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The scale and complexity of images collected in biological microscopy have grown
enormously over the past 30 years. The development and commercialization of
multiphoton microscopy has promoted a renaissance of intravital microscopy, providing
a window into cell biology in vivo. New methods of optical sectioning and tissue
clearing now enable biologists to characterize entire organs at subcellular resolution.
New methods of multiplexed imaging support simultaneous localization of forty or
more probes at a time. Exploiting these exciting new techniques has increasingly
required biomedical researchers to master procedures of image analysis that were
once the specialized province of imaging experts. A primary goal of the Indiana O’Brien
Center has been to develop robust and accessible image analysis tools for biomedical
researchers. Here we describe biomedical image analysis software developed by the
Indiana O’Brien Center over the past 25 years.

Keywords: image analysis, volume rendering, segmentation, tissue cytometry, intravital microscopy, image
registration

INTRODUCTION

Over the past 200 years, biological microscopy has evolved from a largely descriptive technique,
documented with pictures and verbal descriptions, into a legitimately quantitative research
approach. This evolution was fueled by the widespread deployment of digital detectors in the
1980s and digital computers in the 1990s. As biological microscopy became “digital,” biologists
increasingly found themselves having to train themselves in methods of digital image analysis
in order to visualize and analyze their imaging studies. The past 20 years have witnessed an
extraordinary explosion in the development of methods of biological microscopy, extending its
scope, scale, complexity and resolution. Realizing the vast potential of these techniques has required
that biomedical researchers master increasingly challenging methods of image and data analysis,
methods that are generally well outside the realm of their training. Over the course of the Indiana
O’Brien Center’s existence [see review in Dunn et al. (2021)], we have encountered multiple
cases where necessary software tools either do not exist or require an inordinately high level of
expertise. A primary goal of the Indiana O’Brien Center has been to develop robust image analysis
tools that are accessible to biomedical researchers lacking specialized image analysis experience.
Examples of image analysis software developed by the Center are listed in Table 1, and described
in detail below.
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TABLE 1 | Software developed by the Indiana O’Brien Center.

Software Application References Availability

Voxx 3D volume rendering for personal computers Clendenon et al., 2002. Am J Physiol Cell Physiol.
282:C213-218

http://web.medicine.iupui.edu/ICBM/
software

IMART Motion correction for time-series and 3D
intravital microscopy images

Dunn et al., 2014. Intravital. 3:e28210 Lorenz et al., 2012. J
Microsc. 245:148-160

http://web.medicine.iupui.edu/ICBM/
software

STAFF Near-continuous measurement of
microvascular velocity in 2D networks

Clendenon et al., 2019b. Microvasc Res. 123:7-13 Clendenon
et al., 2019a. J Vis Exp

https://github.com/icbm-iupui/STAFF

VTEA Interactive exploration of large-scale images
and image data for quantitative tissue cytometry

Winfree et al., 2017b. J Am Soc Nephrol. 28:2108-2118
Winfree et al., 2017a.Transl Res. 189:1-12

https://github.com/icbm-iupui/
volumetric-tissue-exploration-analysis

DeepSynth Segmentation of nuclei in three-dimensional
microscopy images

Dunn et al., 2019. Sci Rep. 9:18295 Ho et al., 2017. IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW):834-842 Fu et al., 2017. IEEE 14th
International Symposium on Biomedical Imaging (ISBI
2017):704-708

