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Abstract
Copynumber variants (CNVs) have beenproposed as a possible source of ‘missingheritability’ in complex humandiseases. Two
studies of type 1 diabetes (T1D) found null associationswith common copy number polymorphisms, but CNVs of low frequency
andhigh penetrance could still play a role.Weused the Log-R-ratio intensity data froma dense single nucleotide polymorphism
(SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6808 T1D cases, 9954 controls and
2206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false-
positive findings, failing replication with polymerase chain reaction. We developed a pipeline of quality control (QC) tests that
were calibrated using systematic testing of sensitivity and specificity. The case–control odds ratios (OR) of CNV burden on T1D
risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. Therewas
evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb
(OR = 1.57, P = 0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (P = 0.03).
No specificCNV regions showed robust evidence for associationwithT1D, although frequencieswere lower than expected (most
less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV,
which provides an automated approach for QC and detection of rare CNVs that can facilitate equivalent analyses of large-scale
SNP array datasets.
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Introduction
Rare (<1% population frequency) copy number variants (CNVs),
usually deletions or duplications of 100–500 kb and larger, poten-
tially play an important role in human disease (1). CNVs account
for more base pair differences between individual genomes than
single nucleotide polymorphisms (SNPs) (2,3) and are at the fore-
front of evolution, providing genetic material that facilitates the
acquisition of new functions and speciation. Whilst widespread
associations (involving 15% of cases) with CNVs have been re-
ported for neurodevelopmental disorders (4–10), and niche asso-
ciations (from 0.4 to 4% of cases involved) for obesity (11–15) and
congenital heart disease (16,17), there have been few conclusive
studies for autoimmune diseases. In addition, the contribution of
smaller (<100 kb) CNVs to any disease is largely unexplored.
A barrier to the characterization of CNVs in the genome is the
availability of affordable technology to reliably detect and call
CNVs in large numbers of individuals, using comparative genom-
ic hybridization (CGH) or SNP arrays. Recently, researchers de-
signed the ImmunoChip (18) to densely genotype 186 loci that
exhibited statistically robust association with 11 immune-modu-
lated diseases. Use of the ImmunoChip in very large numbers of
case, control and family samples provides the opportunity to test
the association of rare and, owing to the high density of SNPs,
shorter CNVs in these disorders.

Type 1 diabetes (T1D) exhibits strong clustering in families,
and yet the major effect, human leukocyte antigen (HLA)
gene polymorphisms in the major histocompatibility complex
(MHC), and over 50 other loci mapped outside the MHC (19–28),
do not fully explain the familial aggregation. Failure to fully ac-
count for the heritability of T1D could be in some part due to
CNVs, although there are many other potential contributors, in-
cluding (as yet) unmapped common variants (29), rare or infre-
quent single nucleotide variants (SNVs) that segregate within
individual families (30), limited linkage disequilibrium (LD) be-
tween the associated SNP and the causal variants in the locus
(25) or the combined effect of the associated variantswith unique
intra-familial environmental factors, such as transmission of
microbiota from mother to child (31).

Compared with SNP-based association studies, there are very
fewpublished CNVassociation studies for autoimmune diseases,
but early results suggested that this could be an important source
of missing heritability (32–34). However, most of these studies
were small and thus focused mainly on common CNVs (>5% fre-
quency), also known as copy number polymorphisms (CNPs).
These included psoriasis,N = 1075 (35); systemic lupus erythema-
tosus, N = 1241 (36); Crohn’s disease, N = 744 (37); Addison’s dis-
ease, N = 705 (38); paediatric multiple sclerosis, N = 90 (39) and
T1D, N = 60 (40), where in each instance, ‘N’was the total number
of cases and controls. The largest of these studies targeted
rheumatoid arthritis, N = 5003 (41), and did report some associa-
tions with rare CNVs, and a global ‘burden’ whereby cases had
twice the number of DELs as controls.

The Wellcome Trust Case Control Consortium (WTCCC) stud-
ied the contribution of commonCNPs usingCGHarrays (42). In 16
000 cases of eight common diseases (2000 cases for each disease,
including T1D) and 3000 shared controls, CNPs were not found to
be significant contributors to disease. Those CNPs that were
shown to be associated with a disease did not confer higher
risks than the individual common SNPs in strong LD with the
neighbouring CNPs. In particular, 79% of CNPs in the WTCCC
were strongly correlated (r2 > 0.8) with at least one SNP genotyped
by the HapMap project (www.hapmap.org), suggesting that the

effect of CNP variation would have been identified through
SNP-based genome-wide association study (GWAS) as described
previously (20).

The remaining CNPs not in high LD with SNPs have recently
been explored (43). A custom CGH array targeted 4309 CNPs and
found no association with T1D using the same Type 1 Diabetes
Genetics Consortium (T1DGC) families utilized in this study.

Through these two studies, the effect of (common) CNPs, both
tagged and untagged by SNPs, were found not to contribute sig-
nificantly tomissing heritability for T1D. It should be noted, how-
ever, that only 22% of structural variants with frequency <5% had
r2 > 0.8 with at least one SNP (42). This suggests that rare CNVs,
and CNVs not tagged by SNPs, may represent a source of genetic
variation that could account for additional T1D risk.

Both studies (42,43) have also highlighted the difficulties of
scoring CNPs and CNVs, where batch effects make unbiased
evaluation of associations challenging (44,45). In order to over-
come the daunting task of CNV detection, validation, and reduc-
tion of bias, we developed a pipeline of Log-R-ratio (LRR) quality
control (QC) procedures to reduce the number of artefactual CNV
calls. These QC steps can be applied to any complex phenotype
and any SNP array data for the purpose of filtering out samples
with problematic hybridization intensity yet otherwise good
genotype call rates, for identifying and correcting technically
induced batch effects before using the intensity data to call
CNVs, and for further using the relationship between rare CNV
calls and hybridization QC metrics to isolate difficult to detect
plate effects.

In this study, we investigated rare CNVs (frequency <1%) in
deoxyribonucleic acid (DNA) samples from 6808 T1D cases,
9954 controls and 2206 families genotyped with ImmunoChip,
which is one of the largest CNV studies to date using a single
array platform. The raw probe intensities used for genotyping
were re-purposed to calculate LRR and beta-allele frequency
(BAF) at each SNP location. These two parameters were utilized
jointly to call CNVs using PennCNV. The sensitivity of the results
to many alternative permutations of QC was assessed using
plumbCNV to derive a final convergent CNV set. These rare dele-
tions (rDELs) and rare duplications (rDUPs) were tested for overall
ImmunoChip-wide ‘burden’ for cases versus controls, and for
burden across three subsets of segment length. There were 383
copy number variation regions (CNVRs) tested for rare but highly
penetrant T1D associations, but none were significant after cor-
rection for multiple comparisons. A power analysis is provided
to show recommended sample sizes for a range of CNV frequen-
cies and possible effect sizes.

Results
Data quality control

Extensive testing and configuration of QC procedures were con-
ducted on this dataset, as detailed in the ‘Materials andMethods’
section and Supplementary Material, Methods S1–S11. After all
steps of the pipeline were applied to the case–control dataset,
79.7% SNPs passed QC thresholds. Sample failure rates were mo-
dest, with 6.7% of 9998 controls and 5.3% of 6808 T1D cases ex-
cluded for low quality data. For the family dataset, 82.8% of
SNPs passed QC. The sample failure rate was slightly higher in
the family dataset, with 9.9% of 6451 unaffected and 9.3% of
6490 affected familymembers failing QC. Further detail on exclu-
sions, distributions and thresholds can be found in Supplemen-
tary Material, Tables S1–S3.
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Testing the sensitivity of the QC pipeline to thresholds
and criteria

Awide range of QC procedures were utilized for this study. To at-
tempt to make the QC thresholds applied less arbitrary, and to
obtain a fair balance between sensitivity (detecting true CNVs)
and specificity (avoiding false-positive CNV calls), we undertook
an extensive threshold calibration exercise. We conducted an
experiment whereby the QC pipeline and subsequent CNV
calls were tested for 54 different configurations of QC parameters
(SupplementaryMaterial, Table S5 and Fig. S1). The resulting sets
of CNVs produced sometimes varied widely. Sensitivity and spe-
cificity were defined by comparison to CNVs from the database of
genomic variants (DGV) that intersected ImmunoChip regions.
Average quality scores and case–control burden odds ratios
(ORs) were calculated for each run to assess the sensitivity to
QC. There was a marked trend that less stringent configurations
produced large positive burden ratios (for instance, between 1.2
and 3.0), while more stringent configurations led to an overall
burden close to unity, and higher quality scores.

