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Abstract: Gibberellins (GAs) are an important group of phytohormones associated with diverse
growth and developmental processes, including cell elongation, seed germination, and secondary
growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling
pathways and related genes in model plant species. However, functional genomics analyses of GA
signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-
known economical and medicinal importance. Here, we conducted functional characterization of GA
receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots.
We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s
(PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in
the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved.
Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the
Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the
secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced
root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root
secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA)
response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary
growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary
root growth in P. ginseng.

Keywords: gibberellins; Panax ginseng; GID1s; phytohormones; storage root secondary growth; cell
wall biogenesis

1. Introduction

Korean ginseng (Panax ginseng C.A. Meyer) has been used as an important medicinal
plant species for thousands of years in Asia, especially in Korea, Japan, and China [1].
Ginseng has the ability to increase immunity and vitality and to prevent aging, and its
pharmacological effects have been proven through clinical trials and animal experiments [2].
Studies on ginseng have focused primarily on its pharmacological effects in humans;
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however, its unique physiological and developmental characteristics have rarely been
explored thoroughly due to its perennial heterozygous nature [3]. The application of
functional genomic approaches in ginseng has been challenging because of its unique
physiological and ecological characteristics and the lack of genomic information [4,5], which
could be attributed to its relatively large genome (3.2 Gbp), heterozygous allotetraploid
nature (2n = 4x = 48), and significant amounts of repetitive DNA [6,7].

Plants, as sessile organisms, induce a variety of physiological changes in response to
adverse environmental conditions. Plant hormones function as master regulators of growth
and development under unsuitable external environments [8]. Gibberellins (GAs) are
tetracyclic diterpenoid hormones that play essential roles in seed germination, flowering,
pollen maturation, stress tolerance, secondary growth, and development [9–11]. Recent
studies have shown that there are complicated internal and external signaling interactions
of GAs and various hormone pathways, including auxin, abscisic acid (ABA), jasmonic
acid (JA), ethylene, and cytokinin. These interactions are highly relevant to plant growth,
development, and stress tolerance [12–14]. Major GA signaling components have been
identified through genetic studies on model plant species, including rice (Oryza sativa) and
Arabidopsis thaliana. The nucleocytoplasmic GA receptor gibberellin-insensitive dwarf1
(GID1) was first identified in rice through studies on gibberellin-insensitive dwarf mu-
tants [15]. OsGID1 and AtGID1s have been characterized as water-soluble GA receptors
that exhibit strong binding affinity for bio-active GAs [15,16]. At the C-terminus, GID1
harbors a well-conserved α/β-hydrolase domain, which belongs to the carboxylesterase
family of plant proteins [17,18]. The canonical GA signaling pathway is initiated by direct
binding of active GAs to GID1 in the nucleus. The GA–GID1 complex induces rapid
degradation of the major growth-inhibitory factor DELLA through direct protein–protein
interactions [12,19]. DELLAs are key transcriptional repressors that inhibit GA signaling
and plant growth. Degradation of DELLA proteins requires both GID1 and the F-box
protein SLY1 (SLEEPY)/GID2 [15,20–22]. In the presence of GA, DELLA is recognized by
the SCFSLY1/GID2 ubiquitin E3 ligase complex for subsequent 26S proteasome-meditated
degradation [21,23,24]. This canonical GA signaling pathway is responsible for various
physiological responses during plant growth and development.

The secondary growth of roots is particularly important for production of various root
crops and for accumulation of useful compounds and nutrients in storage roots [25–27].
Studies on root crops such as radish and cassava show that the secondary growth of storage
roots is regulated by the activity of cambium stem cells. Secondary growth of plants involves
formation of cambium stem cells and differentiation of phloem and xylem tissues, which are
mainly regulated by the plant hormones auxin and cytokinin [25–29]. In addition, the role of
GA in secondary xylem formation and lignification in storage roots has also been confirmed
in several plant species, including poplar, carrot, and cotton [30–33]. Overproduction of GA
promotes elongation and division of xylem and fiber cells in the vascular bundle and increases
cambium activity [26,32,34]. However, in carrot and sweet potato, exogenous GA treatment
inhibits root growth by affecting cell division and vascular lignin synthesis [35,36]. These
results suggest that the physiological response to GA, a growth-promoting hormone, varies
with the plant species. Although Korean ginseng is one of the most important medicinal root
crops with a 6-year cultivation period, genetic and physiological factors affecting the growth
and development of ginseng roots have rarely been investigated.

