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Abstract: Global warming has increased the frequency of extreme high temperature events. High
temperature is a major abiotic stress that limits the growth and production of plants. Therefore,
the plant response to heat stress (HS) has been a focus of research. However, the plant response
to HS involves complex physiological traits and molecular or gene networks that are not fully
understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane
thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding
RNAs) regulation of the plant response to HS. We also summarize advances in understanding
of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling)
and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and
opportunities of future research in the plant response to HS.
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1. Introduction

Plants as sessile organisms cannot move to favorable environments upon encountering
abiotic or biotic stresses; consequently, plant growth, development, and productivity are
markedly affected [1]. High temperature is an important stress and global warming has
accelerated the increase in air temperature in recent decades [2]. Therefore, the mechanisms
by which plants respond to high temperature are of great interest. Plants exposed to high
temperature (heat stress, HS) suffer from severe, and sometimes lethal, adverse effects. To
cope with such conditions, plants have evolved sophisticated mechanisms to respond to HS.
For example, several basic physiological processes of plants—including photosynthesis,
respiration, and water metabolism—respond to HS [3,4]. Much progress has been made in
characterizing HS-responsive genes, non-coding RNAs, DNA methylation, and histone
modifications. Here, we focus on the physiological, transcriptional, post-transcriptional,
and epigenetic mechanisms underlying the plant HS response.

2. Physiological Responses of Plants under HS

A variety of physiological processes—such as photosynthesis, respiration, transpira-
tion, membrane thermostability, and osmotic regulation—are adversely affected by HS.
Some common effects of HS on plant physiological responses, growth and development,
and yield are shown in Figure 1.

2.1. Photosynthesis

Generally, HS reduces photosynthetic efficiency, thus shortening the plant life cycle
and diminishing productivity [5]. Photosynthesis is also one of the most heat-sensitive
physiological processes. Under HS, photochemical reactions in thylakoid lamellae and
carbon metabolism in the stroma of chloroplasts are prone to injury [6,7]. Heat stress
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causes disruption of thylakoid membranes, thereby inhibiting the activities of membrane-
associated electron carriers and enzymes, reducing the rate of photosynthesis. Specifically,
photosystem II (PSII) activity is greatly reduced or even stops under HS because PSII
complex is the most heat-intolerant [6,8]. In addition, HS influences chloroplast structure
and the thermal stability of components of the photosynthetic system, reducing ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, amounts of photosynthetic
pigments, and the carbon fixation capacity [6,9,10]. These factors contribute significantly to
the reduction of photosynthetic efficiency under HS. Therefore, a fundamental understand-
ing of the response of photosynthetic physiology is helpful to study the thermostability of
plants and the adverse effects of warming on crop yield [11].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 15 

 

 
Figure 1. Effects of heat stress on plant physiological responses. Upward-pointing arrows indicate 
activated/upregulated physiological indices. Downward-pointing arrows indicate 
deactivated/downregulated physiological indices. Abbreviations: HS, heat stress; PSII, photosystem 
II; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; ROS, reactive oxygen species. 
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chemical bonds, leading to disintegration of membrane lipids and increasing membrane fluidity [12]. 
HS increases cellular membrane permeability and the loss of cellular electrolytes, consequently 
inhibiting cellular function and decreasing thermotolerance [5]. In addition, the reactive oxygen 
species (ROS) accumulation caused by HS leads to membrane damage, decreasing thermotolerance 
[13]. In short, membrane thermostability plays an important role in conferring tolerance to HS in 
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2.3. Oxidative Damage 

Plants exposed to HS show accumulation of ROS—singlet oxygen (1O2), superoxide radical (O2−), 
hydrogen peroxide (H2O2), and hydroxyl radical (OH−)—generating oxidative stress [14]. The ROS 
are generated mainly in PSI and PSII. In PSII, excess energy generates the triplet state of chlorophylls, 
which pass excitation energy to O2, producing singlet oxygen. Over-reduction of PSI leads to 
generation of the superoxide anion, promoting H2O2 production [8]. ROS (e.g., O2−, H2O2) induce 
oxidative stress by altering membrane properties, degrading proteins, and inactivating enzymes, 
thus reducing plant cell viability [15]. Heat stress induces lipid peroxidation due to free radical 
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2.2. Cell Membrane Thermostability

Membrane dysfunction is the main physiological consequence of plant exposure to
HS. Under extreme HS, the increased kinetic energy and movement of biomolecules across
membranes loosens chemical bonds, leading to disintegration of membrane lipids and
increasing membrane fluidity [12]. HS increases cellular membrane permeability and
the loss of cellular electrolytes, consequently inhibiting cellular function and decreasing
thermotolerance [5]. In addition, the reactive oxygen species (ROS) accumulation caused
by HS leads to membrane damage, decreasing thermotolerance [13]. In short, membrane
thermostability plays an important role in conferring tolerance to HS in plants.