Subsequent analyses for case–control and family datasets
were performed using the set of parameters that produced the
best combination of sensitivity, validation and averageCNVqual-
ity score. This comprised the ‘medium’ setting for both SNP and
sample QC, the largest number of components for principal com-
ponents (PC) correction and utilized all of the CNV-QC filters (cor-
responding to run 20 from Supplementary Material, Table S5).
Independent estimates of the sensitivity and specificity for this
configuration are presented in Supplementary Material, Methods
S10, which compare well to consistency rates determined for
PennCNV in a comparative study of CNV detection methods (46).

T1D association analyses

There was no evidence for an overall burden of CNVs associated
with T1D. Testing with different QC thresholds clearly showed a
convergence to a ratio near 1.0 for the case–control rate of both
rDELs and rDUPs (Fig. 1). For the subset of 54 runs of the plumbCNV
pipeline with the ten highest average quality scores, the OR of
case–control CNV burden ranged from 0.98 to 1.16 for rDELs (me-
dian 1.04), and0.94 to 1.13 for rDUPs (median 1.05). Thisnull result,
and near to neutral OR, also held true when considering various
CNV subsets, including (a) CNVs intersecting a gene, (b) CNVs in-
tersecting an exon and (c) CNVs intersecting the DGV.

Burden analysis by CNV length

We tested the burden of CNVs within three independent length
subsets to determine if a significant enrichment in large CNVs
could be detected in T1D cases (Table 1) and to search for system-
atic case–control frequency differences in CNVs too small to be
detected by GWAS arrays.

Three thresholds were chosen to reflect categories:

(i) Small CNVs (0–20 kb for rDELs, and 0–50 kb for rDUPs) with a
different breakpoint in rDUPs due to very different length
distributions for the smaller band between rDELs and
rDUPs.

(ii) Medium CNVs (20–400 kb for rDELs, and 50–400 kb for rDUPs),
detectable by ImmunoChip and GWAS chips, with few
reported associations to date.

(iii) Large CNVs (greater than 400 kb) such as have been previous-
ly been associated with neurodevelopmental disorders.

There were a greater proportion of longer rDELs in T1D cases,
OR = 1.57 (1.14–2.19), P = 0.005, but therewas no difference forme-
dium length or shorter rDELs. There were no differences within
any length band for rDUPs.

See Supplementary Material, Methods S12 for a detailed
description of the case and control distributions of CNV length.

Burden estimate for the family dataset

A burden estimate was also calculated using the family data, by
using the ratio of CNV transmission rates from Table 2, for af-
fected versus unaffected children. Consistent with the case–
control overall burden results, there was no difference between
T1D and unaffected children, with a ratio of 1.01 for rDELs (44.2/
43.8%) and 0.91 for rDUPs (42.3/46.3%). Transmission rates were
somewhat lower than the theoretical expected rate of 50%, re-
flecting imperfect sensitivity and specificity of CNV calls.

Burden of de novo CNVs

Previous association studies utilizing family data have found that
de novo CNVs are more likely to be deleterious as they have not
been subjected to selection (16,47,48). There were 18 de novo
rDELs observed amongst the T1D-affected offspring, but none
in the unaffected siblings cohort (P = 0.03, Naff = 5077, Nunaff =
1282). These de novo rDELs are presented in Supplementary
Material, Table S6 alongside historical information and HLA clas-
sical types. The LRR and BAF intensity at each CNV locus were
visually verified against any siblings, and both parents, to ensure
that these were true denovos and not due to lack of sensitivity in
detecting the sameCNV in a parent. Therewas insufficient power
to explore de novo rates in any sort of stratified manner. Regard-
ing duplications, therewere only eight de novo rDUPS detected in
affected children, and five in unaffected, which did not comprise
a statistically significant difference.

ImmunoChip-wide CNVR analysis

This approach pools sets of overlapping CNVs, so that CNVs of
slightly different lengths and positions can be compared as
part of the sameCNVR, and facilitates case–control testing of spe-
cific CNV loci. Significance values were generated using Fisher’s
Exact Test (FET) given the rarity of these events. Separate QQ-
plots for rDELs and rDUPs show that P-values closely follow a
uniform distribution suggesting no inflation of test-statistics
(Supplementary Material, Fig. S3). Counts from 0 to 150 CNVs
per region were observed from a total of 6524 T1D cases and
9238 control samples that passed QC.

CNVRs for rDELs and rDUPs were assessed across the Immu-
noChip and the five most significant associations with T1D for
each are reported in Table 3. Nonewere significant after a Bonfer-
roni correction for 383 regional tests (threshold P = 1.31 × 10−4).

In order to validate key output fromour pipeline using an inde-
pendent lab-based method, two of the rDELs from these top five
associations, PKIA, and a region within 16p11.2 (encompassing
15 genes including SH2B1), were tested and successfully replicated
with quantitative polymerase chain reaction (qPCR) (see, Supple-
mentary Material, Table S7 and Methods S8). PKIA is involved in
pancreatic beta-cell function (49) and 16p11.2 has been widely re-
ported in the literature as contributing to the genetic riskof obesity
(11–15), potentially linked to insulin signalling (50).

Because CNVs at 16p11.2 have been widely studied we were
able compare the population frequencies we observed with sev-
eral large studies (51,52). In our control samples, the 16p11.2 rDUP
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was detectedwith 0.07% frequency, which closely compareswith

a rate of 0.05% pooled from seven studies comprising nearly

60 000, Icelandic and Northern European controls (51). The

same meta-analysis showed 0.04% incidence of 16p11.2 rDELs,

similar to the observed rate of 0.03% in our control cohort. For

both rDELs and rDUPs, the incidence in our controls matched

very closely, providing a positive control for the sensitivity of

our pipeline to detect very rare CNVs.

TDT analysis of the family data

None of the transmission disequilibrium test (TDT) results for
CNVRs passed the Bonferroni corrected threshold of P < 10−4.
The results with the lowest P-values are presented in Table 4
for reference, but should not be considered as candidates for as-
sociation without follow-up in a much larger sample. The
chromosome 10q21.1 rDEL result seems merely to reflect that
the CNV was detected with lowered sensitivity, as both cases

Figure 1. Quality score versus global burden ratio. From 54 runs of the pipeline with systematically differing QC configurations, this figure shows quality scores (average

confidence percentage) versus global case–control ratio of the resulting set of CNVs called for rDELs (left) and rDUPs (right), respectively. See detailed legend for the

meanings of the colour (Sample QC), size (SNP-QC), thickness (PC-correction) and shape (CNV-QC) of the points in the plot. It can be seen that there is an association

of higher quality scores with a burden ratio nearer to 1.0. PC-correction (line thickness) has the largest magnitude of effect. All comparisons were made using

rDELs/rDUPs inferred by at least six SNP sites. The Supplementary Material, Methods S3 contains information on how the number of sites we used was chosen.

Table 1. CNV burden by length analysis

Length Controls Cases Odds-ratio 95% CI FET-P-value

(A) rDELs
0–20 kb 820 570 0.98 0.88, 1.10 0.7756
20–400 kb 514 372 1.03 0.89, 1.18 0.7256
>400 kb 74 82 1.57 1.14, 2.19 0.0053

(B) rDUPs
0–50 kb 1098 740 0.95 0.86, 1.05 0.3017
50–400 kb 1336 946 1.00 0.92, 1.10 0.9451
>400 kb 326 230 1.00 0.84, 1.19 1.0000

Ananalysis of burden for rDELs (A) and rDUPs (B) across three subsets of CNV length. Each rowcontains resultswhere theCNV set isfiltered to includeCNVswithin the size

window indicated (‘Length’). A Bonferroni threshold based on six tests was applied. No rDUP results were significant whereas the rDEL result for CNVs longer than 400 kb

passed this threshold. Supplementary Material, Methods S11 shows no burden for the same length-subset analysis on the UVA (control) versus Sanger (control) groups.