Owing to recent advances in sequencing technology, the draft genome sequence of
P. ginseng has been released by two research groups [37,38]. In addition, we also previously
reported the precise transcript sequences of P. ginseng using PacBio single-molecule real-
time (SMRT) isoform sequencing (Iso-seq) analysis [39]. Herein, we demonstrate for the
first time that GA promotes storage root secondary growth in P. ginseng. We identified
eight putative homologs of the AtGID1 gene in P. ginseng (PgGID1s), based on its draft
genome sequence and SMRT Iso-seq data [37–39]. Functional genomic analysis of four
representative PgGID1s (PgGID1A–D) revealed that the functions of PgGIDs are evolution-
arily conserved. Transcriptome analysis further supported that GA-induced root secondary
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growth is tightly connected with cell wall biogenesis, the cell cycle, the JA response, and
nitrate assimilation. These results are expected to facilitate development of an omics-based
breeding technology for ginseng.

2. Results
2.1. GA Enhances Shoot Primary Growth and Root Secondary Growth in P. ginseng

The secondary growth of the tap root, as a storage organ, is one of the main factors
affecting ginseng yield. To investigate the physiological effects of GA in P. ginseng, active
GA3 and paclobutrazol (PCZ), a GA biosynthetic inhibitor, were applied exogenously
to the roots of 1-year-old P. ginseng plants. Exogenous application of GA significantly
promoted stem growth compared with mock treatment (Figure 1A,B), which is consistent
with the role of GA as a growth-promoting hormone [40]. Interestingly, exogenous GA
treatment also increased the diameter of the tap root; however, PCZ application reduced
both shoot and root growth in P. ginseng (Figure 1A,B). To further analyze the GA-mediated
promotion of shoot and root growth, GA- and PCZ-treated P. ginseng samples were applied
to histological paraffin-embedded sections with Safranine-Astra blue combination staining.
Compared with the control, plants in the GA treatment group showed longer epidermal
cells, consistent with their elongated stem phenotype (Figure 1C). Conversely, the stems
of plants in the PCZ treatment group showed slightly shorter cells compared with the
control (Figure 1C). However, there was no significant difference in the size of the divided
cells surrounding the cambium layer of the storage tap root, although the number of
divided starch-deposited storage parenchyma cells located between xylem vessels and resin
duct cells was greatly increased in GA-treated P. ginseng roots (Figure 1D). Consistently,
the number of cambium-derived storage parenchyma and vascular cells in PCZ-treated
roots was significantly reduced (Figure 1D). These results indicate that GA facilitates root
secondary growth in P. ginseng by promoting storage parenchyma cell development.
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dots, squares and triangles represent individual values. Error bars represent standard error; n = 16 (B), 20 (D), 10 (F). 
Different lowercase letters indicate statistically significant differences (p < 0.05; one-way analysis of variance [ANOVA], 
followed by Tukey’s multiple range test).  

Figure 1. Exogenous gibberellin (GA) treatment promotes primary growth of stems and secondary growth of roots in Panax
ginseng. (A) Phenotype of 1-year-old P. ginseng plants treated with DMSO (control [Con]), 10 µM GA3, and 100 µM paclobutrazol
(PCZ) once a week for 8 weeks. Scale bar = 2 cm. (B) Measurements of shoot length and root diameter. (C) Representative
images of stained stem cross-sections of P. ginseng plants treated with DMSO (Con), GA3 and PCZ. Scale bar = 100 µm.
(D) Quantification of cell length in the indicated treatments. (E) Representative images of stained root cross-sections of P. ginseng
plants treated with DMSO (Con), GA3, and PCZ. XV: xylem vessel, CZ: cambial cell layer zone, RD: resin duct cells. Scale
bar = 100 µm (F) Quantification of cambium-derived cells in the XV and RD of each ray. In (B,D,F), dots, squares and triangles
represent individual values. Error bars represent standard error; n = 16 (B), 20 (D), 10 (F). Different lowercase letters indicate
statistically significant differences (p < 0.05; one-way analysis of variance [ANOVA], followed by Tukey’s multiple range test).
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2.2. Identification of Putative GA Receptor Genes in P. ginseng Genome