2.3. Oxidative Damage

Plants exposed to HS show accumulation of ROS—singlet oxygen (1O2), superoxide
radical (O2

−), hydrogen peroxide (H2O2), and hydroxyl radical (OH−)—generating ox-
idative stress [14]. The ROS are generated mainly in PSI and PSII. In PSII, excess energy
generates the triplet state of chlorophylls, which pass excitation energy to O2, producing
singlet oxygen. Over-reduction of PSI leads to generation of the superoxide anion, pro-
moting H2O2 production [8]. ROS (e.g., O2

−, H2O2) induce oxidative stress by altering
membrane properties, degrading proteins, and inactivating enzymes, thus reducing plant
cell viability [15]. Heat stress induces lipid peroxidation due to free radical damage of the
cell membrane [6]. Under HS, the content of malondialdehyde (MAD; an indicator of lipid
peroxidation) is significantly increased in many plants such as sorghum [16]. ROS can also
trigger programmed cell death under HS. On the other hand, plants have developed mech-
anisms to detoxify ROS and enhance heat tolerance. Plants increase their thermotolerance
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by recruiting the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase
(APX), catalase (CAT), glutathione reductase (GR), and peroxidase (POX) [17].

2.4. Other Physiological Responses

Plant water status is generally erratic under changing temperatures [5]. Heat stress
causes dehydration and affects plant growth and development. Water potential and relative
water content are substantially decreased upon exposure to HS, reducing photosynthetic
productivity [3]. However, under transient or mild HS, plants regulate the rate of respi-
ration and transpiration to balance water loss and heat dissipation. The level of soluble
sugars and proteins are also altered during HS to regulate osmotic pressure within the
cell [18]. Finally, HS reduces the yield of cultivated crops, including cereals, legumes, and
oil crops [19].

3. Molecular Responses of Plants under HS
3.1. Transcriptional Regulation of HS Responses

When plants are subjected to HS, the expression of a series of heat shock transcription
factor (HSF) and heat shock protein (HSP) genes is induced. The HSFs rapidly induce the
expression of HSPs, and both HSFs and HSPs play central roles in the plant HS response and
induction of thermotolerance [20,21]. However, overexpression of a single HSF or HSP gene
has little impact on thermotolerance, suggesting that HSFs and HSPs act synergistically to
confer HS resistance.

Plant HSFs are divided into three conserved evolutionary classes (A, B, and C) accord-
ing to the structural features of their oligomerization domains. Class A HSFs are essential
for transcriptional activation. However, Class B and C HSFs have no activator function
because they lack the appropriate motif comprising acidic amino acid residues [22]. Among
class A HSFs, HSFA1 is the master transcriptional activator, triggering the immediate ex-
pression of other HS-responsive transcription factors (TFs) [20], including DEHYDRATION-
RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A), HSFA2, HSFA7, HSFBs, and
MULTIPROTEIN-BRIDGING FACTOR 1C (MBF1C) (Figure 2). HSFA1 transactivation
activity is induced by interaction with HEAT SHOCK PROTEIN 70 (HSP70) and HSP90
under HS [23]. Interestingly, both HSFA1a and HSFA1b are important for the initial phase
of HS-responsive gene expression [24]. HSFA2, as a heat-inducible transactivator, prolongs
acquired thermotolerance by maintaining the expression of HSP genes in Arabidopsis [25].
HSFA3 is regulated by DREB2A and DREB2C, playing a role in thermotolerance [20,26].
DREB2A, a key transcription factor, directly regulates HSFA3 transcription via a coactivator
complex of NUCLEAR FACTOR Y, SUBUNIT A2 (NF-YA2), NF-YB3, and DNA POLY-
MERASE II SUBUNIT B3-1 (DPB3-1)/NF-YC10 under HS (Figure 2). In addition, HSFA4a
and HSFA8 act as sensors of the ROS produced as secondary stress responses during the
HS response in Arabidopsis [27].