The threshold between themiddle and small CNV sizes is 50 kb instead of 20 kb for rDUPs to account for the differing length distributions. Therewere not nearly asmany

rDUPs <20 kb (∼60% less), which would have made the middle category much larger than the first category. Locations used hg18 coordinates.
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and controls had a low transmission rate (close to 33%). The
chromosome 6p22.1 rDEL and 6p21.33 rDUP both had transmis-
sion above 50% in controls and low transmission in T1D cases,
consistent with being protective. Whilst these results are incon-
clusive due to lack of power, these two CNVs are located in the
MHC (the region most associated with T1D) and could plausibly
disrupt regulatory elements controlling expression of other
MHC genes.

Individuals with large CNVs

Very long CNVs are thought to be highly deleterious and likely to
disrupt health. There is a high prior probability that such a CNV
could contribute to the development of a disease state should it
occur in a critical genomic region. Thus, a very long CNV in a re-
gion containing immune response genes could affect risk of T1D.
For rDELs, eleven cases and only one control had a CNV greater
than 3 Mb. While this length threshold was not part of planned
testing, this yielded an OR estimate of 15.60 (95% CI = 2.27,
669.48; P = 0.00045).

CNVs of this length have been associatedwith developmental
disorders, so this raises a question about sample selection and
comorbidity. There was no difference in exclusion criteria be-
tween cases and controls. However, a slight bias could foresee-
ably have arisen due to self-selection. Given that most controls
were adult blood donor volunteers they are unlikely to have an

incapacitating illness or they would not have gone to the trouble.
In contrast, child volunteers were brought in by their parents
to contribute to T1D research, so could potentially have other
illnesses comorbid with T1D.

All CNVs of this size or larger are presented below for the
case–control and family datasets (Table 5). In the case–control
dataset, it is unknown whether the long CNVs were truly de
novo as parental data were unavailable. Both of the rDELs for
T1D cases in the family data were confirmed as de novo. The re-
peated rDUPs in the families dataset on chromosomes four and
nine each occurred within a single family. Given the small num-
ber of occurrences of each CNV, no statistical analysis could be
performed; however, these exceptional genomic features are cat-
alogued here as a reference for future work.

Power analysis

This study had sufficient power for CNV burden analyses; how-
ever, the lack of specific regional hitsmay be attributed to limited
power formultiple testing of every CNVR. Estimated total sample
sizes required to conduct genome-wide associations for CNVRs
are presented in Table 6, stratified by case–control ORs and CNV
frequency. The current study case–control sample size is in-
cluded as ‘1.6’ (i.e. 1.6 × 10 000 = 16 000), with results showing
that we had sufficient power to detect CNVs with an OR of 2.0
at frequency 1%, an OR of 3.0 at frequency 0.5%, and that we
would require anOR greater than 7.0 to detect CNVs less frequent
than 0.2%. However, 91.6% of CNVRswere less frequent in our da-
taset than 0.1% (Fig. 2, and also Supplementary Material, Fig. S4
for more detail on the distributions of CNV frequency in this
study). This power analysis suggests that to explore CNVs for as-
sociation with disease with plausible effects sizes (for instance,
an OR range of three to ten), a dataset of 30 000 cases and
30 000 controls would be required.

Discussion
Several studies of T1D have found null associations with CNPs
(42,43), but CNVs of low frequency and large effect could still
play a role. There is strong evidence for the role of large rare
CNVs exceeding 400 kb, contributing to risk of neurodevelopment
disorders (7,8,47,53–55). Results from a recent genome-wide CNV

Table 2. Transmission rates to affected versus unaffected siblings

Transmission Affected (%) Unaffected (%) Ratio P-value

DELs 44.2 43.8 1.01 0.90
DUPs 42.3 46.4 0.91 0.14

Analysis of transmission rates for CNVs within family trios, from parents to

affected and unaffected children. For transmission percentages the

denominator is the total number of possible transmissions for that category (i.e.

the number of children multiplied by number of CNV-carrying parents in each

family, summed across all CNVs). Additional data for de novo and transmission

rates can be found in Supplementary Material, Methods S9 and S10. Note that

there are roughly four times more affected than unaffected children in the

family dataset. Prior to generating these percentages, CNVs were excluded from

CNVRs that did not have at least one CNV with a quality score above 90%.

Table 3. Top five FET results for CNVRs

Locus Start (Mb) End (Mb) Length (kb) Cases Controls OR P Genes

(A) rDELs
8q21.12 79.65 79.67 22.9 6 1 8.59 0.0215 PKIA
6p21.31 34.75 34.76 6.1 4 0 0.0282 C6orf106
15q13.2-3 28.74 30.20 1461.0 4 0 0.0282 TRPM1 + 6
6p21.31-32 33.60 33.63 29.0 15 8 2.69 0.0314 Intergenic
11q23.2 113.97 114.05 77.7 71 71 1.43 0.0321 Intergenic

(B) rDUPs
14q13.2 34.55 34.82 267.7 0 8 0.0247 SRP54 + 3
3p26.3 1.31 3.17 1862.3 4 0 0.0282 CNTN6 + 5
10p15.2-3 2.00 3.20 1195.0 7 2 5.01 0.0376 PFKP + 1
17p12 14.13 15.32 1197.6 5 1 7.16 0.0457 PMP22 + 4
16p11.2 28.39 28.93 540.1 0 7 0.0464 SH2B1 + 14

The top five most statistically significant rDEL (A) and rDUP (B) results from an analysis of CNVRs. Region boundaries were defined using the Plink command ‘segment-

group’. None of these results passed the Bonferroni corrected threshold of ∼P < 5 × 10−5. Genes are those overlapped by the bounds of the CNVRs. These counts have been

filtered to include only CNVs passing quality score thresholds, and CNVRs with greater than 20% of CNVs failing on quality scores were excluded. The notation ‘+n’ in the

genes column indicates the number of overlapping additional genes not listed. OR, odds-ratios, some of which cannot be calculated due to zero counts. Locations used

hg18 coordinates.
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Table 4. Trios TDT test for CNVRs

Locus Start (Mb) End (Mb) Length (kb) Genes Transmissions TDT (P)
Cases Controls

(A) rDELs
10q21.1 59.76 59.76 4.0 Intergenic 28/81 10/29 0.0079
6p22.1 29.20 29.27 72.6 OR2J4P + 3 5/22 4/6 0.0253
12q12 39.06 39.10 39.5 Intergenic 5/5 1/2 0.0253

(B) rDUPs
6p21.33 31.47 31.56 93.4 MICA + 4 9/38 5/7 0.0041

TDTanalysis of CNV transmission for trioswhere at least one parent has a CNVand at least one child is affected, for rDELs (A) and rDUPs (B). Genes are those overlapped by

the bounds of the CNVRs. In the ‘Genes’ column, ‘+n’ indicates that in addition to the gene(s) indicated a further ‘n’ genes overlap that CNVR. The full listing for 6p22.1was:

OR2J4P, SAR1P1 and OR2B3; and for 6p21.33 was: MICA, HCP5, HLA-S, HLA-C and RPL3P2. For transmissions, each cell contains a count of how many times a CNV was

transmitted from a parent versus the total number of children of parents with that CNV. Note that in contrast to a SNP-based TDT analysis where it is customary to

test against an implicit transmission rate of 50%, because the sensitivity of CNV detection can be different across the array, the transmission rate for controls should

also be taken into account. Any CNV where controls had a significant TDT result in the same direction (suggesting under- or over-sensitivity) should be interpreted

with caution (e.g. the rDEL in 10q21.1 above). These counts have been filtered to include only CNVs passing quality score thresholds. Locations used hg18 coordinates.