The growth-promoting effect of GA on the stem and root growth of P. ginseng suggests
that the canonical GA signaling pathways are likely evolutionarily conserved in P. ginseng.
Since GA signal transduction initiates with its perception, we searched for GA receptor-
encoding genes in the P. ginseng genome by analyzing the two genome sequence drafts
of P. ginseng and PacBio Iso-seq data [21–23]. A BLAST search of the AtGID1A amino
acid sequence led to identification of eight putative GID1 DNA sequences in P. ginseng,
designated as PgGID1A–H (Figure 2A). Phylogenetic analysis of PgGID1s and AtGID1s
showed that five PgGID1s (A, B, C, E, and F) clustered with AtGID1A and AtGID1C,
while the remaining three PgGID1s (D, G, and H) clustered with AtGID1B (Figure 2A).
Next, we examined the secondary structure of OsGID1 [41] (Figure 2B) and compared
the amino acid sequences of PgGID1s with those of AtGID1s and OsGID1 (Figure 2C).
A topology diagram based on the predicted secondary structure of OsGID1 provided the
structure information of PgGID1s (Figure 1B). The N-terminal region and two α-helices
(α8 and α9; located between the β6 and β7 sheets) of OsGID1 corresponded to the left
and right sides of the lid structure, respectively (Figure 2B). It is well characterized that
OsGID1, one of the hormone-sensitive lipases (HSLs), contains an evolutionarily conserved
HGG sequence and a catalytic triad (S, D, and H), both of which are essential for its
enzymatic activity; H in the SDH catalytic triad is replaced by V. In PgGID1s, the V residue
is replaced by I, as in AtGID1B and AtGID1C (Figure 2C). Furthermore, PgGID1s showed
high sequence similarity with AtGID1s and OsGID1 (Figure 2C). Additionally, important
amino acid residues and motifs (Figure 2B) were well-conserved among the PgGIDs,
suggesting that PgGID1s function as GA receptors. It is well-known that GID1 proteins
act as molecular glue to facilitate the interactions of DELLA repressors with SCFSLY1/GID2

in a GA-dependent manner [41]. To confirm subcellular localization of PgGID1s, we co-
expressed the PgGID1-GFP fusions and AtARR2-RFP (as a nuclear marker) in Arabidopsis
protoplasts. Similar to the nucleocytoplasmic localization of AtGID1s and OsGID1 [42], all
four PgGIDs (A–D) localized to the nucleus and cytoplasm (Figure 2D).

