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Abstract
We consider the problem of controlling an SIR-model epidemic by temporarily reduc-
ing the rate of contactwithin a population. The control takes the formof amultiplicative
reduction in the contact rate of infectious individuals. The control is allowed to be
applied only over a finite time interval, while the objective is tominimize the total num-
ber of individuals infected in the long-time limit, subject to some cost function for the
control. We first consider the no-cost scenario and analytically determine the optimal
control and solution.We then study solutionswhen a cost of intervention is included, as
well as a cost associatedwith overwhelming the availablemedical resources. Examples
are studied through the numerical solution of the associated Hamilton-Jacobi-Bellman
equation. Finally, we provide some examples related directly to the current pandemic.

Mathematics Subject Classification: 92D30 · 34H05 · 49N90 · 92-10 · 49L12

1 Problem description and assumptions

The classical SIR model of Kermack and McKendrick (1927) is

x ′(t) = −γ σ0y(t)x(t) (1a)

y′(t) = γ σ0y(t)x(t) − γ y(t) (1b)

(x(0), y(0)) ∈ D := {(x0, y0) : x0 > 0, y0 > 0, x0 + y0 ≤ 1}, (1c)

where x(t), y(t) represent the susceptible and infected populations respectively, while
the recovered population is z(t) = 1− x(t) − y(t). The regionD is forward-invariant
and a unique solution exists for all time (Hethcote 2000).While the temporal dynamics
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(a) σ = 3 (b) σ = 1.5

Fig. 1 Dynamics of the SIR model (1) for two values of the basic reproduction number. The critical value
x = 1/σ is shown with a dashed line

of (1) depend on both σ0 and γ , the set of trajectories depends only on the basic
reproduction number σ0. Dynamics for two values of σ0 are shown in Fig. 1.

The system (1) is at equilibrium if y(t) = 0. This equilibrium is stable if and only if
x(t) ≤ 1/σ0, a condition referred to as herd immunity. If this condition is not satisfied
at the initial time, then y(t) will first increase until it is, and then decrease, approach-
ing zero asymptotically. The SIR model assumes that recovery confers permanent
immunity.

Formanydiseases affectinghumans, herd immunity is achieved throughvaccination
of a sufficient portion of the population. Herein we assume a vaccine is unavailable,
so that herd immunity can only be achieved through infection and recovery. Our goal
is to minimize z∞ := limt→∞ z(t), or equivalently (since y∞ = 0) to maximize the
long-time limit of the susceptible fraction: x∞ = limt→∞ x(t). This has the effect of
minimizing the number of eventual deaths, which would be proportional to z∞.

This is equivalent to minimizing the number of deaths, if we assume that some fixed
fraction of the recovered population z(t) dies from the disease. From the foregoing it
is clear that x∞ ≤ 1/σ0. The difference 1/σ0 − x∞ is referred to as epidemiological
overshoot. For COVID-19, a review of early estimates of σ0 can be found in Ying et al.
(2020), Table 1 with mean 3.28 and median 2.79. In accordance with these estimates,
we use a value σ0 = 3 in most of the examples in this work. With this value, the SIR
model implies that eventually at least two-thirds of theworld populationwill eventually
have COVID-19 antibodies; this number is likely to be significantly higher in reality
due to epidemiological overshoot. For instance, it can be seen fromFig. 1a that, starting
from a fully susceptible population and a small number of infected individuals, in the
absence of control the SIR model predicts that over 90% of the population would be
infected.

This overshoot can be reduced through non-pharmaceutical intervention (NPI),
which is simply a means to reduce contact between infected and susceptible individ-
uals; reductions of this kind occurred for instance as a result of NPIs imposed during
the 1918 flu pandemic (Bootsma and Ferguson 2007). We model a NPI control via a
time-dependent reproduction number σ(t) ∈ [0, σ0] with the system
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x ′(t) = −γ σ(t)yx (2a)

y′(t) = γ σ(t)yx − γ y (2b)

(x(0), y(0)) ∈ D := {(x0, y0) : x0 > 0, y0 > 0, x0 + y0 ≤ 1}. (2c)

A temporary reduction in σ can account for both population-wide interventions and
interventions specific to identified infectious (or possibly infectious) individuals. The
SIR model with a time-dependent reproduction number (or equivalently, a time-
dependent contact rate) has been considered before, for instance in Bootsma and
Ferguson (2007); Sun et al. (2020).

Typically, an epidemic does not result in substantialpermanent change in the contact
rate of a population. We therefore assume

σ(t) = σ0 for t > T , (3)

i.e., that intervention can only be applied over a finite interval t ∈ [0, T ]. Since
x∞ = 1/σ0 only at the single point (x = 1/σ0, y = 0), and since the y = 0 axis
cannot be reached in a finite time, (3) implies that any solution must have x∞ < 1/σ0.