Table 5. Large CNVs

Locus Start (Mb) End (Mb) Length (Mb) Genes Phenotype SNPs

(A) Case–control dataset
rDELs

2p21 40.15 43.30 3.15 SLC8A1 + 9 T1D 250
2q37.3 238.67 242.44 3.77 SCLY + 45 T1D 288
3p11.2 83.01 87.41 4.40 CADM2 + 3 T1D 38
3q28-29 193.33 196.62 3.29 FGF12 + 15 T1D 34
4q12 58.53 66.53 8.00 LPHN3, EPHA5 T1D 83
6q16.1 97.55 121.05 23.50 KLHL32 + 112 T1D 1659
10q11.22-23 47.99 51.29 3.30 ARHGAP22 + 40 Control 650
10q22.3 81.64 88.94 7.30 ZNF488 + 34 T1D 136
11q24.3 129.25 134.23 4.98 KCNJ5 + 25 T1D 100
14q31.1 79.64 83.72 4.08 DIO2 + 6 T1D 1276
18p11.31 0.17 5.76 5.59 USP14 + 22 T1D 103
18q22.3-23 71.65 76.12 4.47 ZNF516 + 13 T1D 85

rDUPs
3p21.1-21.31 48.33 52.85 4.52 ZNF589 + 133 T1D 2636
4q12 54.18 57.77 3.59 CHIC2 + 23 T1D 47
6p24.3-25.3 0.15 7.74 7.59 DUSP22 + 45 T1D 407
8p23.1-3 1.66 9.85 8.19 DLGAP2 + 77 Control 250
8p23.2-3 1.66 5.43 3.77 DLGAP2 + 11 T1D 152
10q11.23-21.1 52.48 56.80 4.32 PRKG1 + 6 Control 162
11p15.4-5 0.80 8.99 8.19 RPLP2 + 215 Control 467
13q21.32-33 65.26 72.02 6.76 PCDH9 + 3 Control 106

(B) Family dataset
rDELs

2q36.3-37.7 227.56 242.67 15.11 RHBDD1 + 146 T1D 1750
5q11.2-12.3 55.28 64.52 9.23 IL6ST + 31 T1D 256
5q21.1-2 98.83 103.28 4.45 FAM174A + 8 Control 1146

rDUPs
1p22.2-3 87.09 90.59 3.50 HS2ST1 + 15 T1D, son 53
2p15-16.1 58.24 61.85 3.61 VRK2 + 13 Control, mother 1373
4p12-13 44.50 47.97 3.47 GABRG1 + 12 T1D, daughter 279
4q31.23-35.2 150.88 190.98 40.10 DCLK2 + 134 T1D, unknown 471
4q32.1-35.2 161.48 190.98 29.50 FSTL5 + 87 Control, father 369
4q34.3 178.73 182.09 3.36 Control, mother 34
4q34.3 178.73 182.09 3.36 T1D, daughter 34
9q31.1-2 104.21 107.38 3.17 CYLC2 + 16 Control, mother 43
9q31.1-2 104.21 107.38 3.17 CYLC2 + 16 T1D, son 43
9q31.1-2 104.21 107.38 3.17 CYLC2 + 16 Control, son 43
11q24.1-25 122.30 134.27 11.97 C11orf63 + 94 Control, father 850

Tabulation of specific rDELs and rDUPs longer than 3 Mb for the case–control (A) and family (B) datasets, respectively. In the ‘Genes’ column, ‘+n’ indicates that in addition

to the gene(s) indicated further ‘n’ genes overlap that CNV. In the ‘phenotype’ column ‘Control’means the sample came from the unaffected (families) or control groups

(case–control). The ‘SNPs’ column shows the number of ImmunoChip SNPs passing QC within the bounds of each CNV.Within the family data (B), the chromosome nine

rDUPs were from samples in the same family, and so are the chromosome four rDUPs with no gene overlap. Note that 11 rDELs of 3 Mb or longer were found in T1D cases

versus only 1 rDEL in controls. Within the family-rDELs, both occurrences in affected were confirmed to be de novo. All locations use UCSC hg18 coordinates.
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study of morbidity of development delay and those from 15 other
neurodevelopment studies estimated that 15–20% of patients
could be diagnosed with a structural abnormality (54). To deter-
mine the role of CNVs in T1D, we conducted both overall burden
and locus-based tests, within a case–control and an independent
family trios dataset, in one of the largest CNV studies to date for
a common phenotype and methodology. Our QC pipeline was
able to overcome significant biases in the LRR data, correcting
for intensity differences in datasets originating from separate col-
lections and sample types that differed systematically between
phenotypes.

Because of the low frequency and heterogeneity of CNVs, one
of the most important statistical tests in previous studies has
been the burden test. By pooling CNVs together it provides an
analyzable metric when locus specific counts are too small to

calculate meaningful statistics. The burden ratio is clearly a
crude statistic and is prone to misuse. First, any systematic
batch effects that bias the intensity for cases or controls can eas-
ily manifest itself in the burden ratio, which we observed for test
runs when PC correction was not applied to the LRR data. In fact,
we found that an overall burden close to one seemed to be an ex-
cellent indicator for high quality CNV calls that showed high val-
idation performance across multiple criteria. As a negative
control, we were also able to demonstrate that burden tests on
our two separately genotyped control cohorts converged to 1.0
(Supplementary Material, Methods S11). We would suggest that
analysts of CNV datasets greet large overall burden values with
scepticism, and to attempt to falsify possibly misleading results
by systematically tuning QC procedures.

Second, a burden test assumes not only an increased rate of
CNVs, but that the directions of associations are not balanced;
equivalent to saying that most deletions (DELs) would increase
the likelihood of disease, whereas it may be that a harmful
locus could be suppressed as a result of an rDEL. Hypothetically,
an equal number of protective CNVs in controls and harmful
CNVs in cases could be hidden in a neutral burden estimate.
This could be true of the current study, but a larger dataset
with power to conduct CNVR tests at very low frequencies and
moderate effects sizes would be required to test for this.

Third, there are some conceptual issues with the inter-
pretation of a large global difference in genome-wide CNVs
between two cohorts of similar ethnic ancestry. CNVs can occur
almost anywhere andmost probably have little impact on health.
More informative studies seek to conduct burden tests on subsets
of CNVs with some meaning, so for instance: overlapping
gene pathways previously associated with the study phenotype,
overlapping genes predicted as haploinsufficient, overlapping
coding sequence or epigenetic features. Because this study
used ImmunoChip, the CNV set was already enriched for auto-
immune regions, providing an interpretation for our burden
test. To explore potential enrichment in further detail, we
also examined de novo CNVs in the family data, and subsets of
CNV length, as longer CNVs are more likely to have functional
consequences.

We found a strong null result with respect to the overall bur-
den of rDUPs with a case–control ratio near 1.0, even when filter-
ing by genic or exonic overlap, and across three CNV length
groups. This result may be generalizable and could suggest
that, for T1D risk, additional copies do not result in increased or
modified expression for the majority of genes.

Table 6. Power analysis for genome-wise CNVR studies

CNV frequency OR
20 10 9 8 7 6 5 4 3 2 1.75 1.5 1.25 1.1

0.0001 20 40 40 40 40 40 40 60 80 160 400 600 1400 8000
0.0002 10 12 12 14 16 18 20 40 40 80 120 400 800 4000
0.0005 4 6 6 6 8 8 8 10 16 40 60 100 400 1600
0.001 2 4 4 4 4 4 4 6 8 16 40 60 140 800
0.002 1 1.6 1.6 1.6 1.6 2 2 4 4 8 12 40 80 400
0.005 1 1 1 1 1 1 1 1 1.6 4 6 10 40 160
0.01 1 1 1 1 1 1 1 1 1 1.6 4 6 14 80
0.02 1 1 1 1 1 1 1 1 1 1 1.6 4 8 40
0.05 1 1 1 1 1 1 1 1 1 1 1 1 4 16

Power analysis of the approximate total case + control sample size (in units of 10 000 samples) required to pass the Bonferroni P-value threshold for a genome-wide CNVR

analysis using ImmunoChip for different case–control ORs andCNV frequencies. The expectation is that the number of CNVR regions called using the Plinkmethodwould

saturate to ∼1000, so the Bonferroni threshold used was 5 × 10−5. The last two frequency rows are technically CNPs (common CNVs) as defined in this study.