Among class B HSFs, HSFBs are transcriptional repressors and negatively regulate
the expression of many heat-inducible HSFs (HSFA2, HSFA7s) and HSPs (e.g., HSP101,
HSP70). In addition, HSFBs are downstream target genes of HSFA1s in plants, and they
influence and interact with each other, forming the regulatory network responsible for
the expression of HS-responsive genes (Figure 2), for instance, in Arabidopsis, tomato, and
tall fescue (Festuca arundinacea) [23,28,29]. The functions and roles of class C HSFs are
unclear. In wheat, overexpression of TaHSFC2a-B resulted in upregulation of HSPs and
other heat protection genes (e.g., TaHSP70d and TaGalSyn) and improved thermotoler-
ance. Overexpression of FaHSFC1b (cloned from tall fescue) in Arabidopsis enhanced heat
tolerance by inducing or upregulating the expression of HSPs [29]. In addition, HSFC
genes are upregulated by HS in wheat [30], cabbage (Brassica rapa) [31], and soybean
(Glycine max) [32].
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heat shock transcription factor; ANN, annexin; JUB1, jungbrunnen 1; MBF1c, multiprotein-bridging 
factor 1c; DREB2A/2C dehydration-responsive element binding protein 2A/2C; NF-Y, nuclear factor 
Y; DPB3-1, DNA polymerase II subunit B3-1; ROS, reactive oxygen species; BIP, binding 
immunoglobulin protein; bIZP, basic leucine zipper; S-bzip60, spliced bZIP60; UPR, unfolded protein 
response; IRT1, inositol-requiring enzyme 1; miRNA, microRNA; lncRNA, long non-coding RNA; 
siRNA, small interfering RNA. 
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involved in the regulation of heat-responsive genes (Figure 2). MBF1C is a highly conserved 
transcriptional coactivator and a key regulator of thermotolerance [33]. Indeed, an mbf1c mutant had 
reduced the expression levels of DREB2A and HSFBs during HS. In addition, HSFA1s regulate the 
expression of MBF1C during HS. NACs are one of the largest transcription factor families in plants 
and are involved in the response to HS. NAC transcription factors bind to the promoters of HSFs 
(e.g., HSFA1b, HSFA6b, HSFA7a, and HSFC1), increasing their expression and thus enhancing 
thermotolerance [34,35]. Moreover, TaNAC2L enhanced heat resistance by regulating the expression 
of HS-response genes (e.g., AtHSFA3, AtDREB2A) in wheat [36] (Figure 2). Interestingly, the 
overexpression of OsNAC3 in rice enhanced tolerance to HS by modulating ROS homeostasis [37]. 
The NAC transcription factor JUNGBRUNNEN1 (JUB1) regulates the expression of DREB2A under 
HS [38]. 

Notably, a minimal yet significant level of acquired thermotolerance can be attained in plants by 
induction of the expression of a small number of genes regulated by other transcription factors such 
as WRKY, bZIP, and MYB. WRKYs participate in developmental and physiological processes, as well 
as in stress responses. Under HS, WRKY18, WRKY25, WRKY26, WRKY33, WRKY39, WRKY40, 

Figure 2. Schematic of the main regulatory pathways that respond to HS transcription factors. The binding of heat
shock protein (HSP)70/90 and heat shock transcription factor (HSF)A1s represses the activity of HSFA1s under nonstress
conditions, whereas heat stress elicits the dissociation of HSFA1 from HSP70 and HSP90, leading to HSFA1 activation.
Abbreviations: HSP, heat shock protein; HSF, heat shock transcription factor; ANN, annexin; JUB1, jungbrunnen 1; MBF1c,
multiprotein-bridging factor 1c; DREB2A/2C dehydration-responsive element binding protein 2A/2C; NF-Y, nuclear factor
Y; DPB3-1, DNA polymerase II subunit B3-1; ROS, reactive oxygen species; BIP, binding immunoglobulin protein; bIZP,
basic leucine zipper; S-bzip60, spliced bZIP60; UPR, unfolded protein response; IRT1, inositol-requiring enzyme 1; miRNA,
microRNA; lncRNA, long non-coding RNA; siRNA, small interfering RNA.