We state the control problem as follows:

Given (x0, y0) ∈ D, σ0 > 0, T > 0,

choose an admissible control σ(t) : [0, T ] → [0, σ0] to minimize

J (x(t), y(t), σ (t)) = − lim
t→∞ x(t) +

∫ T

0
L(x(t), y(t), σ (t))dt

subject to (2).

(4)

Here J is the objective function that accounts for the desire to minimize infections as
well as a running cost of imposing control.We assume throughout that L is convexwith
respect to q(t) = 1 − σ/σ0 and bounded uniformly by a constant for all (x, y) ∈ D,
σ ∈ [0, σ0].

There is a large body ofwork on compartmental epidemiologicalmodels and control
for suchmodels; see e.g.Hethcote (2000); Lenhart andWorkman (2007) and references
therein. A number of works focus on optimal control through vaccination; see e.g. Kar
andBatabyal (2011).Otherworks, such asYan andZou (2008); Safi andGumel (2013);
Agusto (2013) focus on explicit modeling of and/or control through quarantined and
isolated individuals. A review of work on optimal control in compartmental epidemi-
ological models is presented in Sharomi andMalik (2017), along with the formulation
of necessary conditions (based on Pontryagin’s maximum principle) for various exten-
sions of the SIR model. For modeling and control based on even more detailed models
incorporating spatial spread and human networks, see e.g. Ferguson et al. (2005).

1.1 Objectives and contributions

The modeling and assumptions in the present work are motivated by the current
COVID-19 epidemic, which so far is being managed through broad NPIs and without
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a vaccine. In order to understand the effects of NPIs imposed on an entire population,
we stick to the simple model (2) rather than explicitly modeling quarantined indi-
viduals. Since such population-wide measures cannot be maintained indefinitely, we
invoke the finite-time control assumption (3). This assumption is not new (see e.g.
Greenhalgh (1988)), but unlike previous works our objective function is still based on
the long-term outcome (rather than the outcome at time T ). This drastically changes
the nature of optimal solutions.

Although the broad motivation for this work comes from the current epidemic,
our primary objective is to understand general properties of optimal controls for the
variable-σ SIR system (2). To this end, we also investigate solutions in certain asymp-
totic regimes (such as when there is little or no cost associated with the control).
Nevertheless, the values of the key parameters γ and σ0 for all examples are chosen
to fall in the range of current estimates for COVID-19.

One novel aspect of this work is that the problem is posed in terms of the infinite-
time limit, but formulated in a way that only requires solution over a finite time
interval. Indeed, without this reformulation we found that the problem was extremely
ill-conditioned; this reformulation is also needed in order to compute approximate
solutions via a Hamilton-Jacobi-Belmman equation. This reformulation is presented
in Sect. 2. Themain theoretical result is an exact characterization of the optimal control
when L = 0, given as Theorem 3 in Sect. 3.

Typical results in the literature on control of compartmental epidemiologicalmodels
are numerical and are based on Pontryagin’s weak maximum principle, which gives
only necessary conditions for optimality. At best, uniqueness is shown for small times;
see e.g. Kirschner et al. (1997); Fister et al. (1998); Lenhart and Feng (2002); Yan and
Zou (2008); Kar and Batabyal (2011); Sharomi and Malik (2017). In contrast, here
the main result includes a proof of optimality for arbitrarily large times. In Sect. 4
we explore the behavior of optimal solutions for L �= 0 under various interesting
cost functions and parameter regimes. Here the results are based on solutions of the
relevant Hamilton-Jacobi-Bellman equation, which is both necessary and sufficient
for optimality. In Sect. 5 we consider direct application to the COVID-19 pandemic.
Some conclusions are drawn in Sect. 6.

The code for all examples in this paper is publicly available (Ketcheson 2021).

2 Formulation over a finite time interval

In this section we reformulate the control problem (4) in terms of the solution over a
finite time interval [0, T ]. This reformulation is necessary both to facilitate the exact
solution in Sect. 3 and to arrive at a numerically-tractable problem for computing
approximate solutions, as described in Sect. 4.

In general, the solution of (2) depends on the initial data (x0, y0), the control
σ(t), and time t , so it is natural to write x(t; σ(t), x0, y0). In what follows it will
be convenient to make a slight abuse of notation and write x(t; σ(t)) or x(t) when
there is no chance of confusion.
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For a fixed reproduction number, the asymptotic susceptible fraction x∞ can be
obtained from the solution x(t), y(t) at any time t , since solutions of (1) move along
contours of x∞. Thus we will write x∞(x, y) or x∞(x, y, σ0).