Figure 2.Density distribution of CNVRs. Density plot for CNV frequency for CNVRs

in cases and controls. Note thatmost (rare) CNVs detected occurred at a frequency

of <0.1%. Even when the x-axis was extended to include CNPs up to 5% frequency

(this figure stops at 1%), this right-skewed distribution continued to be extremely

sparse in the right hand tail (Supplementary Material, Fig. S4). This graph is

calculated per region, so a CNVR with one sample gets the same weighting in

this figure as a CNVR containing 100 samples. Supplementary Material,

Figure S4 shows histograms calculated per sample, which gives a more uniform

distribution.

1780 | Human Molecular Genetics, 2015, Vol. 24, No. 6

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1


We did obtain evidence for an increased burden of rDELs with
T1D risk. Those greater than 400 kb in size were found to be over
50% more frequent in cases. For very large CNVs (greater than
3 Mb); 11 were observed in cases, and only one in controls.
These data suggest that loss of function in the immune-enriched
regions of the genome contribute to T1D risk. Longer rDELs are
likely to disrupt a greater number of genes, and thus have more
chance to intersect genes in immune-pathways that are haploin-
sufficient (48), requiring two copies for normal function. Longer
CNVs are also more likely to be de novo (45) and thus have not
undergone negative selection against deleterious function.

Importantly, rDELs of this size were rare, applying to only
1.26% of T1D cases (n = 84) and 0.80% of controls (n = 74). This ef-
fect is much smaller than observed in neurodevelopmental dis-
orders, even when taking into account that those estimates are
based on GWAS arrays, which have 39% greater coverage of the
genome for CNVs of this size (see coverage comparison in Sup-
plementary Material, Table S8).

A key advantage of the ImmunoChip over GWAS arrays for
CNV detection is the ability of the ImmunoChip to target smaller
CNVs in immune regions. The smaller CNVs formed a large por-
tion of the CNVs detected: 57.2% of rDELs detected were <20 kb in
length while 38.6% of rDUPs were <50 kb. In comparison, GWAS
arrays detect CNVs smaller than 20 kb in T1D regions at roughly
one quarter the rate of ImmunoChip. No evidence for burden of
T1D risk was found for CNVs between 20 and 400 kb, or CNVs
shorter than 20 kb in the case–control dataset.

In the family dataset, we observed 18 de novo rDELs in af-
fected versus zero in unaffected samples. With such a low
count, with only 0.3% of T1D samples implicated, and the likeli-
hood that some of these rDELs have no effect on diabetes risk, we
would conclude that de novo CNVs occurring in mapped auto-
immune disease regions probably only affect a small minority
of T1D cases.

The lack of regional CNVR association with T1D is not neces-
sarily due to the absence of genuine association but partially to
the ‘rareness’ of rare CNVs. Despite setting the frequency thresh-
old at 1%, the vast majority (>91%) of CNVs were ten times more
rare than this (<0.1%). This observation is consistent with two re-
cent studies of SNVs and rare mutations using exome sequen-
cing, which found that 86% of coding variation had frequency
<0.5%, the ratio of rare to common SNVs was six to one (56) and
that 56% of CNVs in a dataset of ∼5000 samples were singletons
(57). In the case–control dataset for this study, more than 75%
of CNVs were singletons. This evidence for a frequency ‘trough’
between rare and common variant frequencies (between 0.1
and 5%) is entirely consistent with purifying selection, and find-
ings that CNPs do not generally associate with disease (42,43); if
they did, they should have already been selected against. Further,
in the SNV study above, the predicted deleteriousness for var-
iants below 0.5% frequency was 4.2 times that of more common
variants (56).

These very low counts for CNVRs resulted in low statistical
power where only an extreme case–control ratio could exceed
the critical value (adjusted for multiple testing). We did observe
some CNVRs with ORs up to eight. If these ratios remained con-
sistent, our power analysis (Table 6) suggests that a sample size
of 30 000 cases and 30 000 controls would be required to pass
multiple testing correction. The low cost of genotyping arrays in-
dicates that such a sample size could be examined in a cost-
effective manner in the near future.

The critical aspects of data cleaning and QC identified in this
study can overcome many of the barriers to testing for associ-
ationwith rare CNVs in complex human diseases. In conjunction

with this analysis, we developed an R package, plumbCNV (58)
that automates the QC and CNV-calling pipeline with extensive
control of thresholds. The final set of CNVs detected in this
study using this pipeline have been validated in multiple data-
sets, comparing common samples on MetaboChip, comparing
CNVs to the DGV, examining transmission rates in trio data and
by qPCR replication of specific loci. The software is fast, scalable
and allows flexible input and verbose output. The package sim-
plifies CNV analysis, facilitating validation and optimization of
QC thresholds and we would encourage researchers with large
ImmunoChip, MetaboChip or other custom genotyping array da-
tasets, to obtain further value from their microarray datasets by
exploring rare CNV associations with their phenotype.

Even with the discussed deficits in power and coverage, our
findings suggest that rare CNVs could increase the burden of
risk for T1D. The effect of rDELs on T1Dwould likely be heteroge-
neous and pertain to a small minority of patients, given the low
frequency of variants longer than 400 kb, the rarity of de novo
CNVs in autoimmune disease regions and the lack of case–
control burden for CNVs shorter than 400 kb. A future association
analysis of CNVRs in a larger dataset could help to identify specif-
ic regions that may give insights into the mechanistic under-
standing of T1D. Implicated loci could differ to those identified
through SNP-based GWAS andmay be easier to interpret because
rDELs can ‘knock-out’ entire genomic features, rather than sim-
ply modifying selected alleles. Importantly, our results highlight
the challenges of scoring CNVs in any disease and the necessary
QC metrics required to assure robust statistical results.

Materials and Methods
Subjects

Samples for this study were derived from several sources
(Table 7). Written informed consent was obtained from all sub-
jects with approval from the ethics committee or institutional
review board of all participating institutions. The cases in the
case–control analysis were part of the UK GRID T1D case collec-
tion (UK GRID) (60), with cell-lined DNA samples as available
from the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) Central Repository (63). The controls in the
case–control analysis were taken from the 1958 British Birth
Cohort (1958BC) (64) and the United Kingdom Blood Services
CommonControls (UKBS-CC) and are unselected population con-
trols (60). The 1958BC samples were cell-lined DNA samples and
are available from Bristol, UK (61); the UKBS-CC samples are gen-
omic DNA and are available from Cambridge, UK (59). The aver-
age (median) age at diagnosis in cases was 7.7 (8.0), with first
and third quartiles of 4.0 and 11.0. Finally, there was no bias in
geographic distribution of cases and controls (65).

Family data are independent of the case–control subjects and
derived from the T1DGC collection (62). The T1DGC initiated an af-
fected sib-pair collection with focused identification of families
with two or more children with T1D, both parents available, and
collection of an unaffected sibling when possible. As a result,
over 80% of families have both parents available. Family samples
are predominantly cell-lined DNA with some genomic samples
andare available fromtheNIDDKCentral Repository (63). Theaver-
age (median) age at diagnosis in affected offspring was 10.7 (9.0),
with first and third quartiles of 5.0 and 14.0. Amongst the T1D fam-
ilies, 4937parentswere unaffected and 199were affected. Amongst
the siblings, 6291 were affected and 1514 were unaffected.

A total of 201 plates with 96 samples per plate were used to
type the data (although some plates were incomplete). Although
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themajority of samples were genotyped at one location (the Uni-
versity of Virginia, UVA), the case–control and family samples
were genotyped at different times and, for controls, at different
locations (UVA and the Wellcome Trust Sanger Institute (Sang-
er)). There were 6808 UVA-typed cases (84 plates), 5461 UVA-
typed controls (genotyped on a different date to the T1D cases,
78 plates) and 4537 Sanger-typed controls (49 plates).