Other TF families, such as MBF1C, NAC, WRKY, bZIP (basic leucine zipper), and
MYB, are also involved in the regulation of heat-responsive genes (Figure 2). MBF1C is a
highly conserved transcriptional coactivator and a key regulator of thermotolerance [33].
Indeed, an mbf1c mutant had reduced the expression levels of DREB2A and HSFBs during
HS. In addition, HSFA1s regulate the expression of MBF1C during HS. NACs are one of the
largest transcription factor families in plants and are involved in the response to HS. NAC
transcription factors bind to the promoters of HSFs (e.g., HSFA1b, HSFA6b, HSFA7a, and
HSFC1), increasing their expression and thus enhancing thermotolerance [34,35]. Moreover,
TaNAC2L enhanced heat resistance by regulating the expression of HS-response genes
(e.g., AtHSFA3, AtDREB2A) in wheat [36] (Figure 2). Interestingly, the overexpression of
OsNAC3 in rice enhanced tolerance to HS by modulating ROS homeostasis [37]. The NAC
transcription factor JUNGBRUNNEN1 (JUB1) regulates the expression of DREB2A under
HS [38].

Notably, a minimal yet significant level of acquired thermotolerance can be attained
in plants by induction of the expression of a small number of genes regulated by other
transcription factors such as WRKY, bZIP, and MYB. WRKYs participate in developmental
and physiological processes, as well as in stress responses. Under HS, WRKY18, WRKY25,
WRKY26, WRKY33, WRKY39, WRKY40, WRKY46, and WRKY68 coordinately induce
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plant thermotolerance by positively regulating HSP-related signaling pathways (e.g., HSFs,
HSPs, and MBF1c) [39,40]. In addition, OsWRKY11 in rice plays a role in the HS response
and tolerance. Overexpression of OsWRKY11 under the control of the HSP101 promoter
led to enhanced heat tolerance [41].

The bZIP transcription factors and the unfolded protein response (UPR) play impor-
tant roles in plant thermotolerance. bZIP28 and bZIP60, which localize to the endoplasmic
reticulum (ER) membrane, are transferred to the nucleus, where they activate the expression
of stress-responsive genes [42]. Under HS, the ER membrane-localized RNA splicing factor
IRE1 (INOSITOL-REQUIRING ENZYME 1) splices the mRNA of bZIP60, causing synthesis
of a spliced bZIP60 (sbZIP60), which translocates into the nucleus [28]. The ER-localized
chaperone BiP (BINDING PROTEIN) binds to bZIP28 and inhibits its activation under
non-stress conditions. The coordination of bZIP28 and HSFA2 is involved in regulation
of the HS response in Arabidopsis. bZIP28-deficient plants showed enhanced activation of
cytosolic APX-, MBF1c-, HSP-dependent pathways, and had elevated HSFA2 transcript
levels, suggesting these pathways compensate for the deficiency in bZIP28 during HS [43].
The activation of bZIP17 is controlled by HS in a manner similar to the regulatory mecha-
nism that controls the UPR. In lily (Lilium longiflorum), promotion of thermotolerance by
LlHSFAs involves regulation of bZip factors (AtbZIP11, AtbZIP44) [44]. In addition, the
response pathway of bZIPs is activated during prolonged warming [19].

MYBs are involved in plant development, metabolism, and stress responses. MYB30
regulates HS responses via ANNEXIN (ANN)-mediated cytosolic calcium signaling in
Arabidopsis [45]. MYB30 binds to the promoters of ANN1 and ANN4 and represses their
expression. Subsequently, ANNs modulate heat-induced [Ca2+]cyt elevation, triggering
downstream HS responses (Figure 2). In addition, the overexpression in rice of OsMYB55
increased the accumulation of amino acids (e.g., glutamic acid, gamma aminobutyric
acid, arginine, and proline), further improving the heat resistance of rice at the vegetative
stage [46].

3.2. Regulation of HS Responses by Non-Coding RNAs

Although transcription factors are the core regulators of transcription during HS,
plant non-coding RNAs (ncRNAs) play an important role in the response to HS (Figure 3).
ncRNAs are a class of regulatory RNAs comprising microRNAs (miRNAs), small interfer-
ing RNAs (siRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) [47].
ncRNAs play important roles in the HS response by regulating the activity of TF s or genes.