2.1 A formula for x∞

In this subsection we review the solution of the SIR model without control (1). It can
be shown that x(t) satisfies (see (Harko et al. 2014; Pakes 2015) and Kermack and
McKendrick 1927, pp.707-708)

x(t)eσ0z(t) = x0e
σ0z0 .

Since z = 1 − x − y we define

μ(x, y, σ0) := x(t)e−σ0(x(t)+y(t)),

which is constant in time for any solution of (1). The trajectories in Fig. 1 are thus
also contours of μ. Since y∞ = 0, we have

x∞ = x0e
σ0(x∞−x0−y0) = μ(x0, y0, σ0)e

σ0x∞ .

Setting w = −x∞σ0 we have

wew = −x0σ0e
−σ0(x0+y0) = −μσ0.

Thus w = W0(−μσ0) where W0 is the principal branch of Lambert’s W -function
(Pakes 2015), and

x∞(x, y, σ0) = − 1

σ0
W0(−μ(x, y, σ0)σ0). (5)

Formula (5) allows us to rewrite the problem (4) in terms of the state at time T < ∞:

Given (x0, y0) ∈ D, σ0 > 0, T > 0,

choose an admissible control σ(t) : [0, T ] → [0, σ0] to minimize

J = −x∞(x(T ), y(T ), σ0) +
∫ T

0
L(x(t), y(t), σ (t))dt

subject to (2).

(6)

In what follows we will also require the derivatives of x∞ with respect to x , y, and
μ. Direct computation gives

∂x∞
∂ y(t)

= − σ0x∞
1 − σ0x∞

(7a)
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∂x∞
∂x(t)

=
(
1 − 1

x(t)σ0

)
∂x∞
∂ y(t)

= 1 − σ0x(t)

1 − σ0x∞
· x∞
x(t)

(7b)

∂x∞
∂μ

= eσ0x∞

1 − σ0x∞
. (7c)

Using these expressions we can also compute the rate of change of x∞ when some
control σ(t) is applied:

∂x∞
∂t

= γ yx∞
1 − σ0x∞

(σ0 − σ(t)). (8)

From this we see that the impact of an intervention on x∞ is independent of x(t) and
directly proportional to y(t). This indicates that intervention is more impactful when
there is a larger infected population.

2.2 Bounds on x∞

Now we turn our attention to the SIR system with control (2). Henceforth we assume
that σ(t) ∈ [0, σ0] for almost every t ∈ [0, T ]; we say that such a control is admissible.

It is straightforward to show that (2) has a unique solution for all time for any initial
data in D and any admissible control, by the same arguments used for (1). The proof
of the next lemma shows that applying any control σ(t) < σ0 over any length of time
leads to an increase in x∞.

Lemma 1 Let σ0 > 0 and (x0, y0) ∈ D be given. Let σ(t) be an admissible control.
Then for t ≥ 0 we have

x∞(x(t; σ(t)), y(t; σ(t)), σ0) ≥ x∞(x0, y0, σ0).

Proof Dividing (1b) by (1a) gives

dy

dx
= −1 + 1

σ(t)x
. (9)

Thus reducing σ(t) has the effect of increasing dy/dx . Since all trajectories flow to
the left (x is a decreasing function of t), this means that the solution trajectory obtained
with σ(t) lies below that obtained with σ0, for all t > 0. Since x∞ is a decreasing
function of y, this completes the proof. 	


Thus for any admissible control and any initial data we have

x∞(x0, y0, σ0) ≤ x∞(x(T ), y(T ), σ0) ≤ 1/σ0.
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2.3 Existence and necessary conditions for an optimal control

Let us define the Hamiltonian

H(x(t), y(t), σ (t), λ1,2(t), t) = −λ1(t)γ σ (t)y(t)x(t) + λ2(t)γ y(t)(σ (t)x(t) − 1)

+ L(x(t), y(t), σ (t)), (10)

and the adjoint variables λ1(t), λ2(t), which are required to satisfy

λ′
1(t) = −∂H

∂x
= (λ1 − λ2)γ σ (t)y(t) − ∂L

∂x
(11a)

λ′
2(t) = −∂H

∂ y
= (λ1 − λ2)γ σ (t)x(t) + λ2γ − ∂L

∂ y
(11b)

λ1(T ) = −∂x∞(T )

∂x
= ∂

∂x(T )
(−x∞(x(T ), y(T ), σ0) =

(
1 − 1

x(T )σ0

)
λ2(T )

(11c)

λ2(T ) = −∂x∞(T )

∂ y
= ∂

∂ y(T )
(−x∞(x(T ), y(T ), σ0), (11d)

where x(t), y(t) satisfy (2). Note that the final conditions for λ1,2 can be computed
from (7). We have the following result.