ace@ecn.purdue.edu

INTERACTIVE VISUALIZATION OF
THREE-DIMENSIONAL IMAGE
VOLUMES – VOXX SOFTWARE

The optical sectioning provided by confocal, and later
multiphoton and lightsheet microscopy opened the door
to three-dimensional (3D) microscopy. However, when the
Indiana O’Brien Center collected its first multiphoton excitation
fluorescence image volumes in 2001 visualizing these volumes
was challenging. Commonly available software provided
static anaglyphs, or sequences of projections, but interactive
visualization was limited to scrolling through sequential
planes. “Real-time volume rendering” was then an expensive
option, requiring costly workstations and surprisingly costly
software. However, the rapid growth of video gaming profoundly
changed the landscape of computer technology development,
moving volume-rendering from a niche scientific market to
an enormous consumer market. Jeff Clendenon, a computer
engineer in the Indiana O’Brien Center recognized that the
graphics capabilities that were once found only on expensive
workstations had been reproduced in affordable graphics
processors found in personal computers. He proceeded to
develop the ground-breaking Voxx scientific volume rendering
software, which put real-time volume rendering into the hands
of nearly anyone with a personal computer (Clendenon et al.,
2002). Voxx (Figure 1A) provides 3D renderings of an image
volume (maximum projection or alpha-blending), that update
in real-time as the user moves the volume around using a
mouse, essentially reproducing the experience of rotating an
actual 3D object in space. The ability to interactively manipulate
the volume is critical to fully exploring a complex image
volume. Voxx also supports the ability to export individual
images, or to save a volume rendering sequence as a video
for presentations. Over the years since Voxx was released,
a variety of volume visualization tools have been developed,
both free (e.g., ImageJ) and commercial (e.g., Imaris and
Amira). However, because of its unique flexibility and capability,
Voxx remains a compelling choice, particularly among free
software solutions. Voxx continues to be a mainstay tool of
the Indiana O’Brien Center and, as of the time of writing,

has been cited in over 100 papers and downloaded more than
6000 times1.

CORRECTING MOTION ARTIFACTS IN
INTRAVITAL MICROSCOPY – IMAGE
MOTION ARTIFACT REDUCTION TOOL
SOFTWARE

Intravital microscopy has been a core technology of the Indiana
O’Brien Center since its inception, and a long-standing goal of the
Center has been to promote and facilitate intravital microscopy as
a powerful tool for understanding the function of the kidney in
health and disease. In our first forays into intravital microscopy
we immediately discovered that tissue motion, derived primarily
from respiration, represented a significant challenge to high
resolution in vivo imaging. Subsequent studies of liver, pancreas,
lymph nodes, and lung demonstrated that tissue motion was a
general problem for intravital microscopy of visceral organs. In
contrast to the brain, which can be effectively immobilized using
stereotaxic devices attached to the skull, visceral organs move
relatively freely in the living animal so that imaging at sub-cellular
resolution depends upon methods immobilizing tissue to micron
precision. We have since developed robust and reproducible
methods for mounting the kidney and other internal organs of
rat and mice on the stage of an inverted microscope stage in a
way that immobilizes the organ without compromising function
(Dunn et al., 2018). Even so, there are occasions when tissue
motion cannot be controlled, resulting in studies that cannot be
quantified or occasionally, even interpreted.

The problem of tissue motion can be addressed at capture, by
gating image collection to avoid respiratory motion [see review
in Soulet et al. (2020)], an approach that can be augmented
for three-dimensional images, by digital reconstruction
(Vladymyrov et al., 2020). For time series studies corrupted
by relatively few distorted images, the problem of motion
artifacts can be addressed by simply discarding distorted images,
or portions of images (Soulet et al., 2013). To address the problem

1http://web.medicine.iupui.edu/ICBM/software
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FIGURE 1 | Examples of image processing software developed by the Indiana O’Brien Center. (A) Screenshot of Voxx volume visualization software showing the
rendered volume, and interactive windows for selecting rendering method, adjusting view and channel palette settings, selecting between multiple volumes, limiting
the volume to be displayed, and setting parameters for video outputs. (B) Example of IMART image registration. Left – first of a series of images collected over time
from the kidney of a living rat. Vertical line indicates region used to generate YT images (two-dimensional images that show the image of a single line, oriented
vertically over time, and oriented horizontally). Right – YT images from the original time series, after rigid registration and after rigid and non-rigid registration. (C)
Example of STAFF microvascular velocity measurements. Top – Series of images collected at the rate of 97.5 frames per second from the liver of a living rat following
injection of a fluorescent dextran. Bottom – map of velocities measured over time in which time is presented as a third dimension. (D) Comparison of nuclear
segmentation results obtained from a 3D volume of mouse intestine (left), using DeepSynth (middle) or CellProfiler (right). Images shown in panels (B–D) are modified
from previous publications (Dunn et al., 2014, 2019; Clendenon et al., 2019b) and used with permission.

of pervasive image distortion in time series and 3D intravital
microscopy, the students from the laboratory of Edward Delp,
a Purdue University investigator of the Digital Image Analysis