MicroRNAs are a class of small ncRNAs that negatively regulate gene expression by
degrading mRNA or inhibiting translation [48]. miR156 isoforms are induced by HS and
are important for HS memory. During recovery from HS, miR156 sustains the expression
of HS-responsive genes (e.g., HSFA2 and HSPs) via SPLs in Arabidopsis [49]. As a result of
conservation of miR156, the miR156-SPL module that regulates HS memory is conserved
in plants. By contrast, miR398 is rapidly induced in response to HS, downregulating
its target genes (CSD1/2, copper/zinc superoxide dismutase1/2; CCS, copper chaperone
for superoxide dismutase) [50]. This leads to ROS accumulation and increased HSF and
HSP levels. Given that miR398 expression is under the control of HSFAs, this regulatory
mechanism constitutes a positive feedback loop. In addition, miR398 and its target CSDs
are implicated in the HS responses of Brassica rapa and Populus tomentosa [51]. miR159 is
rapidly induced in wheat exposed to HS [52]. GAMYB TFs, the main targets of miR159,
have roles in heat tolerance. Indeed, transgenic wheat overexpressing miR159 and a
myb33myb65 Arabidopsis mutant showed increased susceptibility to HS, indicating that
miR159 regulates plant heat tolerance by GAMYB targets. miR396 regulates HaWRKY6
during early responses to HS, and transgenic Helianthus annuus plants expressing a miR396-
resistant HaWRKY6 gene exhibited enhanced tolerance to HS [53].
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Small interfering RNAs, approximately 21–24-nucleotide endogenous RNAs, are
involved in plant responses to abiotic stresses. They are classified into trans-acting small
interfering RNAs (ta-siRNAs, TAS), natural antisense transcript siRNAs (nat-siRNAs), and
heterochromatic siRNAs [51,54]. In Arabidopsis, the copia-like retrotransposon ONSEN was
activated in siRNA biogenesis mutants during HS, likely because ONSEN is a target of
HSFA1 and HSFA2. In addition, new ONSEN insertions were detected in progeny after
HS, and conferred heat-responsiveness to genes near the new insertion sites, suggesting
a role for ONSEN transposition in transgenerational HS memory [55]. ta-siRNAs are
distinctive siRNAs generated by miRNA processing of a noncoding TAS precursor RNA.
HEAT-INDUCED TAS1 TARGET1 (HTT1) and HTT2 are involved in thermotolerance and
are targeted by TAS1 (trans-acting siRNA precursor 1)-derived siRNAs (Figure 3). Under
HS, TAS1 negatively regulates HTT1 and HTT2 and reduces thermotolerance. In addition,
HSFA1a also directly activates HTT1 and HTT2 by binding to their promoters, inducing
thermotolerance [56]. In Brassica rapa, nat-siRNAs derived from cis-NATs were responsive
to HS, suggesting that nat-siRNAs may play important roles in heat resistance [57].

lncRNAs and circRNAs function as competitive endogenous RNAs and are regu-
lated by competition for binding to common miRNA response elements [58]. lncRNAs
are diverse transcripts longer than 200 nt and are vital in the plant HS response. The
expression level of the lncRNA PsiLncRNA00268512 was dynamic in response to HS in
P. simonii [59]. In addition, in B. rapa, competition between lncRNAs and protein-coding
genes for binding to miR159a or miR172a regulates target genes or heat-responsive genes
(e.g., HSPs, HSFs, and DREB2A) [60]. circRNAs are single-stranded RNAs in closed cir-
cular form and are involved in regulation of the plant response to HS. In Cucumis sativus,
many miRNAs, with mRNAs, lncRNAs, and circRNAs, are associated with plant hor-
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mone signal transduction pathways in response to HS [58]. However, the lncRNA and
circRNA responses to HS are unclear, particularly the lncRNA/circRNA–miRNA–mRNA
coexpression network (Figure 3).

3.3. Epigenetic Regulation in the Plant HS Response and Memory

Epigenetics refers to the heritable changes in gene expression that occur without DNA
sequence variations and are pivotal for the plant HS response [61,62]. The epigenetic
regulatory system in response to heat involves DNA methylation, histone modification,
chromatin remodeling (Figure 4), sRNAs, and lncRNAs, which alter the gene expression
pattern and/or epigenetic memory of plants under HS [63,64].
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Figure 4. Epigenetic regulation of the plant response to HS, including DNA methylation, histone modification, chromatin
remodeling, and epigenetic memory. Dotted lines represent as yet unidentified factors in the corresponding pathways.
Abbreviations: CMT2, chromomethylase 2; NRPD2, nuclear RNA polymerase D2; RdDM, RNA-directed DNA methylation;
HDA6, histone deacetylase 6; GCN5, general control nonderepressible 5; HD2C, histone deacetylase 2C; ASF1A/B, anti-
silencing function 1A/B; HAC1, histone acetyltransferase 1; SWI/SNF, SWItch/sucrose non-fermentable; ARP6, actin-related
protein 6; CHR, chromatin remodeling; CAF1, chromatin assembly factor 1; MOM1, morpheus’ molecule 1; DDM1, decrease
in DNA methylation 1; HIT4, heat-intolerant 4; REF6, relative of early flowering 6; H3K4/9/27me, H3K4/9/27 methylation;
H3K9/K14ac, H3K9/K14 acetylation; HSR, heat stress response.

