

tissue engineering. Due to the excellent physicochemical characteristics and

morphological characteristics of PCMs, several developments have been

demonstrated in the construction of diverse PCMs-based architectures

toward providing new burgeoning opportunities in developing innovative

technologies and improving the therapeutic benefits of the existing

formulations. However, the fabrication of PCM-based materials into

colloidally stable particles remains challenging due to their natural

hydrophobicity and high crystallinity. This review systematically emphasizes

various PCMs-based platforms, such as traditional PCMs (liposomes) and their

nanoarchitectured composites, including PCMs as core, shell, and gatekeeper,

highlighting the pros and cons of these architectures for delivering bioactives,

imaging anatomical features, and engineering tissues. Finally, we summarize the

article with an exciting outlook, discussing the current challenges and future

prospects for PCM-based platforms as biomaterials.
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Introduction

In recent times, tremendous advancements have resulted in the development of

various advanced nanotechnology-based approaches for targeted delivery to diseased

areas precisely with improved biodistribution and appropriate excretion profiles (Fan

et al., 2017; Ramasamy et al., 2017). Although the impressive progress in pharmaceutics

and materials science has resulted in the diverse nanocarriers with altered sizes and

surface properties, the exploration of stimuli-responsive materials has garnered enormous

attention, featuring reversible response to a specific stimulus, gating ability to avoid

undesired release, highly conducive to load multiple drug payloads, and biodegradability,

as well as biocompatibility (Mura et al., 2013). To satisfy these requirements and their

subsequent translation, several efforts have been dedicated to using polymeric materials

that respond to specific stimuli (receptors, biomarkers, and microenvironments) to

formulate smart nanocarriers for precise therapy of the disease (Chen et al., 2018).

Nonetheless, several attributes of multi-step preparation and low degradability-induced
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toxicity risks due to chemical modifications may hinder their

applicability, limiting the subsequent translation to clinics.

Phase-change materials (PCMs) with unique transition

ability between solid and liquid states due to enormous latent

fusion heat, have gained particular interest in thermal energy

storage and solar energy applications (Dai et al., 2019; Ma et al.,

2021). Among various phase transitions (i.e., solid-to-solid,

solid-to-liquid, and liquid-to-gas), the solid-to-liquid

changeover is often employed due to multiple features of the

low transition temperature and high latent energy, as well as

excellent thermal conductivity (Sun et al., 2019). These smart

matrices encapsulate high drug payloads inside solid PCM and

swiftly release them in response to a temperature upon transition

from the solid-to-liquid phase (Fu et al., 2021). The classic

examples include various thermo-responsive materials, such as

natural fatty acids (lauric acid, LA, and stearic acid, SA) or fatty

alcohols (1-tetradecanol), as well as their eutectic mixtures due to

excellent biocompatibility/biodegradability, suitable melting

point, chemical stability, and cost-effectiveness (Zhu et al.,

2017a; Qiu et al., 2020). Due to their stable melting points

of >37°C and satisfactory release rates, PCMs can be applied

as biomaterials for promising therapeutic applications. Typically,

photothermal conversion agents (PTCAs) and payloads are co-

encapsulated in PCMs-based platforms to trigger light-assisted

melting. Upon light irradiation, the platforms would be quickly

heated up due to the photothermal effect of the encapsulated

PTCAs (Liu Z. et al., 2020; Otaegui et al., 2020). Notably, if the

local temperature is increased beyond the melting point, the

platforms would melt, leading to the quick and on-demand

release of the encapsulated payloads. Although several reviews

have been published discussing the PCMs-based platform for

biomedicine, the position of PCM in the drug delivery field has

received tremendous attention recently. Therefore, a timely

review of relevant research progress is of great significance for

the continuous development of PCMs-based platforms. From a

unique perspective of the PCMs-based platform architecture, in

this mini-review, we systematically emphasize various platforms,

such as traditional PCMs (liposomes) and their

nanoarchitectured composites as thermo-responsive materials,

including PCMs as core, shell, and gatekeeper, highlighting the

pros and cons of these architectures for delivering bioactives,

imaging anatomical features, and engineering tissues (Figure 1).

Finally, we summarize the article with an exciting outlook,

discussing the current challenges and future opportunities for

PCM-based platforms as biomaterials.