Core of the Indiana O’Brien Center developed novel software
to retrospectively correct intravital microcopy images that were
compromised by motion artifacts. Based upon an algorithm that
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seeks to minimize the differences between images, the Image
Motion Artifact Reduction Tool (IMART) software can be used
to correct motion artifacts in sequences of images collected over
time or in three dimensions (Lorenz et al., 2012; Dunn et al.,
2014). Unlike other image registration solutions, IMART can
be used to correct for both linear (rigid) translations occurring
between sequential frames as well as non-linear (warping)
distortions occurring within each frame, distortions that are
unique to intravital microscopy (Figure 1B). IMART software,
which has been downloaded by more than 100 laboratories, has
been used to remove motion artifacts from intravital microscopy
images collected from the rodent lung and kidney (Presson et al.,
2011; Hato et al., 2017), enabling quantitative analysis that would
have otherwise been impossible.

CONTINUOUS MEASUREMENT OF
MICROVASCULAR FLOW ACROSS
ENTIRE OPTICAL SECTIONS – STAFF
SOFTWARE

Historically, one of the most common applications of intravital
microscopy has been the measurement of microvascular flow.
The procedure typically involves measuring the displacement
of cells or particles in a series of images collected over time
from a capillary segment. Cells can be identified either by
fluorescent labeling or as shadows in the lumen of the capillary
labeled with a fluorescent fluid probe. The velocity of the
cells or particles can then be measured either by manually
tracking individual cells or by measuring angles in time-distance
kymographs. In either case, the process is laborious enough
that velocities are typically measured for only a few vascular
segments and only for a very brief interval of time. While accurate
measurements can be generated in this way, they are susceptible
to the spatial and temporal variability that is characteristic of
microvascular flow.

To address this problem, the Indiana O’Brien Center
worked Sherry Clendenon of the Indiana Biocomplexity
Institute to develop an approach for continuous measurement
of microvascular flow across entire microscope fields.
Using time series images collected by high-speed intravital
microscopy, STAFF (Spatial Temporal Analysis of Fieldwise
Flow) automatically generates kymographs for each vascular
segment in the field, which are then used to generate a
complete map of microvascular velocity in each segment
across the entire field (Clendenon et al., 2019b; Figure 1C).
This approach gives STAFF the unique ability to measure
microvascular velocities across entire fields at a temporal
resolution on the scale of seconds. Analyses of images collected
from the livers of mice demonstrated surprising variability
in microvascular flow, with striking differences in flow rates
between adjacent sinusoids, and numerous occasions when
flow would suddenly stop and later restart. To encourage wide-
spread use, STAFF was developed as a freely available plugin
to ImageJ and its use is thoroughly described in a JOVE video
(Clendenon et al., 2019a).

IMAGE AND DATA EXPLORATION FOR
LARGE SCALE TISSUE CYTOMETRY –
VOLUMETRIC TOOL FOR EXPLORATION
AND ANALYSIS SOFTWARE

The development of automated microscope systems has enabled
researchers to image the distribution of multiple probes at
subcellular resolution in centimeter-scale tissue samples. These
large and complex image volumes have spurred the development
of “tissue cytometry,” an image analysis technique capable
of providing complete characterizations of the distribution,
interactions and physiology of every cell in an organ (Gerner
et al., 2012; Coutu et al., 2017; Halse et al., 2018). However, tissue
cytometry represents a relatively new domain of image analysis so
that quantitative analysis has largely been accomplished using a
combination of custom and/or expensive image analysis software.

To address the need for an accessible solution to tissue
cytometry, Seth Winfree, a member of the Indiana O’Brien
Center developed VTEA (Volumetric Tool for Exploration and
Analysis) (Winfree et al., 2017a,b), a unique software tool that
provides a complete integrated workflow supporting every step
in tissue cytometry, from segmentation, through classification
and quantitation to data analysis via a simple, interactive user
interface. A fundamental strength of VTEA is that, by integrating
image and data analysis into a single software platform, VTEA
expedites and encourages the process of discovery, an exciting
aspect of large-scale tissue cytometry. Whereas most imaging
studies are predicated on tests of hypotheses, tissue cytometry
is typically conducted on images whose size and complexity is
such that they contain enormous amounts of additional, latent
information that may be apparent only upon exploration. VTEA
provides a seamless pipeline between image and data analysis
so that the user can, for example, quickly identify specific
cell populations in the data space, using either supervised or
unsupervised strategies, and visualize their distributions and
relations to other cells in the image space. Conversely, the user
can also identify interesting regions or cell populations in an
image and explore the nature of the cells in these regions in the
data space, using either scatterplots or tSNE plots.