2.3. Complementation Analysis of the Atgid1a/c Doble Mutant

To evaluate the biological roles of PgGID1s in the GA signaling pathway, we per-
formed complementation analysis of the Arabidopsis Atgid1a/c double knockout mutant,
which exhibits a GA-deficient semidwarf phenotype [20]. PgGID1A–D were individually
overexpressed in the atgid1a/c double mutant under the control of the constitutively active
35S promoter (Figure 3A–C). All complementation lines expressing PgGID1s showed a wild-
type shoot phenotype (Figure 3A) and partially enhanced silique length compared with
Atgid1a/c plants (Figure 3B). These results indicate that PgGID1s can replace the function of
AtGID1s during plant growth and development. Next, we investigated whether exogenous
GA3 enhances the interaction of PgGIDs with PgDELLA proteins (Figure 3D). We cloned
five DELLA-encoding genes of P. ginseng (named as PgRGA1–5), and ca) (Supplementary
Table S2), contributing to the essential role for secondary cell wall biosynthesis. We carried
out yeast two-hybrid assays in the presence or absence of exogenous GA3. In the absence
of active GA3, rare physical protein interactions between all PgGID1s and PgRGA1, 2 and
3 proteins occurred, but the protein interactions between PgGIDs and PgRGAs (except
between PgGID1D and PgRGA1-3) were enhanced in the presence of GA3. However,
PgGID1D interacted only with PgRGA4 and PgRGA5 in a GA3-independent manner
(Figure 3D). These results reveal interaction specificity between PgGIDs and PgDELLAs.
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PgGID1A–H, AtGID1s, and OsGID1. The phylogenetic tree was constructed using the MEGA7 program. Horizontal branch
lengths are proportional to the estimated number of amino acid substitutions per residue. Bootstrap values were obtained
by 1000 bootstrap replicates. Pg, Panax ginseng; At, Arabidopsis thaliana; Os, Oryza sativa. (B) Topology diagram based on
the predicted secondary structure of the OsGID1 protein [15]. (Blue circles indicate important residues involved in the
GID1–SLR1 interaction, and red dots indicate important residues involved in OsGID1–GA and GID1–SLR1 interactions.
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(red). (C) Amino acid sequence alignment of the GID1 proteins of Arabidopsis, rice, and P. ginseng constructed using SMS
(https://www.Bioinformatics.org (accessed on 1 May 2021)). (D) Subcellular localization analysis of PgGID1A–D proteins
in Arabidopsis protoplasts. Full-length coding sequences of PgGID1A–D were fused to the GFP reporter gene. The nucleus
was visualized using the AtARR2-RFP nuclear marker. GFP and RFP fluorescence images were merged. Scale bar = 50 µm.

2.4. Transcriptome Analysis of Root Secondary Growth in Response to GA in P. ginseng

To investigate the root secondary growth of P. ginseng in response to GA, we an-
alyzed a total of 5721 genes differentially expressed between DMSO- and GA-treated
roots using RNA-seq data (Supplementary Figure S1). Gene ontology (GO) enrichment
analysis of differentially expressed genes (DEGs) revealed significant enrichment of the
following functional categories: ‘cell cycle and/or division’ (p-values of sub-GO terms
in the representative category: p = 4.1 × 10−3 − 1.6 × 10−4), ‘developmental process’
(p = 4.7 × 10−3 − 3.1 × 10−8), ‘cell growth’ (p = 1.7 × 10−3) and ‘cell wall biogenesis’
(p = 9.2 × 10−3 − 7.0 × 10−6) (Figure 4A). This suggests that GA regulates root secondary
growth by controlling root elongation via cell division. Interestingly, the functional enrich-
ment of ‘response to nitrogen’ (p = 3.8 × 10−3 − 8.6 × 10−8), related to nitrate transport and
assimilation, was also identified (Figure 4A). Expression of nitrate transporter genes (NRTs)
was increased, whereas that of nitrate reductase genes (NIRs) was decreased, suggesting
that GA signaling influences the nitrate metabolic process through the transcriptional regu-
lation of NRTs [43]. The results of gene set enrichment analysis (GSEA) further supported
the antagonistic transcriptional responses of ABA-related signaling pathway in GA-treated
ginseng roots (Figure 4B). Interestingly, JA-responsive genes were significantly enriched
among the up-regulated genes in GA-treated P. ginseng roots (Figure 4B). These results
suggest that JA-mediated downstream signaling pathways are also closely associated with
the GA-mediated activation of cambium stem cells.

https://www.Bioinformatics.org
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2.5. Cell Wall-Related Genes Play a Major Role in the Secondary Growth of P. ginseng Roots