Phase-change materials-based
platforms

Phase-change materials-based traditional
particles/liposomes

Among the classic examples of PCMs, natural fatty acids

have gained enormous interest in the generation of traditional

PCMs-based particles/liposomes due to their diversity,

biocompatibility, biodegradability, abundance, and cost-

effectiveness (Cao et al., 2021). For instance, capric acid (CA)

and octadecane (OD) are lipophilic PCMs with melting points of

31 and 28°C, respectively, leading to phase change at body

temperature and resulting in the leaching of their

encapsulated guests. In an attempt to successfully deliver

exogenous nitric oxide (NO) donors and address the short

half-life of NO, injectable microfluidics-assisted microparticle

(MP) systems were fabricated using the PCMs, CA, and OD.

These PCM-based MPs as micellar depots successfully

encapsulated NONOate, actively trapping and protecting the

NO bubbles that are generated in situ (Figure 2A) (Lin et al.,

2018). These PCMs could prevent the access of hemoglobin to

NO bubbles and prolong half-life, resulting in sustained

therapeutic function and retreating osteoporosis. In another

case, a temperature-regulated system for the controlled release

of nerve growth factor (NGF) to promote neurite outgrowth was

reported (Xue et al., 2018). The system was based upon

microparticles fabricated using a co-axial electrospray

approach, with the outer solution containing PCMs (a

mixture of LA and SA at a mass ratio of 4:1) and the inner

solution encompassing NGF and a near-infrared (NIR) dye,

indocyanine green (ICG). The controlled release system was

evaluated for potential use in neural tissue engineering by

FIGURE 1
Schematic illustrating the conceptual design of various PCMs,
in terms of positioning the PCMs and their successive
nanoconjugates for biomedicine.
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FIGURE 2
(A) Fabrication/structure of injectable microparticles (MPs). The MPs system is developed using a microfluidic device in an oil-in-water (O/W)
single emulsion that consists of phase-changematerials capric acid and octadecane and encapsulates NONOate. Reproducedwith permission from
Ref. (Lin et al., 2018). Copyright 2018, JohnWiley and Sons. (B)Design and characterization of PCM-based liposome nanoreactors. (a) The solid PCM
was dissolved in melted PCM at 37 °C. (b) The scheme of endogenous stimulus-powered antibiotic release from RFP-CaO2@PCM@Lec
nanoreactors for bacterial infection combination therapy. Reproduced with permission from Ref. (Wu et al., 2019). Copyright 2019, Springer Nature.
(C)Near infrared-activated nano-transporter (TRIDENT, also named IMP/IR780@TRN) for antibiotic-resistant bacteria killing. The prepared thermo-

(Continued )
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sandwiching the microparticles between two layers of

electrospun fibers to form a trilayer construct. Upon

photothermal heating with a NIR laser, the NGF could be

released on demand with well-preserved bioactivity to

promote neurite outgrowth. This facile and versatile system

could be readily applied to various biomedical applications by

switching to different combinations of PCM, biological effector,

and scaffolding material (Xue et al., 2020). Notably, the sensing

temperature at the subcellular level is of great importance for

understanding various biological processes. Recently, a novel

organic fluorescent nanothermometer based on aggregation-

induced emission (AIE) molecules and natural-derived PCMs

was designed, and its application in non-invasive temperature

sensing was explored (Xue et al., 2021a). First, a dual-responsive

organic luminogen that could respond to the molecular state of

aggregation and the environmental polarity was synthesized.

Next, the natural saturated fatty acids with sharp melting

points, and reversible, as well as rapid phase transitions were

employed as the encapsulation matrix to correlate external heat

information with the fluorescence properties of the luminogen.

To apply the composite materials for biological application,

colloidally dispersed nanoparticles were formulated by a

technique based on in situ surface polymerization and

nanoprecipitation. As anticipated, the resultant zwitterionic

nanothermometer exhibited sensitive, reversible, reliable, and

multiparametric responses to temperature variation within a

narrow range around the physiological temperature

(i.e., 37°C). Taking spectral position, fluorescence intensity,

and fluorescence lifetime as the correlation parameters, the

maximum relative thermal sensitivities were determined to be

2.15, 17.06, and 17.72%°C−1, respectively, which were much

higher than most fluorescent nanothermometers.