This diversity of sample sources presented a considerable
obstacle for batch effects correction procedures. Pre-QC raw
LRR data for 83.0% of all SNP sites passing QC showed significant
(P < 3.14 × 10−7) intensity differences between cell line and gen-
omic DNA, and 90.2% showed intensity differences between
T1D and control phenotypes. The QC procedures implemented
resulted in a reduction of these difference-rates to only 1.4%
and 1.2%, respectively. This set of 1937 SNPs that still differed
were excluded before calling CNVs in the case–control dataset.

Platform

ImmunoChip is a consortium designed, custom Illumina iSelect
two-colour bead-chip, targeted to fine map the genetics of auto-
immune disease (18,66). ImmunoChip includes replication SNPs
that had been associated with target diseases via GWAS at P < 5 ×
108, plus dense fine-mapping SNPs for the regions surrounding
these loci, to facilitate search for causal variants. A total of 3000
fine-mapping SNPs were chosen for each of 12 diseases based
on available GWAS data (rheumatoid arthritis, ankylosing spon-
dylitis, systemic lupus erythematosus, T1D, autoimmune thyroid
disease, coeliac disease, multiple sclerosis, ulcerative colitis,
Crohn’s disease, psoriasis, juvenile idiopathic arthritis and pri-
mary biliary cirrhosis). This non-uniform coverage presented
an additional challenge versus similar analysiswithGWASarrays
(Supplementary Material, Table S8).

Samples were genotyped using the ImmunoChip according to
Illumina’s protocols (UKBS-CC and 1435 of the 1958BC at the
Sanger), Hinxton, UK; and UKGRID, 1958BC and T1DGC-ASP fam-
ilies at Charlottesville, VA, USA. Data are available from the Euro-
pean Genome-Phenome Archive (EGA) (59,61). NCBI build 36
(hg18) mapping was used throughout (Illuminamanifest file, Im-
muno_BeadChip_11419691_B.bpm). The resulting locked ‘long-
file’ format dataset containing LRR, BAF, genotypes and intensity
information was the source data for the analyses to follow.

Development of the CNV pipeline

CNV detection using SNP arrays is a complex undertaking, par-
ticularly in the presence of systematic batch effects. Initial
naïve analyses where the raw data, with standard SNP-QC,
were fed into pre-existing PennCNV software (67) yielded several
seemingly promising CNV-loci and a strong positive case–control
burden association. Individual CNVs examined could not be

replicated. It soon became clear that extensive QC would be re-
quired to be able to detect genuine disease association signals.

The set of QC filters and PC-correction that comprise our re-
commended pipeline were established in conjunction with ana-
lysis of these T1D datasets, including qPCR validation of loci
showing initial associations (Supplementary Material, Methods
S8). Failure to replicate CNV calls with qPCR led to the develop-
ment of QC procedures to address persistent biases. It should
be noted that individually most of the QC steps described have
been used before in other CNV studies (10,44,67,68 and Supple-
mentary Material, Methods S4), although not in combination, or
with as extensive calibration and validation.

Once a set of core methods was in place (Fig. 3), the pipeline
was automated using R scripts and 54 iterations (to explore
each combination of three alternative levels of sample QC, SNP-
QC and PC-correction, and two levels of CNV-QC) of the pipeline
were run, varying thresholds to attempt to determine the impact
on sensitivity and specificity. More detail on the pipeline devel-
opment and results of testing can be found in the Supplementary
Material, Methods S1–S11.

The validity of the CNV calls resulting from 54 runs of QC pre-
and post-processing was assessed using several techniques,
including average quality scores, comparison to a MetaboChip
dataset with over 5000 samples in commonwith this study, com-
parison to the DGV and tracking bias for the overall case–control
burden ratio.

This quality score was developed to filter CNVs that failed to
replicate on MetaboChip. A likelihood-based score (Supplemen-
tary Material, Methods S6 for details) proved to be sensitive to
the problematic artefact in theMetaboChip CNVs. Revised results
filtered by quality score showed maximum sensitivity of 87.7%
and specificity of 93.5%, at a cut-off of 0.95 (quality score out of
1) with an area under the curve of 0.932 (data in Supplementary
Material, Fig. S5). For rDUPs, 100% of MetaboChip rDUPs were
found on ImmunoChip, with 88.2% specificity.

Armed with a useful tool to evaluate the quality of calls, sys-
tematic testing varying QC thresholds revealed the most import-
ant stepwas PC-correction of the LRR data, particularly for rDUPs.
An increasing number of components corrected-for resulted in
CNV calls with substantially higher quality scores and greater
correspondence with validation sets. More stringent SNP and
sample QC both increased quality scores, although there was a
small decrease in sensitivity suggesting that this could be at
the expense of some genuine CNVs. CNV-QC steps such as ex-
cluding samples or plates with large CNV counts and excluding
immunoglobin, telomeric and centromeric regions appeared to
decrease the sensitivity of detection of CNVs from the DGV. How-
ever, further investigation showed many of these CNVs to be
artefactual. This could suggest that some studies contributing
to the DGVmay have been vulnerable to the same biases, causing
a spurious increase in correspondence with our dataset.

Table 7. Description of ImmunoChip datasets used for this paper

Study dataset Samples Phenotype Typing centre Sample-source Sample type MetaboChip data

Case–control 4537 Controls Sanger UKBS-CC Genomic DNA No
Case–control 6808 T1D UVA UK GRID Cell line DNA No
Case–control 5461 Controls UVA 1958BC Cell line DNA Yes
Families 13 070 T1D and Families NIDDK T1DGC-ASP Cell line DNA No

Tabulation of the data sources used in this study. The two datasets referred to through are the study datasets ‘case–control’ and ‘families’. ‘T1Dand families’ encompasses

T1D-affected and unaffected siblings and their parents. Sample sources are UKBS-CC (59); UK GRID (60); 1958BC (61) and T1DGC-ASP (62). A ‘yes’ for the ‘MetaboChip data’

column indicates that in addition to the ImmunoChip dataset, there is a parallel dataset for the same cohort for the Illumina iSelect MetaboChip array.

1782 | Human Molecular Genetics, 2015, Vol. 24, No. 6

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu581/-/DC1


Next, running the pipeline on the family dataset using the
optimal set of thresholds derived from the case–control dataset
revealed several potential biases and suggested additional QC
criteria. The strategy derived was to run the pipeline as above,
but as a final step, to conduct further validation of any CNVR
showing significant association with T1D. CNVRs with a high de
novo rate and low transmission rate were identified as spurious
CNVRs, or CNVRs that could not be detected with sufficient sen-
sitivity across all samples. We concluded that each significant re-
sult should be vetted using likelihood-based quality scores.
CNVRs that had low quality scores in a substantial proportion
of samples, in almost every instance, seemed to be spurious
upon manual inspection of the local LRR and BAF intensities
for individual samples. CNVRs with high quality scores invari-
ably appeared genuine based on manual inspection of the LRR
and BAF data.

Finally, tracking of rates of de novo rDELs and rDUPs versus
transmitted rDELs and rDUPs allowed refinement of hidden Mar-
kov model (HMM) parameters for PennCNV. See Supplementary
Material, Methods S9 for details of this threshold experiment,
which suggested slightly lowering HMM thresholds for calling
DELs and duplications (DUPs). PC-correction improved the sig-
nal-to-noise ratio, pushing state means closer to zero, allowing
this increase in sensitivity without loss of specificity. Relaxing
the LRR threshold may have resulted in more false positives,
but these seemed to be filtered effectively by downstream appli-
cation of quality score thresholds, based on the consistent
specificity.

PennCNV allows a second step of joint-calling CNVs, utilizing
family relationships. Themodel gives a higher prior likelihood for
detecting a specific CNV in a given samplewhen that CNV has al-
ready been found in a parent or child of that sample. Rates of
transmission were pushed closer to 50% following this step,

providing further confidence in the validity of the pipeline. Fur-
thermore the success of joint calling provides a baseline to esti-
mate the sensitivity of CNV detection when trio data are not
available, such as for the case–control dataset in this study.

The remainder of this section describes the thresholds used
for the final case–control burden, regional association and family
trio based analyses.