VTEA has become a critical tool in the quantitative analysis
of tissues by members of the Indiana O’Brien Center and
beyond, unlocking the promise of tissue cytometry as tool
for biomedical research and discovery. There are several
powerful software tools currently available to support tissue
cytometry, for example, the Cytomapper and Histocat software
developed by the Bodenmiller laboratory (Schapiro et al.,
2017; Eling et al., 2020), the Xit software developed by
the Schroeder lab (Coutu et al., 2018) and the CytoMAP
software developed by the Gerner lab (Stoltzfus et al., 2020).
However, none incorporate the entire workflow of image
processing, quantitation, visualization, and data analysis into
a single continuous bidirectional platform that so effectively
encourages exploration and analysis refinement. VTEA-based
tissue cytometry has made critical contributions to studies of
the processes underlying kidney stone formation conducted as
part of a NIH-funded program project (Makki et al., 2020;
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Winfree et al., 2020) and represents a cornerstone technology
of the Indiana University contributions to the Kidney Precision
Medicine Project (Winfree et al., 2017a, 2018; El-Achkar et al.,
2021; Ferkowicz et al., 2021). Developed as a plug-in to ImageJ,
VTEA is freely available online.

ONLINE IMAGE VISUALIZATION AND
ANALYSIS – DISTRIBUTED AND
NETWORKED ANALYSIS OF
VOLUMETRIC IMAGE DATA HIGH
PERFORMANCE IMAGE ANALYSIS
SYSTEM

Capable of defining the distribution of multiple molecular
species at subcellular resolution over regions spanning the
full extent of the cortex and medulla, large-scale microscopy
image volumes are enormously rich in potential information.
However, extracting this information is challenging, not only
because of the unique challenges of 3D image analysis, but also
because the size and complexity of these image volumes are
incompatible with resources available to most researchers. Large-
scale image data places an enormous burden on computer and
network infrastructure. A four- channel image volume, collected
at subcellular resolution to a depth of 100 microns from a
5 × 6 mm region requires nearly 200 gigabytes of digital storage
space. A complete study, which might involve comparison of
multiple conditions, each with a reasonable number of replicates,
could thus easily involve tens of terabytes of data. Managing
data of this magnitude requires extensive and sophisticated
computer hardware and network infrastructure beyond that
available at most institutions. And the challenges of visualizing
and quantifying 3D images, discussed previously, become much
larger in image volumes of this scale.

To encourage the application of large-scale tissue cytometry
by a broader range of investigators, the Indiana O’Brien
Center has a developed an approach to large-scale microscopy
that both removes most of these challenges. The O’Brien
Center 3D Tissue Imaging Core provides a service whereby
samples sent to the Center are imaged using one of the
confocal or multiphoton microscopes of the Indiana Center
for Biological Microscopy, and the resulting data archived at
Indiana University, thus eliminating an investigator’s need for
extensive storage and network capabilities. The resulting images
are also uploaded to a powerful online server system, the
DINAVID (Distributed and Networked Analysis of Volumetric
Image Data) high performance image analysis system. Hosted
by Indiana University and developed by the laboratories of
Edward Delp at Purdue and Paul Salama at IUPUI, the DINAVID
system is designed to provide remote users throughout the
world with an intuitive interface to their image data, supporting
interactive visualization, quantitative analysis, and exploration.
The DINAVID system is continuously updated with new tools
as they are developed by the O’Brien Center Digital Image
Analysis Core, including novel methods of 3D segmentation, as
described below.

NUCLEAR SEGMENTATION USING A
CONVOLUTIONAL NEURAL NETWORK
TRAINED IN SYNTHETIC DATA –
DEEPSYNTH SEGMENTATION
SOFTWARE

Tissue cytometry is formally similar to flow cytometry, except
that whereas in flow cytometry the sample is passed through
a detector, in tissue cytometry, the detector is passed over the
sample. However, unlike flow cytometry, where individual cells
are physically separated from one another for quantification,
tissue cytometry is complicated by the need for image analysis
techniques to distinguish individual cells that are packed into
a tissue. The process of distinguishing individual cells, cell
“segmentation” is the critical first step in tissue cytometry. In
the absence of membrane markers to delineate cell boundaries,
individual cells are typically distinguished by their nuclei. Cells
are then classified into specific cell types based upon the presence
of specific markers in the regions surrounding each nucleus.