Despite the successful encapsulation of the cargo, the

particles made of fatty acids suffer from poor aqueous

dispersibility, resulting in surface aggregation, which could

be considerably addressed by adding amphiphilic molecules,

such as phospholipids (Xue et al., 2021b). For instance, calcium

peroxide (CaO2) and antibiotics were encapsulated in a eutectic

mixture of fatty acids (4:1, SA, m. p. = 71.8–72.3 °C, and LA, m.

p. = 45.7–46.2 °C) and coated with liposome (lecithin and

DSPE-PEG3400) against bacterial infections. The release

could happen sequentially in a series of steps, in which after

bacteria contact the nanoreactors at 37 °C, anchored on the

nanoreactor’s surface, form pores in the layer, entry of H2O

molecules into the nanoreactors, resulting in the decomposition

of formed H2O2 and driving antibiotic release (Figure 2B) (Wu

et al., 2019). Similarly, versatile architectures referred to as

TRIDENT (Thermo-Responsive-Inspired Drug-Delivery

Nano-Transporter)-based on PCM using SA and LA were

fabricated to address the synergistic effects of fluorescence

monitoring and chemo-photothermal-based antimicrobial

effectiveness against multidrug-resistant (MDR) bacteria.

These hydrophobic TRIDENT PCMs encapsulated with a

broad-spectrum antibiotic (imipenem, IMP) and IR780 and

subsequently coated with lecithin and DSPE-PEG 2000 not only

resulted in the NIR-assisted melting of the nanotransporter but

also damaged the membrane facilitating the permeation, as well

as interfering in the cell wall biosynthesis and enable bacterial

death (Figure 2C) (Qing et al., 2019). In this regard, several

PCMs-based on LA and SA, as well as oleic acid, were fabricated

for nanotheranostics with the ability of hyperthermia-triggered

spatiotemporally tunable drug release (Cai et al., 2021; Lai et al.,

2022).

Phase-change materials as cores

Despite the success, the PCMs sometimes may suffer from

undesired degradation due to hypersensitivity, resulting in the

unwanted leakage of encapsulated therapeutic cargo in vivo. To

avoid the pre-degradation of fatty acid and subsequent pre-

leakage of payload, PCMs and drugs were encapsulated in the

micro-/nano-scale carriers as core substances (Zhang et al.,

2022). These PCM cores facilitate the protection of

therapeutic agents and execute their versatility in the

appropriate circumstances. In a case, a eutectic fatty acid

mixture of LA and SA with a melting temperature of 39°C

and coloaded with doxorubicin (DOX) and ICG was

encapsulated in silica-based nanocapsules using the site-

selective deposition by templating with Au–PS Janus colloidal

FIGURE 2
responsive-inspired drug-delivery nano-transporter is “melted”when the temperature rises above 43°C under the NIR irradiation, leading to the
release of imipenem to the infected site. Reproduced with permission from Ref. (Qing et al., 2019). Copyright 2019, Springer Nature. (D) Schematic
illustration of thermosensitive urchin-like Bi2S3 hollow microsphere as a carrier of DOX/PCM for photoacoustic imaging and photothermal-chemo
therapy of tumors. Reproduced with permission from Ref. (Zhang C. et al., 2020). Copyright 2020, Elsevier. (E) The scheme of the fabrication
process and therapeutic mechanism of thermo-responsive (MSNs@CaO2-ICG)@LA NPs for synergistic CDT/PDT with H2O2/O2 self-supply and GSH
depletion. Reproducedwith permission from Ref. (Liu C. et al., 2020). Copyright 2020, Springer Nature. (F) Schematics for preparation of metformin-
loaded and PDA/LA-coated hollow mesoporous SiO2 nanocomposites and NIR-responsive release of loaded metformin on diabetic rats by the
transdermal deliverymethod. Reproducedwith permission fromRef. (Zhang et al., 2018). Copyright 2018, American Chemical Society. (G) Schematic
illustration of (a) preparation of PT-V@TPDOX and (b) photothermally enhanced drug release and retention towards multidrug resistance cancer
cells. I. Receptor-mediated endocytosis. II. Photothermally controlled drug release. III. Mitochondria targeting of TPDOX. IV. Inhibition of
P-glycoprotein (P-gp) pathway. V. P-gp mediated drug efflux of TPDOX delivered by non-photothermal vector. Reproduced with permission from
Ref. (Ji et al., 2021). Copyright 2020, Elsevier.
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particles (Qiu et al., 2019). In another instance, Au nanocages

(AuNCs) were encapsulated with the PCM (1-tetradecanol) and

either hydrophobic or hydrophilic therapeutics, in which the

PCM served as an inner gatekeeper to spatially control the NIR-

triggered release in response to raising in temperature beyond the

melting point (Moon et al., 2011).

Sonodynamic therapy (SDT), a non-invasive therapeutic

strategy, offers enormous potential in treating solid tumors

due to its high penetration depth (Bai et al., 2021).