Genotype quality control (SNP-QC)

CNVs are detected using LRR and BAF scores derived from raw al-
lele-probe intensities. In contrast to genotype calling where two
SNPalleles specify three distinct genotypes, LRR combines the in-
tensity of both probes of an allele. Genotype information, while
not used directly, is a good indicator of data quality. Good call
rate reflects reasonable raw intensity data, which is important
for BAF and LRR values. Samples and SNPs with call rates lower
than 95% were removed prior to subsequent QC and analysis
steps.

Violations of Hardy-Weinberg equilibrium (HWE) assump-
tions can indicate poor clustering, which may also reflect poor
quality intensity data. HWE cut-offs were determined by inspect-
ing plots of HWE versus call rate to establish a threshold that was
associated with low quality calls. CNPs (common CNVs) can also
cause violations to HWE so if our investigations were not re-
stricted to rare CNVs this step would be skipped.

Depending on the particular set of SNPs in a given dataset the
sample distribution of mean heterozygosity should have a fairly
limited range. Outlier samples in this distribution were removed
as such samples are likely biased for intensity.

For GWAS, SNPs below a given minor allele frequency (MAF)
threshold are typically removed. For CNV calling this step is
not necessary and the SNPs can still provide LRR intensity

Figure 3. QC pipeline implemented in plumbCNV. Flow chart for our CNV detection pipeline, showing the QC steps involved. The rounded boxes are datasets and the

hard-edged boxes are processes implemented by our custom R package, plumbCNV, currently available on github (58).
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information evenwhen completelymonomorphic in the dataset.
Runs of homozygosity (ROH) are fairly common in the genome
and presumably could result in reduced confidence for DEL
calls as the BAF distribution for ROH may be indistinguishable
from a deletion. However, based on testing of sensitivity, specifi-
city in ROH regions there was no evidence of lower accuracy in
this dataset.

SNP-QC as described above is not sufficient to prepare
LRR data for CNV calling. Genomic regions with noisy LRR
distributions across markers may occur even for well-defined al-
lele-based genotype clusters as a consequence of various manu-
facturing and scanning processing of arrays. Additional variation
can be due to laboratory-specific protocols (i.e. reagents, DNA
extraction methods), all of which generate strong enough differ-
ences that generate artificial CNVs in some chromosome regions.
Thus, variation in LRR values is much larger than for genotype
clusters, and inference of CNV calls involves a rigorous assess-
ment of hybridized intensity values. For example, in our study,
only 14% of samples that failed LRR QC tests had a sample call
rate <99%.

Sample-QC

Mean exclusion
Overall LRR-means were examined for each sample as extreme
deviations can reflect poor hybridization, oversaturation or
other cell line artefacts (Fig. 4 shows examples of high and low
means). Samples were excluded that exceeded the upper or
lower bound (1.5× the interquartile range) for overall mean.

Derivative log-ratio spread
Derivative log-ratio spread (DLRS) was calculated as the standard
deviation (SD) of the differences between successive array SNP
markers (ordered according to genome position), divided by the
square root of 2. Noise is captured more precisely by DLRS than
SD as it is more sensitive to high frequency variation, and in-
sensitive to larger localfluctuations, such as intensity differences
between chromosomes. A sample exclusion threshold was set at
3.5 SD above the cohort mean. DLRS-based sample exclusions
were assessed separately in T1D cases (all genotyped at the Uni-
versity of Virginia, UVA), UVA-typed controls, Sanger-typed con-
trols and the family dataset. Figure 4 shows an example of
intensity data with high DLRS.

GC wave
Guanine and cytosine (GC)wavewas evaluated to isolate samples
with substantial wave intensity fluctuations. Irregular GC con-
tent, either at the probe level and/or within regions surrounding
probes, is highly correlated with genomic waves in signal inten-
sity induced by DNA quantity (69) (Supplementary Material,
Fig. S6). Irregularities in GC content induce long-range wave pat-
terns in signal intensities, an outcome known to produce high
false-positive CNV calls. For samples with extreme GC-oscilla-
tions, the datawere too corrupted for adjustment with the stand-
ard Diskin algorithm, so were excluded. In total, 0.9% (188 of
16 806) of samples were filtered for exceeding 3.5 SD above the
mean for GC wave (Supplementary Material, Table S2). The GC
score used was ‘total wave factor’ (SWF from (69)). It is referred
to from here on as GC wave because GC variation is usually the
main source of this wave artefact. Wave factor SWF is themedian
of the absolute median absolute deviation (MAD) of LRR, with
sign determined by correlation with GC percentage. SWF was
chosen ahead of the pure GC wave factor SGCWF because other

kinds of genomic waves may impact on the LRR, affecting CNV
detection.

Chromosome aberrations
Chromosome aberrations in the context of this study were con-
sidered to be duplications or deletions of whole chromosomes
(or large parts of a chromosome). It is rare for humans to survive
to birth with aneuploidy, but some would be expected in a large
dataset. If not removed these could have a large effect on data
cleaning, batch effects correction and subsequent CNV calling.

Not all of the aberrations identified using our algorithm were
genuine instances of trisomies (Supplementary Material, Fig. S7)
or monosomies. The remainder may reflect mosaicism, GC arte-
fact or some samples may have had large deletions or duplica-
tions affecting a sizeable enough fraction of the chromosome to
perturb the means for the whole chromosome. Regardless of
whether thesewere genuine abnormalities, samples detected ex-
ceeding these statistical thresholds were excluded because such
large blocks of extreme LRRwill cause problems for PC correction
and CNV detection.

Plate exclusion
Sample-based LRR differences between cases and controls were
also examined across plates, as plate effects induced some of
the strongest bias in CNV estimates, that is, they could not be va-
lidated by qPCR assays.Any plate that has avery high sample fail-
ure ratemayhave intrinsically poor data quality and it can be best
to exclude all samples from that plate when sample size is suffi-
cient. On average, the sample failure per plate was 11.4%, and
nine samples per plate were determined to contain DELs. The
majority of ‘suspect’ CNV calls for these three regions were loca-
lized to specific DNA plates. Thus, a global approach was taken
that excluded plates exceeding 40%of comprising samples failing
QC or plates where the number of CNVs per plate was greater
than three SD above the globalmean. The number of samples ex-
cluded in each dataset is described in Supplementary Material,
Table S2.

Principal components analysis and batch correction (PC-correction)
Batch effects are pervasive for microarray data and LRR data are
very sensitive to such. Principal components analysis (PCA) was
used to correct batch effects by removing the 24 largest linear
components with regression (Supplementary Material, Fig. S8).
Prior to calculating PCs, SNP and samples failing QC were ex-
cluded, immunoglobin, telomeric, centromeric regions and the
MHC were excluded, and SNPs were thinned to an ∼15% subset
to prevent the removal of genuine CNV signals. Note that PC-
correction will likely result in poor and biased detection of
CNPs, as the common signals could be strong enough to influence
PCs, because for CNPs a significant portion of the samples will al-
ways have a correlated intensity difference. Examination of data
before and after PC-correction showed extremely successful
elimination of biases and batch effects between plates and
cohorts (Fig. 5).

Other QC criteria
Further criteria based on sex mismatch, duplicate samples or
non-European/non-white ethnic group ancestry excluded 1.4%
(233 of 16 806) of samples (Supplementary Material, Table S2).

CNV calling using PennCNV

CNV calling was based on PC-corrected LRR for samples and
SNPs passing QC. PennCNV was used without adjustment for
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GC-content, as the PC correction all but eliminated GC-wave
(Fig. 5 and Supplementary Material, Table S1). Simulations
showed that when GC wave was not present that the Diskin
GC-correction implemented in PennCNV actually over-corrected
and reduced the accuracy of CNV calls.

The ImmunoChip-specific population frequency of the minor
allele (BAF for each SNP for calibration; distinct from the BAF sig-
nal for each SNP and sample used for CNV detection) was gener-
ated to informCNV calls, which is a standard input parameter for
the PennCNV algorithm.