Theorem 1 Let (x0, y0) ∈ D and σ0, γ, T ≥ 0 be given. Let the running cost L be
given such that it is convex with respect to q, bounded uniformly by a constant for
all (x, y) ∈ D, σ ∈ [0, σ0], and continuously differentiable with respect to x and
y. Then there exists an admissible control σ ∗(t) for (6) and corresponding response
(x∗(t), y∗(t)) such that J is minimized over the set of admissible controls. Further-
more, there exist adjoint functions λ1,2(t) satisfying (11) for almost all t ∈ [0, T ] with
x(t) = x∗(t), y(t) = y∗(t), and such that the Hamiltonian is minimized pointwise
with respect to σ :

H(x∗(t), y∗(t), σ ∗(t), λ1,2(t), t) = inf
σ∈[0,σ0]

H(x, y, σ, λ1,2, t) (12)

for almost all t ∈ [0, T ].

Proof The existence of an optimal control is guaranteed by Clarke (2013) Theorem
23.11

since L is convexwith respect to q(t) = 1−σ(t)/σ0, the state solutions (x(t), y(t))
and their derivatives in time are bounded, the system (2) is Lipschitz with respect to
x, y, and the control σ(t) = σ0 is admissible and leads to a finite cost. The second
part of the Theorem follows from applying Pontryagin’s weak maximum principle as
stated e.g. in Clarke (2013), Theorem 22.2 which applies due to the assumptions on
L and since x∞ is continuously differentiable with respect to x and y. 	
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Observe that condition (12) implies that the optimal control σ ∗(t) satisfies the opti-
mality condition

σ ∗(t) = max
(
0,min

(
σ0, σ̂ (t)

))
, (13)

where

∂L

∂σ

∣∣∣∣
σ(t)=σ̂ (t)

= −(λ2(t) − λ1(t))γ yx . (14)

2.4 Infinite-time control

In this section only, we consider controls that reach the optimal value x∞ = 1/σ0.
This is achieved only at (x, y) = (1/σ0, 0), a state that cannot be reached from any
other state without imposing some control, and which in any case can only be reached
after an infinite time. Thus we momentarily set aside the restriction (3) and consider
controls extending up to an arbitrarily large time T . We still require that the system
approach a stable equilibrium point as t → ∞. We assume that x0 ≥ 1/σ0, since
otherwise the maximum achievable value of x∞ is x0, which would be achieved by
taking simply σ(t) = 0 for all t . We also take L = 0 so that an optimal control is any
control satisfying

lim
t→∞ x(t, σ (t)) = 1/σ0.

There are infinitelymany such controls. Two are particularly simple and are of interest.
The first is a constant control σ(t) = σ∗(x0, y0, σ0). By (5) we must have

x∞(x0, y0, σ∗) = 1/σ0, so σ∗ is the solution of

W0(−μ(x0, y0, σ∗)σ∗) = −σ∗
σ0

.

The second is a bang-bang control in which

σ(t) =
{

σ0 x > 1/σ0
0 x = σ0.

The response for each of these controls is shown for a specific example in Fig. 2.

3 Optimal control with L = 0

In this section we derive the exact solution of the control problem (6) with L = 0
(i.e., when the goal of increasing x∞ completely trumps any associated costs or other
concerns). Then (6) becomes
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Fig. 2 Two infinite-time controls
that give x∞ = 1/σ0. Here
σ0 = 3 and
(x0, y0) = (0.99, 0.01). For the
constant control,
σ(t) = σ∗ ≈ (1 − 0.4557)σ0

Given (x0, y0) ∈ D, σ0 > 0, T > 0,

choose an admissible control σ(t) : [0, T ] → [0, σ0]
to minimize J = −x∞(x(T ), y(T ), σ0)

subject to (2).

(15)

This problem can be reformulated as a minimum-time control problem.

Lemma 2 Let σ ∗(t) be an optimal control for (15), and let (x∗(T ), y∗(T )) denote
the corresponding terminal state. Then there is no admissible control that reaches
(x∗(T ), y∗(T )) from (x0, y0) before time T .

Proof Suppose therewere a control σ̂ (t) that leads to (x(t∗), y(t∗)) = (x∗(T ), y∗(T ))

for some t∗ < T . Then we could obtain a smaller value of J in (15) by using σ̂ up to
time t∗ combined with the choice σ(t) = 0 for t > t∗. This contradicts the optimality
of σ ∗(t). 	


Furthermore, the optimal control must be a bang-bang control.

Lemma 3 Let σ(t) be an optimal control for (15). Then

σ(t) =
{
0 λ1(t) < λ2(t)

σ0 λ1(t) > λ2(t)
(16)

where λ1,2(t) are given by (11).

Proof From (10) with L = 0, we have

∂H

∂σ
= (λ2(t) − λ1(t))γ y(t)x(t).