Nevertheless, the efficacy is limited due to hypoxia in solid

tumors. In an attempt to address this issue, ultrasound-

activated nanosystems based on the biodegradable hollow

mesoporous organosilica nanoplatforms were developed by

encapsulating ferrate (VI) and protoporphyrin IX, followed

by PCM, LA deposition (Fu et al., 2019). The hydrogen

peroxide and glutathione (GSH)-dependant oxygen

production by ferrate (VI) species and subsequent ROS

production by protoporphyrin-augmented SDT and

intracellular Fenton chemistry, as well as ultrasound-

assisted mild hyperthermia leading to phase change of LA,

played a synergetic role in SDT-sensitized effects against solid

hypoxic tumors. The low melting point of LA (44–46°C)

endowed the temperature-sensitive control by the

nanosystems over the diffusion of water and release of

oxygen. In another instance, Bi2S3 hollow urchin-like

nanostructures co-loaded with DOX and 1-tetradecanol

with a melting point around 38 °C in the hollow cores for

photoacoustic imaging and chemo-/photothermal therapy of

tumors (Zhang C. et al., 2020). These composites facilitated

the conversion of 808 nm NIR-assisted irradiation to heat

energy, resulting in the triggered DOX release from the

hollow containers after reaching the PCM melting point

(Figure 2D). The tumor ablation efficiency, along with

photoacoustic imaging and combined therapies, were

systematically demonstrated in vitro and in vivo. Similarly,

anticancer drugs and 1-tetradecanol were filled into the

hollow magnetic nanoparticles for imaging-guided thermo-

chemo combination cancer therapy. The system

demonstrated a sensitive thermal response to the

alternating current magnetic field for triggering switchable

controlled drug delivery with a nearly “zero release” feature.

More importantly, the system displays infrared thermal and

magnetic resonance imaging properties for the image-guided

cancer therapy (Li et al., 2015).

Phase-change materials as shells

Considering the stability of the encapsulated therapeutics

in a physiological environment, these PCMs can be employed

to coat over highly sensitive molecules as shells. These PCM-

based shells not only facilitate the protection of the

encapsulated cargo but also enable their precise release

through a thermo-responsive manner (Zhang S. C. et al.,

2020). In a case, manganese silicate nanospheres (MSNs)

supported by calcium peroxide (CaO2) and ICG were

coated with the LA (MSNs@CaO2-ICG)@LA) for

photodynamic (PDT)/chemodynamic (CDT) synergistic

cancer therapy (Figure 2E) (Liu C. et al., 2020). The

biocompatible and biodegradable LA with a melting point

of 44–46°C on the surface was melted due to the NIR-assisted

photothermal effect of ICG, in which the exposed CaO2

would react with water, generating H2O2 and O2, as well

as accompanying the exposure of MSNs towards Fenton-like

agent Mn2+ for H2O2-supplementing CDT and MRI-guided

synergistic therapy. In an attempt to explore gas therapy with

negligible side effects, Zhu and colleagues developed a new

type of multi-shell nanoparticles (CuS@SiO2-l-Arg@PCM-

Ce6, CSLPC), in which the PCM wax-sealed profile of the

encapsulated Ce6 would be released with the NIR-II-assisted,

CuS-triggered photothermal effect in the tumor site (Zhu

et al., 2021). In addition, the released l-Arg was oxidized to

generate NO for gas therapy, resulting in the synergistic

targeted tumor therapy. Similarly, multifunctional

nanosystems based on hollow mesoporous organosilica

nanoparticles (HMONs) deposited with CuS were

generated for the dual stimuli-responsive drug delivery

(Chen et al., 2020). These composites coated with 1-

tetradecanol substantially facilitated the avoidance of drug

leakage and improved CuS-based NIR-assisted temperature-

controlled release of encapsulated DOX cargo for chemo- and

photothermal therapy. In another similar instance, hollow

mesoporous SiO2 nanoparticles (HMSNs) were coated with

PCM (polydopamine (PDA) as photothermal conversion

agent/LA, mp ≈ 44–46°C) for the successful delivery of

metformin through the NIR-responsive poly

(vinylpyrrolidone) microneedle (MN) system (Figure 2F)

(Zhang et al., 2018). These MNs for transdermal delivery

facilitated the triggering effects of PCM by NIR-

responsiveness after being inserted in the skin, leading to

the release of the encapsulated cargo from MNs.