Within high-density marker regions, PennCNV tends to artifi-
cially split large CNVs into smaller segments. This is a critical
issue for the ImmunoChip or other highly dense arrays, as false
segmentation inflates the true number of CNVs and potentially
leads to the exclusion of informative samples that are mistakenly
identified as carrying an extremenumber of CNV calls, rather than
carrying a single large CNV in a highly dense region. Furthermore,

artificial segmentation of a true CNV results in partial inclusion
and/or exclusion of its split segments from a given CNVR, errone-
ous assessment of CNV size distribution and, for family data, erro-
neous estimation of de novo CNVs. To address this issue, adjacent
CNVs separated by a gap <20% the total length of the combined
CNV segments were merged into a single (large) CNV.

CNV QC
Samples for which the total number of CNVs, or the number of
rDUPs or rDELs, exceeded three SDs above the average number
of CNVs per sample were excluded from analysis. In-house PCR
validation has shown that suchhigh counts usually reflect biased
or contaminated data not detected through previous QC criteria.

A CNV inferred by a greater number of SNPs can usually be
calledwith higher confidence as the influence of any outlying ob-
servation is relatively less, and the categorical state of the local
BAF distribution converges with increasing observations. A rule

Figure 4. Examples of LRR artefact. Examples of sample-wise LRRdatawith typical types of artefact targetedduring sample-QC. These are plotted across thewhole genome

for single samples. Each chromosome is coloured differently. From left top to right bottom: (i) low overall mean, (ii) high overall mean, (iii) high noise (DLRS) and (iv) a

typical spectra (for comparison). To preserve sample anonymity the sample IDs are fake, for display purposes only, and are not connectable to any record.
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of thumb often used for CNV calling is to only accept calls com-
prised of at least 10 SNPs. However, testing on this dataset sug-
gested that six was an optimal cut-off for sensitivity and
validity (Supplementary Material, Methods S3 for details on as-
certaining this threshold). By convention, a CNVR was defined
as ‘rare’ if the number of overlapping DELs within the region
was <1% of the study population.

T1D association analyses

Analysis of burden
It is possible that CNVs may explain some of the missing herit-
ability of T1D. Given the dense sampling of T1D-associated re-
gions on the ImmunoChip, it is plausible that there might be an

overall ‘burden’ of CNVs in cases versus controls. To test this, the
total rate of CNVs in cases versus controls was compared for: all
CNVs, CNVs disrupting genes, CNVs disrupting exons, as well
comparing rates of CNVs in different groupings of length.

Large CNVs
Large CNVs have avery strong a priori likelihood to cause disease.
As these are likely to be unique to each sample, no analysis
was possible. Nevertheless, all CNVs larger than 3 Mb were re-
ported because of their potential functional significance. Import-
antly, for the case–control data we had no way of knowing
whether CNVs were de novo, however for CNVs of this size,
they are very unlikely to have survived selection over many
generations.

Figure 5. Treatment of batch effects with PC-correction. The effect on intensity distributions of applying Sample-QC (middle column), plus PC-correction (right column) to

raw LRR intensity data (left column). Each rowof the 3 × 3matrix shows a different QCmetric, (1) LRR-mean, (2) LRR-DLRS and (3) GC-Wave. The plots are actually boxplots

across the 201 plates from the study (fromeach of the three cohorts, which are arranged sequentially, Sanger controls, T1D, thenUVA controls). Due to the large number of

boxplots on each graph they are individually indistinguishable, but the broader trends of data ‘outer’ boundaries and outlier observations (dots) are sufficient to discern

the effects of interest.
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Analysis of case–control frequency in CNVRs
To test for CNV differences at different loci, first they must be
grouped in some window, as usually the start and end of a CNV
near a specific locus will be slightly different between samples.
The set of overlaps can be complex for a large sample, making
the definition of windows semi-arbitrary. Common practice is to
create CNVRs. In PLINK software (70), the command ‘–segment-
group’ is used to define sets for a CNVR. The genome is first
split into regions (e.g. every 1 Mb), and every CNV that overlaps
that segment is initially selected. Then the region is reduced or
expanded as necessary to accommodate the actual overlapping
set (if any) in that range. In thisway, a single CNVmaysometimes
end up belonging to more than one CNVR. There must be at least
one nucleotide in a region overlapped by every CNV in the set.
The amount of overlap within the regions may vary. This is
the same grouping logic that is used to classify CNVs as ‘rare’.
Some of these boundary definitions can cause spurious associa-
tions, particularly near common CNVs. For instance, it can hap-
pen that the same CNVR can be called by Plink as three separate,
but overlapping, regionswith slightly different boundaries. In the
case of a common CNV, two of these regions could be excluded
due to frequency above 1%. However, a third may by chance cap-
ture only the edge of the region andmay appear in the list of rare
CNVs, potentially with a skewed case–control frequency. Tomin-
imize other potential consequences of this, we raised the rare
threshold to more than 1% (e.g. 3–5%) and then excluded any
common CNVs with greater than 1% frequency at the CNVR ana-
lysis stage.

To analyse the CNVR frequencies, Fisher’s exact test for rare
events was used. This test is robust to extremely rare counts,
such as occur in this dataset: e.g. frequencies as low as 1 in
8000. It can also handle zero counts—although in this case afinite
confidence interval cannot be generated, only a P-value. Given
that the most frequent possible event given our rare cut-off was
1%, power was limited. Consideration was given to multiple test-
ing and so resulting P-values were compared with a Bonferroni
(p/k) threshold based on the number of CNVRs tested (‘k’ of
roughly 500, depending on which run was used, and whether
rDELs or rDUPs were tested).

The standard GWAS threshold of P < 5 × 10−8 may not be ap-
propriate here. This is because there is a greater a priori rationale
that a CNV should influence disease risk, compared with a SNP
(due to the larger, and clearly functional amount of DNA
involved) (71).

Family analysis and TDT tests
Family data are very useful for CNV analysis because the accur-
acy of calls is increased, as a spurious call in both a parent and
child is very unlikely. It also allows identification of which
CNVs are de novo, and which have been transmitted from a par-
ent. A simple case versus control frequency comparison is not
appropriate for family data due to confounds of shared ancestry.
Therefore analyses must be tailored around family structure.

Transmission rates were used to test for burden by taking the
ratio of affected versus unaffected transmissions from parents to
children. Use of this ratio for a burden calculation is probably
more robust than a case–control design because ancestry and en-
vironment are equal between siblings.

Analogously to the method used in SNP analyses, a TDT test
can be performed for CNVs, separately for DELs and DUPs to
test for association at specific loci. For instance, in DELs normal
copy-two is analogous to homozygosity for the major allele of a
SNP, a single copy-one deletion is analogous to heterozygosity
and a double deletion copy-zero is analogous to homozygosity

for the minor allele. The normal test compares the rate of trans-
mission from heterozygous parents to affected offspring against
non-transmission. However, in the case of CNVs, sensitivity of
detection is not perfect so we must also account for the rate of
transmission to unaffected offspring in order to ensure that the
result is not simply due to differential sensitivity of CNV detec-
tion between datasets. We performed TDT tests for all CNVRs
arising in the family dataset.

De novo CNVs
De novo CNVs have had not been subject to selection so have a
very high likelihood of influencing disease risk. These are easily
identified in offspring when data for both parents are available.
Equivalently to the burden calculation using transmission
rates, a comparison wasmade between de novo rates for affected
versus unaffected offspring.

Even after all the QC described, some follow-up revealed that
while the de novos all appeared to be genuine CNVs, many were
not genuine newmutations. Inspection of the LRR and BAF inten-
sity at each CNV locus with comparison to any siblings, and both
parents, showed clearly in many cases that the same intensity
pattern was present in a parent. This was likely due to the
false-negative error rate of CNV detection, so that a substantial
proportion of de novo calls were incorrect due to lack of sensitiv-
ity in detecting the same CNV in a parent. This failure was most
frequent when multiple CNVs labelled as ‘de novo’ appeared at
the same locus. For amore commonCNV, there aremore chances
for PennCNV to fail to detect the CNV in the parent that transmit-
ted it. After exclusions weremade viamanual checking nearly all
the de novo rDELs and rDUPs remaining were singletons.

Supplementary Material
Supplementary Material is available at HMG online.
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