The optimality condition then implies (16) except at points where ∂H/∂σ = 0 (see
e.g. Lenhart and Workman (2007) Ch. 17.

It remains to show that there are no singular arcs. Since x(t), y(t) > 0 for t < ∞,
we have that ∂H/∂σ = 0 if and only if λ1 = λ2. Suppose (by way of contradiction)

123



7 Page 10 of 21 D. I. Ketcheson

that the latter condition holds on an open interval. Then on that interval we would have
(by (11) with L = 0):

λ′
1(t) = (λ1 − λ2)γ σ y = 0 (17)

λ′
2(t) = (λ1 − λ2)γ σ x = 0. (18)

By continuity, this would imply that λ1(t) = λ2(t) over the whole interval [0, T ], and
in particular at time T . But then (11c)-(11d) gives

(
1 − 1

x(T )σ0

)
λ2(T ) = λ2(T ).

We know from (7) that λ2(T ) �= 0, so this is a contradiction. 	

This motivates the following lemma.

Lemma 4 Let (x0, y0) and (x1, y1) be given such that x0, x1 ≥ 1/σ0 and x∞(x0, y0,
σ0) ≥ x∞(x1, y1, σ0). Let σ(t) be a bang-bang control such that (x(t1; x0, y0, σ (t)),
y(t1; x0, y0, σ (t))) = (x1, y1) for some t1 ≥ 0. Then the minimum value of t1 is
achieved by taking

σ(t) =
{

σ0 t < t∗

0 t∗ ≤ t ≤ t1,
(19)

where t∗ satisfies x(t∗; x0, y0, σ0) = x1.

Proof Since σ(t) is a bang-bang control, the trajectory (x(t; σ(t)), y(t; σ(t))) con-
sists of a sequence of segments each of which is a solution of (2) with σ = 0 (traveling
directly downward) or with σ = σ0 (traveling along a contour of x∞). Some trajecto-
ries of this type are illustrated in Fig. 3. Notice that each trajectory must traverse the
same distance in the x-direction; since x ′(t) = −βxy this travel is faster at larger y
values. Meanwhile, the total length of all the downward (σ = 0) segments is the same
for any trajectory, and since for these segments y′(t) = −γ y, travel is again faster at
larger y values. The control given in the lemmamakes all these traversals at the largest
possible values of y, so it arrives in the shortest time. 	


Combining these three lemmas, we obtain the following.

Theorem 2 Any optimal control for (15) is of the form (19) with t1 = T .

Proof By Lemmas 2 and 3, the optimal control must be bang-bang and must solve the
optimal-time problem. Then Lemma 4 applies and gives the stated result. 	


We can now give the solution of (15).

Theorem 3 The optimal control for (15) is unique and is given by

σ(t) =
{

σ0 t < t∗

0 t∗ ≤ t ≤ T ,
(20)
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Fig. 3 Three different paths
between two states, each
obtained with a bang-bang
control. The top (green) path
arrives in the shortest time (color
figure online)

where

t∗ = 0 if x0 ≤ 1

σ0(1 − e−γ T )
, (21)

and otherwise t∗ is the unique solution of

x(t∗; σ0, x0, y0) = 1

σ0(1 − e−γ (T−t∗))
. (22)

Proof First, suppose x(0) ≤ 1/σ0. The claimed optimal control gives x(T ) = x0,
whereas any other control will give x(T ) < x0. Similarly, we see from (2) that the
optimal control gives y(T ) = e−γ T y0 and any other control will lead to a larger value
of y(T ). Since x∞ is a decreasing function of y and (for x < 1/σ0) an increasing
function of x , the proposed control is optimal in this case.

Now suppose x(0) > 1/σ0. We reformulate the objective as follows. From (7) we
see that x∞ is a strictly monotone increasing function of μ, so that maximizing x∞ is
equivalent to maximizing μ. Now

μ′(t) = (x ′(t) − σ0x(t)(x
′(t) + y′(t)))e−σ0(x(t)+y(t))

= (σ0 − σ(t))γ x(t)y(t)e−σ0(x(t)+y(t))

= γ y(t)(σ0 − σ(t))μ(t).

Thus

μ(t) = exp

(
γ

∫ t

0
y(τ )(σ0 − σ(τ))dτ

)
μ(0).

Thus, maximizing x∞(T ) is equivalent to maximizing

I :=
∫ T

0
y(τ )(σ0 − σ(τ))dτ.
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(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 4 Typical optimal solution. Here (x(0), y(0)) = (0.99, 0.01), β = 0.3, and γ = 0.1

From Theorem 2 we have that

I =
∫ T

t∗
y(τ )σ0dτ

= σ0

γ
y(t∗)

(
1 − e−γ (T−t∗)

)
.