Next, we focused on the functional enrichment analysis of genes related to ‘plant-type
secondary cell-wall biogenesis’ in GA-treated roots. The GO term ‘plant-type secondary
cell-wall biogenesis’ was further validated by GSEA using all expressed transcriptome
data in P. ginseng (adjusted p-value = 0.0) (Figure 5A), which showed the most significant
enrichment out of analyzed GO terms including cell cycle, cytokinesis, unidimensional
cell growth, nitrate assimilation and response to ethylene (Supplementary Figure S2). In
the GSEA, a total of 55 genes were identified to be a critical leading-edge subset of the
enriched gene set group leading to enrichment scores with respect to expression changes
(Figure 5A; Supplementary Table S2). In particular, 18 genes, including MYB26, GXM1,
IRX6/9L/12/15L, NST1, PGSIP3, SMB and TBL33, showed significant up-regulation in GA-
treated root with more than 2-fold change (q < 0.05) (Supplementary Table S2), contributing
to the essential role for secondary cell wall biosynthesis [44]. Consistently, most of the
promoters of GA-responsive genes have GA-responsive elements (GAREs, TAACAAR;
Supplementary Table S3). This finding suggests that secondary cell wall biogenesis is
closely associated with GA-promoted root secondary growth in P. ginseng. Consistently,
these cell-wall biogenesis-related genes including WAT1, IRXs, CESAs, NSTs and MYBs
were significantly involved in the plant secondary growth by local auxin accumulation [45].
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Finally, a transcriptional network of P. ginseng genes related to cell wall biogenesis
was analyzed on the basis of homology with A. thaliana and its protein-protein interaction
network by using STRING database. We found that up-regulated genes in a GA treatment
related to cell wall biogenesis showed strong interaction with those related to cell cycle
and division, cell growth, response to JA and nitrate assimilation (Figure 5B; Supplemen-
tary Figure S3 and S4). Interestingly, genes related to nitrate assimilation were directly
associated with ‘cell growth’ and ‘response to JA’ in the gene network analysis (Figure 5B;
Supplementary Figure S3 and S4). This suggests that the transcriptional regulatory network
affecting GA-induced root secondary growth comprises genes related to the cell cycle, cell
division, and cell growth, as well as to the JA response and nitrate assimilation. In this
network, genes encoding expansin-like B1 (EXLB1), laccase-4 (IRX12 or LAC4), hexosyl-
transferase (PGS1P3), and LRR receptor-like serine/threonine-protein kinase (FEI1) were
associated with the functions of cell division/cycle, cell growth, or response to JA, thereby
playing a crucial role as hub genes in the transcriptional network. Therefore, our results
provide biological insight into the transcriptional regulation of root secondary growth in
response to GA in P. ginseng.

3. Discussion
3.1. Evolutionarily Conserved GA Signaling Pathways Regulate Root Secondary Growth in
P. ginseng

Compared with research on the pharmacological efficacy of P. ginseng [3], a limited
number of studies has been conducted on the physiology of P. ginseng, primarily because
of its slow growth habit and difficult cultivation methods. Moreover, functional genomic
analysis of plant growth and development of P. ginseng has been challenging due to the
possible outcomes of functional divergence, which occurs following polyploidization.
However, recent advances in genome sequencing technology have enabled the generation
of genomic and transcriptomic data from P. ginseng. In this study, we successfully identified
GA receptor-encoding genes expressed by P. ginseng based on whole-genome sequence and
transcriptomic data and characterized their physiological responses during root secondary
growth. We also carried out functional genomic studies for genetic and physiological
regulations of GA (Figure 1). Our results suggest that the secondary growth of P. ginseng
roots is closely related to the cell cycle/division of cambium stem cells, and to development
of starch storing parenchyma cells. Our results also confirmed that GA plays an important
role, as a physiological factor, in promoting the secondary growth of P. ginseng storage roots.

Since the discovery of the effect of GA on cell elongation and crop yields in plants, the
canonical GA signal transduction pathways have been well-characterized in Arabidopsis and
rice model plant species [15,16,20,46,47]. In this study, we first identified eight GA receptors
encoded by the P. ginseng genome, and then confirmed their functional conservation using
Arabidopsis as a heterologous expression system. We showed that four GA receptors of
P. ginseng (PgGID1s) complemented the atgd1a/c double mutant, physically interacted with
PgDELLA proteins, and exhibited the same subcellular localization pattern in Arabidopsis
protoplasts as AtGID1s (Figures 2 and 3). Interestingly, external GA treatment not only
enhanced primary shoot growth in P. ginseng through cell elongation, but also increased
secondary radial growth of the tap root.