Phase-change materials as gatekeepers
on hollow containers

Similar to enclosing various therapeutics in the PCM as

shells to protect them from pre-leakage, the PCMs can be

specifically utilized as gatekeepers on the pores of various

inorganic porous architectures. These PCM-based

gatekeepers facilitate the protection of enclosed therapeutic

cargo and enable their precise release in a specific

environment (Hussain and Guo, 2019; Li et al., 2021). It

should be noted that the precise selection of PCM depends on

the application and the environment that could precisely

transform the PCM. Although DOX is the most preferred
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anticancer molecule in clinics, it is often suffered from MDR

efflux, hindering its performance efficacy. In an attempt to

address these aspects, TPDOX is encapsulated in the pores of

mesoporous silica, please see (Figure 2G). The porous silica

was filled with LA (melting point is 45 °C) along with TPDOX

in the form of small-sized particles with an average diameter

of 40 nm. The NIR (808 nm) laser-assisted melting of LA

facilitated the release of TPDOX, significantly inhibiting drug

efflux and enabling antitumor therapy (Ji et al., 2021). In

another case, You and group fabricated a 1-tetradecanol-

based ICG-loaded CuS@mSiO2 nanoplatform (CuS@mSiO2-

TD/ICG) (You et al., 2017). The NIR (808 nm)-absorbing

ICG in mesopores facilitated the melting of PCM (1-

tetradecanol) gatekeepers, resulting in the CuS@mSiO2-

assisted PTT and simultaneously ICG-based PDT/PTT

effects. The PCM, 1-tetradecanol, offers a reversible

change in its physical states at a narrow temperature

range, in which it exists as solid in the body temperature

but melts at just above it (Tm = 39°C). These observations

showcase that the porous cavities are opened rapidly above

the body temperature after exposure to the heating source.

In most instances, the PCMs are often based on fatty acids

or fatty alcohols, in which the encapsulated drug can be

released by substantially melting the PCM by raising the

temperature beyond its melting point (Zhu et al., 2017b).

However, the release is substantially dependent on the

encapsulated PCM species, which could be limited to

specific cargo. The precise control over the release kinetics

can be altered by regulating the melting point of PCMs, which

can be achieved by the composition of different PCM species

with a mixture of 1-tetradecanol (at 38°C) and LA (at 44°C) at

different ratios (Hyun et al., 2013).

Conclusions and perspectives

In summary, this article has reviewed the recent advances in the

development of PCM-based platforms for biomedical applications.

Due to their specific physicochemical attributes, these PCMs and

their composites (cores, shells, and gatekeepers) have shown

excellent prospects in diverse biomedical applications. Despite the

success in exploring the characteristics, some unwanted

characteristics of PCMs during the phase transition must be

altered, for instance, undercooling, volume expansion, low

thermal conductivity, and phase separation. In addition, various

necessities must be comprehensively considered to meet the

application requirements for expanding the scope of PCMs for

biomedical applications. Several application principles are required

to be addressed according to the application requirements, such as

appropriate phase transition temperature and latent heat, suitable

chemical stability during the phase change, biosafety, and ease of

synthesis using cost-effective precursors, as well as eco-friendly

techniques.

Despite the enormous progress, several key features are

required to be strictly optimized for their clinical translation.

1) The foremost requirement is the morphological attributes

concerning the particle size and pore diameters in the case of

mesoporous architectures, as well as shell thickness in the

core-shell structures. It should be noted that these

morphological features influence the thermal characteristics

of PCMs. 2) Efforts to alter the PCM surfaces and regulate the

mesoporous characteristics are required further to improve

the translation of the PCMs. 3) Similarly, the temperature

changes and their effect, along with the mechanistic views, are

yet to be resolved. Although several studies have explored the

temperature-related PCM conversion and their subsequent

synergistic effects on cancer therapy, it is required to

investigate the related viewpoints in various other ailments.

4) The biosafety of these PCMs and their composites must be

necessary to explore comprehensively, right from the in vitro

to in vivo assessments.

Among the aforementioned challenging tasks, the

predominant efficacy-related issue is that realizing the

phase transition of PCM materials in deep human tissues

remains further studied due to the limited tissue penetration

depth of light. To a considerable extent, using ultrasound,

X-rays, or magnetic fields to stimulate heat production may

help solve these problems. In recent years, catalyzing or in

situ generations of active substances at the lesion site for

treating diseases is an important research direction for

precision therapy. Applying PCMs to coat catalysts or

substrates, release them quickly after reaching the lesion

site, and initiate relevant chemical reactions to treat diseases

may be an important research direction for PCMs in the

future. In summary, the current review explored the detailed

insights of the relevant communities working on PCMs and

their composites, which could be applied to biomedical

applications.
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