Differentiating with respect to t∗ gives

d I

dt∗
= σ0y(t

∗)
(
σ0x(t

∗)(1 − e−γ (T−t∗)) − 1
)

. (23)

If the inequality in (21) is satisfied then this has no zero and I is maximized by taking
t∗ = 0. If the condition in (21) is not satisfied, then setting the right hand side of (23)
equal to zero yields the condition (22). By checking the second derivative, it is easily
confirmed that this is indeed a maximum. 	


We remark that the above result apparently cannot be obtained via standard suffi-
ciency conditions based on Pontryagin’s maximum principle, due to the nonconvexity
of the right hand side of the SIR system (2).

Some optimal solutions for particular instances of (15) are shown in Figs. 4 and
5, all with the same initial data and parameters β, γ but with different final times T .
Allowing for a longer intervention (larger T ) makes it possible to reach amore optimal
value of x∞.

In real-world scenarios, it may not be possible to apply the maximum control
σ(t) = 0. Suppose that in place of (3) we impose σmin ≤ σ(t) ≤ σ0. In this case the
optimal control is still bang-bang with a single switching time. In Fig. 6, we show an
optimal solution when σ(t) ≥ 0.4σ0 is imposed.

The result above can also be obtained via the Hamilton-Jacobi-Bellman (HJB)
equation for (15). Here we sketch this approach. The HJB equation for u(x, y, t) can
be written
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Fig. 5 Optimal solutions starting
from the same point (0.99, 0.01)
but with different final times. A
larger value of T allows the
system to reach a more optimal
state. For all solutions, β = 0.3
and γ = 0.1

(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 6 Optimal solutions with σ(t) ≥ 0.4σ0. Here (x(0), y(0)) = (0.99, 0.01), β = 0.3, γ = 0.1, and
T = 100

ut = γ yuy − γ xymin
σ

(
(uy − ux )σ

)
(24a)

u(x, y, T ) = −x∞(x, y, σ0). (24b)

The required minimum is obtained by taking

σ(t) =
{
0 uy(x, y, t) > ux (x, y, t)

σ0 uy(x, y, t) < ux (x, y, t).
(25)

From (7) we see that uy(x, y, T ) > ux (x, y, T ) for all (x, y). Thus for small enough
values of T − t , the solution of (24) satisfies

ut = γ yuy(x, y, t).

The solution of this hyperbolic PDE is

u(x, y, t) = u(x, ye−γ (T−t), T ) = −x∞(x, ye−γ (T−t)).
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Thus, for small enough T − t ,

ux (x, y, t) = −∂x∞
∂ y

(
1 − 1

x(t)σ0

)

uy(x, y, t) = −∂x∞
∂ y

e−γ (T−t).

According to (25), the optimal control value will switch when ux = uy , which leads
to (22). Meanwhile, substituting (25) in (24) in the case uy < ux yields the linear
hyperbolic PDE

ut = γ yuy − βxy(uy − ux ),

whose characteristics are just the trajectories of the SIR system (1) illustrated in Fig. 1,
which are also contours of x∞. It can be shown that once uy − ux < 0, this inequality
will continue to hold along each such characteristic.

4 Optimal control with L �= 0

We now consider the case of a non-zero Lagrangian, which allows us to account for
factors like the economic cost of intervention or heightened risks caused by hospital
overflow. We formulate the Hamiltion-Jacobi-Bellman (HJB) equation for this prob-
lem and apply an upwind numerical method to compute approximate solutions. The
numerical solutions obtained via theHJB equation have also been checked in each case
against solutions of the BVP given in Sect. 2.3, and found to agree within numerical
errors.

Because the Lagrangian in this section is not a linear function, the solution is
not bang-bang, and instead varies smoothly (except when it reaches the minimum or
maximum allowable value).

4.1 Quadratic running cost of control

We now attempt to account for the economic cost of intervention. Quantification of
the cost of measures like closing schools and businesses is a challenging problem in
economic modeling, and well outside the scope of the present work. Based on the
general idea that both the cost and the marginal cost will increase with the degree of
contact reduction, we take for simplicity

L(x(t), y(t), σ (t)) = c2

(
1 − σ(t)

σ0

)2

.