3.2. GA-induced Root Secondary Growth Is Closely Associated with Cell Wall
Biogenesis-Related Network

Transcriptome profiling of P. ginseng supported the hypothesis that GA-induced root
secondary growth is strongly associated with cell wall biogenesis (Figure 4). The functional
role of GXM1, IRX9L/12/15L, NST1, PGSIP3, SMB and TBL33 was over-represented with
key regulators of secondary cell wall formation in xylem development [48]. Remodeling
of the cell wall composition, which is highly flexible and diverse in nature, is important
during root growth [44,49]. Similar regulation mechanisms of GA in crop root development,
which exogenous GA altered the expression of genes related to cell wall synthesis, have
been reported in tobacco [50], sweet potato [36], and carrot [51]. Cambium stem cells in
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the root undergo rapid division, and new highly dynamic cell walls are formed, resulting
in cell elongation [52]. We found that cell wall biogenesis is strongly connected with the
functions of ‘cell cycle/division’, ‘cell growth’ and ‘response to JA’ (Figure 5). This result
indicates that a transcriptional network regulates root secondary growth in P. ginseng.
Furthermore, a sub-network associated with nitrate assimilation indirectly interacted with
cell wall biogenesis, suggesting that the cell walls in roots readjust to their environment
to maximize nutrient availability [53]. In addition, recent studies showed that JA plays a
major role in promoting wound healing and stress tolerance through regulation of stem
cell homeostasis in plant roots [54]. These results suggest that the assimilation of nitrogen
and the regulation of stem cell homeostasis regulated by JA are importantly integrated
into the secondary growth of ginseng root. The interaction between the role of inorganic
nutrients and hormonal signaling crosstalk to enhance the productivity of root crops will
be valuable for future study.

3.3. Differential Regulation of the Secondary Growth of P. ginseng Storage Root

In this study, histological staining and microscopic observation of root sections were
applied to understand the secondary growth modulated by cambium stem cell activity
in P. ginseng. Most of the plant secondary growth-related studies have been conducted
in Arabidopsis and the perennial woody plant species Betula platyphylla, with a primary
focus on the functions of auxins and cytokinins, which are known to regulate procambium
formation [55,56], as well as on stem cell homeostasis and phloem development [27–29,57].
On the other hand, studies investigating the role of GA in secondary growth have not been
conducted in detail, although it is known that exogeneous GA application increases the
number or size of xylem vessels and the lignification of fibers [30–32]. The hormonal control
of the secondary growth of storage roots has also been documented in annual root crops,
including carrot and radish [35,58]. In carrot, exogenous GA application promotes the
growth of shoots, while inhibiting the secondary growth of roots. By contrast, in the current
study, GA treatment promoted the secondary growth of P. ginseng roots by activating cell
division and storage parenchyma cell development (Figure 1). These results indicate
differences in genetic and physiological factors affecting secondary growth between annual
and perennial plants. This is supported by the GA-induced increase in cell division in four
different perennial angiosperm trees, including Fraxinus mandshurica var. japonica, Quercus
mongolica var. grosseserrata, Kalopanax pictus, and Populus sieboldii [59]. These results also
suggest that the formation of a signaling network by interaction among plant hormones
plays an important role in secondary growth. This further emphasizes the importance
of understanding the mechanism of cambium development in perennial plants, in which
secondary growth occurs in stages every year.

Understanding the root growth patterns of P. ginseng can enhance our knowledge
of the growth and developmental mechanisms of perennial plants. Although this study
provides substantial evidence supporting the role of GA-induced cell division in the
secondary growth of P. ginseng roots, the downstream signaling pathways that interact
with the upstream GA signaling to regulate storage root development remain unclear.
Identification of GA signaling-related genes and molecular mechanisms for its crosstalk
with other signaling pathways in perennial plant growth and development are expected to
facilitate the breeding and utilization of perennial root crops such as P. ginseng.