3.3.1. DNA Methylation

DNA methylation involves the transfer of a methyl group (CH3) to the cytosine
position of DNA to form 5-methylcytosine, forming CG, CHG, and CHH (H represents
A, T, or C) [65]. DNA methylation is involved in the regulation of genes implicated in
the plant response to HS [63,66,67]. Upon exposure to HS, genome-wide methylation is
increased significantly in Arabidopsis thaliana and Quercus suber under extreme heat [68,69].
In Brassica napus, the levels of DNA methylation increased more in a heat-sensitive than a
heat-tolerant genotype under HS [70]. By contrast, decreased expression of S-ADENOSYL-
L-HOMOCYSTEINE HYDROLASE1 (SAHH1) and DNA methyltransferases under HS
reduced genome-wide DNA methylation in a heat-sensitive compared to a heat-tolerant
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(HT) cotton line [71]. Comparison of the methylation of cotton anthers at different stages in
heat-sensitive and HT lines suggests that global disruption of DNA methylation (especially
CHH methylation) in the heat-sensitive line at high temperatures leads to male sterility [72].
Interestingly, cold-acclimated B. rapa alters DNA methylation patterns to enhance its heat
tolerance and maintain growth [67]. Therefore, global methylation is affected differently by
heat among plant species and is linked to plant development.

Analysis of the heat tolerance of DNA methylation-deficient mutants revealed that
the RNA-directed DNA methylation (RdDM) pathway is required for basal thermotoler-
ance [66]. Arabidopsis plants deficient in DRM1/DRM2 (domains rearranged methyltrans-
ferase 1/2) and CMT3 (chromomethylase 3) are less sensitive to HS, but mutants in nrpd2
(nuclear RNA polymerase D 2), dcl3 (dicer-like 3), rdr2 (RNA-dependent RNA polymerase
2), and ago4 (argonaute 4), which are involved in the RdDM pathway, are hypersensitive to
heat (Figure 4). Further studies on nrpd2 mutants recovering from heat revealed that the
misexpression of heat-dependent genes is correlated with defective epigenetic regulation
of adjacent transposon remnants. For instance, in nrpd2 mutants, transcriptional activity of
the COPIA-like transposon At1g29475 was increased by heat but did not decrease during
recovery. By contrast, the expression of auxin-responsive genes near the transposon was
downregulated during recovery of nrpd2 plants [66]. Similarly, the heat-responsive LTR-
copia type retrotransposon ONSEN, which is enhanced in several RdDM pathways, confers
heat-responsiveness to genes close to the new insertion site [55]. Moreover, the expression
of Calmodulin-like 41 (CML41, At3g50770) is enhanced by HS and shows a reduced methy-
lation level in the transposable element (TE) insertion close to the transcriptional start
site [73]. Therefore, the RdDM pathway affects the transcription of genes near transposons
or containing TEs by changing their DNA methylation status, which can improve plant
basal thermotolerance. By contrast, plants deficient in CMT2, which is responsible for CHH
methylation, have improved HS tolerance (Figure 4), suggesting that CMT2-dependent
CHH methylation alleviates the plant response to HS [74].

3.3.2. Histone Modification

Histone octamers comprise two copies of H2A, H2B, H3, and H4, wrapped in ≈147 bp
DNA, forming the basic structural unit in nucleosome of chromatin. Histone acetylation
and methylation mediate the plant HS response by repressing or activating gene expression.
In Chlamydomonas reinhardtii, a high level of histone H3/4 acetylation (H3/4ac) and a low
level of H3K4 methylation 1 (H3K4me1) were found in the promoter regions of active genes
after HS [75]. By contrast, the level of acetylated histone H3 was decreased in the cork oak
tree exposed to 45 ◦C. Similarly, the levels of H3K9me2 and H3K4me3 are significantly
reduced after prolonged HS in Arabidopsis [76]. Moreover, the H3K9me2 level of OsFIE1,
which is related to rice seed development, is temperature-sensitive (moderate HS, 34 ◦C)
and may regulate OsFIE1 expression for rice seed development [77]. Therefore, these two
histone modifications are differently affected by heat among plant species.