123



Optimal control of an SIR epidemic through... Page 15 of 21 7

(a) Solution (solid line) and control σ(t)/σ0 (dashed line) vs. time (b) Trajectory in phase space

Fig. 7 Optimal solutions with different running cost. Here (x(0), y(0)) = (0.9, 0.1), β = 0.3, γ = 0.1,
and T = 100

The HJB equation for (6) is then

ut − γ yuy = − min
0≤σ≤σ0

(
(uy − ux )γ xyσ(t) + c2

(
1 − σ(t)

σ0

)2
)

(26a)

u(x, y, T ) = −x∞(x, y, σ0). (26b)

The minimum in (26a) is obtained with

σ(t) = σ0 min

(
1,max

(
0,

(
1 − σ0γ

2c2
xy(uy − ux )

)))
. (27)

We approximate the solution of (26)-(27) using a second-order finite volume dis-
cretization with the PyClaw software (Ketcheson et al. 2012, 2013; Mandli et al.
2016). For details, the reader is referred to the reproducibility repository that contains
the code for all examples in this paper (Ketcheson 2021).

Numerical solutions for a range of values of c2 are shown in Fig. 7. The values of
c2 used here are chosen merely to illustrate the range of possible behaviors. Notice
that the strength of the control σ(t) and the number of infected at certain times vary
non-monotonically with c2. Indeed, the optimal control σ(t) up to around day 15 is
simply σ0 in both limits c2 → ∞ and c2 → 0, whereas for intermediate values of c2
some intervention is imposed in this period.

4.2 Minimizing hospital overflow

The optimal solutions above may be unsatisfactory in practice, since the number of
people simultaneously infected at certain times may be too great for all of them to
receive adequate medical care. This is a major concern with respect to the current
COVID-19 crisis. A natural objective is to keep the number of infected below some
threshold, corresponding for instance to the number of hospital beds.We thus consider
the Lagrangian
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(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 8 Optimal solutionswith cost for hospital overflow.Here (x(0), y(0)) = (0.9, 0.01),β = 0.3, γ = 0.1,
T = 100, and ymax = 0.1. In the cost function, we take c2 = 10−2 and c3 = 100. The dashed red line
shows the result of imposing no control

L(x(t), y(t), σ (t)) = c2

(
1 − σ(t)

σ0

)2

+ c3g(y(t) − ymax).

Here ymax is the maximum number of hospital beds. The HJB equation is then

ut − γ yuy + c3g(y − ymax) = − min
0≤σ≤σ0

(
(uy − ux )γ xyσ(t) + c2

(
1 − σ(t)

σ0

)2
)

(28a)

u(x, y, T ) = −x∞(x, y, σ0). (28b)

The control that achieves the minimum in (28a) is again given by (27). The function
g(v) should be nearly zero for v < 0 and increase in an approximately linear fashion
for v > 0. For the purpose of having a tractable control problem, it is also desirable
that g be differentiable. We take

g(v) = v

1 + e−100v .

Figs. 8 and 9 show examples of solutions. Again, we choose parameter values that
demonstrate the range of qualitative behaviors. In both examples, the cost of control
is scaled by c2 = 10−2. In Fig. 8, a higher cost for hospital overflow is applied, with
c3 = 100. As might be expected, y(t) is generally kept below ymax (which is set to
0.1). The control is initially off, then turns on to avoid hospital overflow, and then
turns off again. While the control is applied, it is maintained at a level that keeps the
value of y(t) nearly constant in time.

Figure 9 shows another example scenario in which the cost of hospital overflow is
smaller, with c3 = 1. In this case the hospital capacity is significantly exceeded for
a short time, and the control is kept on until the final time, but the epidemiological
overshoot is significantly reduced compared to the previous solution.
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(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 9 Optimal solutions with smaller cost for hospital overflow. Here (x(0), y(0)) = (0.9, 0.01), β = 0.3,
γ = 0.1, T = 100, and ymax = 0.1. In the cost function, we take c2 = 10−2 and c3 = 1. The dashed red
line shows the result of imposing no control

5 Application to the COVID-19 pandemic

The main goal of this work has been a mathematical investigation of optimal controls
for the SIR model with a controlled rate of contact, as presented in the previous
sections. We now present a brief illustration of the results in practical terms through
application to the current COVID-19 pandemic. This application is imprecise, for
several reasons: the SIR model is one of the simplest epidemiological models, and
assumes homogeneous mixing among a population; the current state of susceptible
and infected persons is not accurately known; and the parameters of the disease itself
(i.e. γ, σ0) are still quite uncertain. The examples in this section should be viewed only
as illustrations of a few possible scenarios, and not an exhaustive or detailed study.

We take the infectious period γ −1 = 10 days, and the basic reproduction number
σ0 = 3.2, based on recent estimates (Verity et al. 2020; Ying et al. 2020). To make
the results easy to interpret, we use a fixed terminal cost of c1z∞, where we have
introduced an additional scaling constant. Taking c1 = αN , where N is the total
population being modeled and α is the infection fatality ratio, then this cost is the
expected number of lives lost. Since z∞ = 1 − x∞, this is merely a rescaling of the
terminal cost used throughout this work.We take α ≈ 0.006 based on recent estimates
(Verity et al. 2020; Russell et al. 2020; Wu et al. 2020).