4. Materials and Methods
4.1. Plant Materials and Transgenic Plants

One-year-old P. ginseng roots (Yunpoong, kindly supplied by the National Institute of
Horticultural and Herbal Science) were transplanted into ginseng cultivation soil medium.
Two weeks after transplantation of the ginseng seedlings, GA3 (Duchefa, Haarlem, The
Netherlands), PCZ (Sigma, St. Louis, MO, USA), and DMSO (mock treatment) were
treated once a week with a soaking method. After a total of eight treatments, the ginseng
roots were sampled, and the main root secondary growth patterns were further analyzed.
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Arabidopsis thaliana Col-0 was used as a wild-type control and atgid1a/c double knock out
mutants (supplied by RIKEN BRC) were used as the genetic backgrounds of transgenic
lines. All plants were grown in a greenhouse under long-day conditions (16-h light/8-h
dark cycles) at 22 ◦C. To generate transgenic plants overexpressing HA-tagged PgGID1A-D
in the atgid1a/c mutant background, the cDNAs were cloned into pCB302ES containing
the 35S promoter and double HA tag as described previously [60]. All primer sequences
for the genes are listed in Supplementary Table S4. All transgenes were integrated into
the atgid1a/c plant genome by Agrobacterium-mediated floral dipping methods with a
GV3101 strain. The transgene expression was verified by immunoblotting. Total proteins
from 5-days-old seedlings were extracted with protein extraction buffer (50 mM Tris-HCl
(pH 7.5), 75 mM NaCl, 5 mM EDTA, 1 mM dithiothreitol, 1× protease inhibitor cocktail
(Roche, Basel, Switzerland), and 1% Triton X-100). Total protein was subjected to SDS–
PAGE (10% polyacrylamide), transferred to a PVDF membrane and immunodetected
with 1/2000 dilution of a peroxidase-conjugated high-affinity anti-HA antibody (Roche,
Basel, Switzerland).

4.2. Phylogenetic Tree Construction of GA Signaling Related Genes from P. ginseng

The protein sequences of PgGIDs (Genbank accession #: MH050319-MH050322) and
PgRGAs (Genbank accession #: MH085925- MH085927) were selected from previous stud-
ies [37–39]. A phylogenetic tree based on amino acid sequence alignment was generated
using MEGA version 7.0 software by the neighbor-joining method with a bootstrap value
of 1000 [61]. An online program, TOL (http://itol.embl.de/, accessed on 1 May 2021), was
applied to generate the phylogenetic tree. Base on the phylogenetic tree constructed by
the GA-related genes from P. ginseng, rice and Arabidopsis, these genes were divided into
different groups and subgroups.

4.3. Protoplast Transient Expression Assay and Yeast Two Hybrid Assay

The full-length cDNAs of PgGID1A-D were cloned into plant expression vectors
containing HA or GFP tags in the C terminus driven by the 35S:C4PPDK promoter as
previously described [60]. For protoplast transient expression assays, about 4 × 104 proto-
plasts were transfected with 20 µg of plasmid DNA and then incubated under constant
light condition at 20 ◦C for 6 h. For subcellular localization, GFP-tagged constructs were
transfected into protoplasts. ARR2-RFP was used as a nuclear marker. GFP and RFP
fluorescence were observed with a fluorescence microscope (Nikon). To identify physical
interactions between PgGIDs and PgRGAs in the presence of GA3, AH109 yeast strains
were co-transformed with pGBKT7-PgGIDs and pGADT7-PgRGAs. Clones showing pos-
itive interactions were selected on synthetic medium containing 1 mM 3-aminotriazole
(3-AT) without Leu, Trp and His in the presence or absence of 100 nM GA3.

4.4. Histological Sections and Microscopy

Fresh hand-cut cross sections of P. ginseng roots were prepared. Samples were fixed in
1% glutaraldehyde and 4% formaldehyde in PBS pH 7.0 at 4 ◦C overnight. For paraffin
sectioning, tissues were dehydrated (30%, 50%, 70%, 90% and 100% three times, 1 h each),
embedded in paraffin, sliced into 10–15 µm-thick sections and mounted onto slides. After
dewaxing with Histo-Clear, the slides were dehydrated and counter stained with 1%
Safranin-O (Sigma, St. Louis, MO, USA, cat. S2255) and 0.5% Astra blue (Santa-cruz
biochem, cat. sc-214558A) for 1 min, rinsed in distilled water, and mounted in Permount
mounting medium (Fisher chem., cat. SP15-100, Waltham, MA, USA). The prepared
slide samples were observed with bright and polarized light with a Slideview scanner
(SLIDEVIEW VS200) and a BX53 microscope (Olympus, Tokyo, Japan). The number of cell
rows derived by cambium layers was counted on a straight line traced from the last cell
layer of resin ducts to the inner xylem vessel cells.