Numerous approaches have been developed to segment nuclei
in two-dimensional images, supporting automated analysis of
thin tissue sections and cells grown in culture. Historically, these
approaches have been based upon traditional, morphological
image processing operations but increasingly, investigators
are demonstrating that deep-learning techniques frequently
provide results that are more accurate (Caicedo et al., 2019a,b).
Moreover, unlike morphological techniques that typically need
to be tuned to the specific characteristics of each image,
deep-learning techniques generally provide results that are
robust across different images. However, that robustness is
typically obtained only when the network is provided with
a large amount high-quality “training” data – a library of
images that have been manually annotated that are used by
the network to “learn” the qualities of nuclei. As manual
annotation is a laborious process, training is typically the rate-
limiting step in the application of deep-learning techniques
to segmentation. The barrier of manual annotation has
been addressed in various ways, including side-stepping the
annotation process and training networks using publicly available
annotated datasets (Caicedo et al., 2019a; Stringer et al.,
2021), using crowd-sourcing to annotate images (Moen et al.,
2019), or using transfer learning, a process in which a
network trained on a large amount of data is refined using
a much smaller dataset (Zaki et al., 2020). Interested readers
are directed to a recently published review of open-source,
deep-learning software for segmentation of biological images
(Lucas et al., 2021).

Segmentation of nuclei in three-dimensional tissues is
significantly more challenging, in part because of the relatively
poor axial resolution of optical microscopy. Accordingly,
techniques for segmentation of nuclei in three-dimensional
tissues are much less developed, seriously limiting biologists’
ability to quantitatively analyze three-dimensional image
volumes. As with two-dimensional segmentation, deep-
learning represents an exciting approach to segmentation
of three-dimensional images. However, the already tedious
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task of generating training data is even more onerous in
three dimensions. As with two-dimensional data, network
performance depends upon annotation of hundreds, if not
thousands of nuclei. Extending segmentation to three dimensions
means that each nucleus must be manually annotated in multiple
focal planes, including those collected from the top and bottom
boundaries that are especially difficult to reproducibly delineate.

The Digital Image Analysis Core of the Indiana O’Brien
Center addressed this problem by developing DeepSynth, a
convolutional neural network trained on synthetic images,
essentially eliminating the tedious task of manual annotation
(Fu et al., 2017; Ho et al., 2017, 2018; Dunn et al., 2019). As
compared with 3D segmentation software based upon traditional
morphological segmentation techniques, DeepSynth provides
segmentations that are more accurate, particularly for challenging
image volumes (Figure 1D). A second benefit of the DeepSynth
approach is that the quality of segmentations are more consistent
throughout large image volumes. At the time of writing, the
DeepSynth software, which is freely available from the O’Brien
website, has been downloaded by 18 laboratories.

FUTURE DIRECTIONS OF THE DIGITAL
IMAGE ANALYSIS CORE OF THE
INDIANA O’BRIEN CENTER

The Digital Image Analysis Core is dedicated to the development
of image analysis software to further the research of renal
investigators. An overarching theme of the core is that the
images of biological microscopy are rich in information, and
extracting that information depends upon hands-on exploration
and analysis by biologists who are not necessarily experts in
digital image analysis. Thus image analysis software should be
accessible, interactive, and user-friendly. Going forward, the
core will continue to improve and refine deep learning-based
methods of image segmentation by implementing more accurate
models of synthetic data, e.g., by incorporating models of
objective lens point-spread functions. The core is also working on

methods to address the spatial variability in segmentation quality
that we observe in large, three-dimensional image volumes.
Insofar as segmentation is fundamental to image quantification,
spatial variability in segmentation quantity directly impacts the
reliability of tissue cytometry. Since it is impractical to measure
segmentation quality at every point in a large image volume,
methods are needed to estimate segmentation quality and to
convert these estimates into confidence maps that can be used
to inform interpretation of cytometry measurements. Finally, the
core is also exploring how deep learning can be expanded into
additional aspects of image analysis in tissue cytometry, including
noise reduction, spectral deconvolution and cell classification.
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