Several epigenetic regulators—such as acetyltransferases, methyltransferases, deacety-
lases, and demethylases—mediate methylation and acetylation during the HS response [78].
These epigenetic regulators are recruited by heat response-associated recruiters (e.g., TFs,
lncRNAs) to specific histones in chromatin to regulate gene expression [64,79]. A. thaliana
plants deficient in acetyltransferase GCN5 exhibit serious defects in thermotolerance under
HS, and GCN5 may positively regulate thermotolerance by facilitating H3K9/K14 acetyla-
tion in the promoter regions of HSFA3 and ULTRAVIOLET HYPERSENSITIVE6 (Figure
4) [80]. Histone deacetylase 6 (HDA6), an RPD3-type deacetylase, is implicated in repres-
sion of gene expression by RdDM [81]. hda6 mutants were hypersensitive to extreme heat,
suggesting HDA6 is required for HS [82]. The transcript level of the histone deacetylase,
HD2C, was increased in Arabidopsis subjected to heat treatment (Figure 4). An hd2c mutant
analysis showed that HD2C downregulates heat-activated genes, implicating HD2C in
regulation of the plant HS response. Because HD2C interacts with HDA9, HDA6, and
BRAHMA (BRM)-containing SWITCH/SUC NONFERMENTING chromatin remodeling
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complex, association analyses are warranted to uncover the mechanisms underlying their
roles in the plant HS response [82–84]. In tomato, HSFB1 recruits histone acetyltransferase
1 (HAC1) to chromatin, suggesting that the interaction of HSFB1 with HAC1 regulates
gene expression in response to prolonged HS [85]. The histone chaperones AtASF1A
(ANTI-SILENCING FUNCTION 1) and AtASF1B are involved in transcriptional activation
in response to HS [86]. AtASF1A/B proteins are recruited onto chromatin, which was
correlated with nucleosome removal and RNA polymerase II accumulation at the promoter
and coding regions of HSFs and HSPs (Figure 4). Moreover, AtASF1A/B mediates the
removal of H3K56ac marks from HSRs (heat stress response genes). In addition, the histone
variant H2A.Z plays an important role in the thermosensory response in Arabidopsis [87].
Furthermore, the H2A.Z nucleosome regulates the binding of PIF4 (PHYTOCHROME
INTERACTING FACTOR 4) to the FT (FLOWERING LUCUS T) promoter, thus mediating
thermosensory activation of flowering [88]. PIF4 as a central regulator alters plant morphol-
ogy (e.g., hypocotyl elongation, petiole elongation) at high temperatures by binding to the
promoters of YUC8 (YUCCA8), TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARA-
BIDOPSIS), CYP79B2 (CYTOCHROME P450, FAMILY 79, SUBFAMILY B, POLYPEPTIDE
2), and SAUR (SMALL AUXIN UP RNA) 19–24 [63]. Therefore, H2A.Z may participate in
regulation of plant morphology at high temperatures. However, whether H2A.Z modulates
plant morphological acclimation to higher temperatures (e.g., extreme HS) and binds to
other heat-response genes requires further investigation.

3.3.3. Chromatin Remodeling

ATP-dependent chromatin remodeling complexes are involved in the plant response
to HS [63]. The SWItch/sucrose non-fermentable (SWI/SNF) complex was first identified
in Arabidopsis, and its key component ARP6 (SWI complex) is essential for temperature sens-
ing. Under heat and drought stress, overexpression of the SNF2/Brahma-type chromatin-
remodeling gene CHR12 (CHROMATIN REMODELING) caused growth arrest of flower
buds and primary stems of A. thaliana, whereas AtCHR12-knockout Arabidopsis plants
showed reduced growth arrest relative to the wild-type plants (Figure 4) [89]. This indi-
cates that CHR12 mediates temporary growth arrest of Arabidopsis under heat and drought
stress. Additionally, upon resumption of a normal temperature, the H3-H4 chaperone
CAF-1 (CHROMATIN ASSEMBLY FACTOR-1) participates in reloading of nucleosomes
onto chromosomes in A. thaliana [76], indicating its importance in chromatin remodeling
(Figure 4). In addition, HS relaxes the silencing of transposons by chromocenter decon-
densation mediated by HEAT-INTOLERANT 4 (HIT4), whereas most of these transposons
are repressed rapidly by MORPHEUS’ MOLECULE 1 (MOM1)- and DECREASE IN DNA
METHYLATION 1 (DDM1)-mediated chromatin remodeling [90].