We seek reasonable order-of-magnitude estimates for c2 and c3. The value of c3/N
should be equal to the increase in probability of a given infected person dying because
of the lack of medical care. We take c3 = Nη, where the fatality ratio in the absence
of medical care is α + η. We take η ≈ α, giving c3 = 0.006. For ymax we take
values from the United States, where there are about 3 hospital beds per 1000 people,
and two-thirds of them are typically occupied. Since it is estimated that about 5% of
COVID-19 cases are hospitalized (Verity et al. 2020), this gives ymax = 0.02N .

Any attempt to quantify the cost of an intervention in human lives is bound to be
contentious. Whether we consider the value of a human life to be in intrinsic personal
value or extrinsic economic value, we can view the cost of intervention as a reduction
of the value of human lives during the intervention period. We take c2 = Nε/d where
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(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 10 Optimal control for COVID-19 with σ0 = 3.2, γ = 0.1, α = η = 0.006, ε = 0.2, d = 104,
T = 200, and (x(0), y(0)) = (0.999, 0.001). The dashed red line shows the result of imposing no control

(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 11 Optimal control for COVID-19 with σ0 = 3.2, γ = 0.1, α = η = 0.012, ε = 0.05, d = 104,
T = 200, and (x(0), y(0)) = (0.999, 0.001). The dashed red line shows the result of imposing no control

d ≈ 104 is the number of days in a human life (more precisely, the average number
of days remaining in a life claimed by the disease) and 1 − ε is the relative value of
a day spent in full isolation (σ = 0) compared to a day without intervention. Taking
ε = 0.2, we have c2 = 2 × 10−5N .

Since all terms in the cost function are proportional to N , we take N = 1 without
loss of generality. Results for the parameter values given above are shown in Fig. 10.
We see that the optimal control corresponds to a level of intervention that becomes
more strict as the epidemic grows, and is gradually relaxed as the epidemic subsides.
Most importantly, and in agreement with results from the examples in earlier sections,
the strongest control is applied around the time of peak infection and shortly thereafter.
The resulting epidemiological overshoot is very small.

An alternative scenario is shown in Fig. 11, in which we have assumed a fatality
ratio and a value of η that are twice as large (in line with the highest estimates of the
infection fatality ratio), as well as taking a smaller cost of intervention with ε = 0.05.
These parameters lead to stronger intervention, especially in the later phases of the
epidemic. The result is almost no epidemiological overshoot.
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(a) Solution and control vs. time (b) Trajectory in phase space

Fig. 12 Optimal control for COVID-19 with σ0 = 3.2, γ = 0.1, α = η = 0.006, ε = 0.5, d = 104,
T = 200, and (x(0), y(0)) = (0.999, 0.001). The dashed red line shows the result of imposing no control

Finally, in Fig. 12, we repeat the first scenario but increase the cost of control
by taking ε = 1. In this case a more mild control is applied, peaking at about 35%
contact reduction and concentrated around the time of the infection peak. In this case
the optimal solution includes a small but significant epidemiological overshoot, and
significantly exceeds the available hospital beds for a certain period of time.

6 Conclusion

We have studied, for an SIRmodel with a control on the rate of contact, the problem of
minimizing the eventually infected population in the long-time limit, when the control
can be applied only up to a finite time. In the absence of any cost of intervention, the
optimal strategy is to apply no control until a certain switching time, and then apply
maximum control. We have also considered other objective functions that include a
running cost of control and a penalty for large numbers of simultaneous infections.

Contrary to simple intuition, it is not optimal to impose the maximum level of
intervention from the earliest possible time. But real-world studies have supported
this observation; a too-strong intervention may simply lead to a strong second wave of
infection after the intervention is lifted, and not significantly reduce epidemiological
overshoot (Bootsma and Ferguson 2007). On the other hand, intervention that starts too
late or is lifted too soon may also have a negligible effect on total mortality (Bootsma
and Ferguson 2007; Hatchett et al. 2007;Markel et al. 2007). The idea that intervention
should possibly be delayed in order to increase its effect was also found in Ballard
et al. (2017), although the objective and optimal policy found there differ from the
present work.

The general results obtained here may provide insight into what optimal interven-
tion strategies and their consequences may look like, but this should be informed by
additional insight that can be gained frommore detailedmodels. This work could form
the basis of more detailed real-world application, using values of the disease param-
eters, costs, and effectiveness of NPIs relevant to a specific population of interest.

123



7 Page 20 of 21 D. I. Ketcheson

Although the SIR model is perhaps the simplest mathematical epidemiological model
available, it has the advantage of requiring only a few parameters to be constrained.
Results based on control of the SIR model could form a starting point for studying
control in more complex models.
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