http://itol.embl.de/
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4.5. RNA-seq Analysis

Total RNA was extracted from DMSO- and GA-treated root samples using an Easy
Spin RNA Extraction Kit (iNtRON Biotechnology, Seoul, Korea), according to the manu-
facturer’s instructions. The quality of total RNA was assessed using an Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa Clara, CA, USA), and samples with an average
RNA integrity number (RIN) of 7.1 and an 28S/18S ratio of 1.0 were selected for RNA-seq
analysis. RNA-seq libraries were prepared from 1 µg of total RNA extracted from DMSO-
and GA-treated root samples, with three biological replicates per sample, using the TruSeq
Stranded mRNA Library Prep Kit (Illumina, Inc., San Diego, CA, USA), according to
the manufacturer’s instructions. Then, cDNA was synthesized from mRNA fragments
and subjected to end repair, single ‘A’ addition and adapter ligation. The libraries were
purified and enriched via PCR amplification, and then sequenced on the Illumina HiSeq
4000 platform to generate 100-bp paired-end reads (Supplementary Table S1).

The quality of raw reads was assessed using FastQC (version 0.11.9, Babraham Insti-
tute, Cambridge, UK); the quality scores were >Q30, which indicated high quality. Low
quality reads (<Q30) and adapter sequences were removed using Trimmomatic [62]. Clean
reads obtained from each sample were aligned against the reference genome sequence of
P. ginseng using HISAT2 [63]. Gene expression was quantified and expressed as fragments
per kilobase of transcript per million reads mapped (FPKM) using HTSeq-count [64] and
DESeq2 [65]. Genes differentially expressed between each replicate of DMSO- and GA-
treated root samples were identified using DESeq2 [65], based on cutoff values of q < 0.05
and FC ≥ 1.5. GO enrichment analysis of DEGs homologous to Arabidopsis genes (TAIR 10
release) was performed using DAVID, with an EASE score cutoff of <0.01. Genes enriched
under specific GO terms were selected, and their expression patterns were visualized
as a heatmap using MeV (http://mev.tm4.org, accessed on 21 March 2021). Expression
levels of genes were shown as Z-score of FPKM values. To test if a particular gene set (i.e.,
secondary cell wall biogenesis) was enriched, GSEA [66] (version 4.0.3, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA) was applied to
a background dataset comprising transcripts with FPKM > 0.3, which balances the numbers
of false positives and false negatives, in either DMSO- or GA-treated root samples. To inves-
tigate protein–protein interactions, DEGs, especially up-regulated genes, categorized with
specific GO terms were searched against STRING [67], with medium confidence (≥0.4).
The network was further analyzed using Cytoscape (version 3.7.1, Cytoscape Consortium)
based on the degree of connectivity among nodes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22168694/s1: Figure S1: MA plot of differential expression between DMSO- and GA-
treated samples. Red dots represent the either up- (2805) and down- (2916) regulated genes with
q < 0.05 and ≥ |1.5|-fold change. Figure S2: Enrichment plot for cell cycle, cytokinesis, cell growth,
nitrate assimilation, and response to plant hormones using GSEA. In the plot, the red dotted line (—-)
indicates a leading-edge subset of the enriched gene set group leading to enrichment scores with
respect to expression changes. Figure S3: Expression heatmap of up-regulated genes contained in
GA-induced transcriptional network. Table S1: Summary of RNA-Seq used in the study. Table S2:
Expression of genes enriched in plant-type secondary cell wall biogenesis that was identified by
GSEA. Table S3: GA-responsive elements (GARE) in the selected DEGs. Table S4: Expression of genes
enriched in plant-type secondary cell wall biogenesis that was identified by GSEA. Table S5: Primer
combinations for gene cloning.
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