3.3.4. Epigenetic Memory

Epigenetic memory improves plant adaptation to various stress environments [61,91,
92]. Histone modification and HSFA2 are important for HS memory in A. thaliana. The level
of H3K4 methylation (H3K4me2/3), which is associated with transcriptional memory, was
higher for at least 2 days after a priming heat shock [93]. Accumulation of H3K4 methyla-
tion is important for HSR expression and transcriptional HS memory, and this modification
depends on HSFA2 (Figure 4). HSFA2 and H3K27me3 demethylase RELATIVE OF EARLY
FLOWERING 6 (REF6) display a positive feedback loop to transmit long-term epigenetic
memory in A. thaliana (Figure 4) [94]. In wheat, the level of lysine-specific histone demethy-
lase 1 (LSD1) was upregulated in the progeny of heat-primed plants compared to that of
non-heat primed plants, implicating histone modification in the induction of transgenera-
tional thermo-tolerance by heat priming. HS-induced transgenerational epigenetic memory
or phenotypic changes can be maintained for at least three generations [95,96]. In addition,
the ONSEN retrotransposon, as mentioned above, is transcriptionally activated in plants
exposed to HS. Interestingly, ONSEN transposition occurs more frequently in the progeny
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of RdDM mutants subjected to HS (Figure 4), indicating that RdDM-mediated epigenetic
modification prevents transgenerational propagation of retrotransposons in plants [55,97].

4. Conclusions and Perspectives

Over the last decade, the mechanisms of the plant response to HS have been investi-
gated in model plants. Our understanding of the regulatory networks involved in the plant
HS response is mainly derived from model plants, such as Arabidopsis, rice, and tomato;
few studies focused on non-model plants such as some agricultural crops and forestry trees
(woody plants). Some genes may have experienced functional divergence during evolution,
and homologous genes in different plants may have evolved different functions. Therefore,
further studies of non-model plants are needed to enhance the understanding of the gene
regulation networks underlying the plant HS response. Fortunately, advancements in
genome sequencing, bioinformatics, and genetic transformation are enabling non-model
plant research. By contrast, global warming is increasing the frequency of heat waves.
Compared with short-term HS used in laboratory studies, the duration of warming events
is longer, resulting in crop yield reductions. Therefore, efforts should focus on the plant
response to long-term or prolonged HS, including transgenerational and multigenerational
HS. This will facilitate evaluation of plant responses to climatic conditions and contribute
to our ability to help plants cope with the warmer weather expected in the future.

The HS response mechanism at the transcriptional level of model plants has been
gradually outlined. By contrast, the functions and interactions of important epigenetic
regulatory factors in the plant HS response are unclear. Moreover, previous studies of
epigenetic modification in response to HS focused on methylation and acetylation, whereas
works on other epigenetic modifications—such as phosphorylation, ubiquitination, and
SUMOylation (Small Ubiquitin-like Modifier, SUMO)—are scarce. Moreover, most methy-
lation studies involved DNA, and little is known of RNA methylation in response to
HS. Recently developed technologies, e.g., ATAC-seq (assay for transposase-accessible
chromatin sequencing), histone modification, RNA modification (m6A/m1A/m5C), and
single-cell RNAseq, will enhance research on epigenetic modifications under HS.

Another important question in the plant HS response is how heat is sensed. Identifica-
tion of plant thermosensors may provide the missing link between the heat cue and the
subsequent response [98]. Thermosensors must be activated directly by heat and require
no upstream signaling components, excluding indirectly affected putative thermosensors.
Heat affects DNA, RNA, protein, and lipids, and thus plant thermosensors may be com-
posed of any one or a combination of these molecules. A prion-like domain in Arabidopsis
rapidly shifts EARLY FLOWERING 3 (ELF3) between active and inactive states via phase
transition [99]. Phase transition underlies the formation of biomolecular condensates in
response to stimuli (e.g., temperature changes) [100]. Therefore, more research is needed to
provide insight into the role of phase transition in the plant response to HS.
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