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Carbon allotropes have been explored intensively by ab initio

crystal structure prediction, but such methods are limited by
the large computational cost of the underlying density func-

tional theory (DFT). Here we show that a novel class of ma-
chine-learning-based interatomic potentials can be used for

random structure searching and readily predicts several hither-

to unknown carbon allotropes. Remarkably, our model draws
structural information from liquid and amorphous carbon ex-

clusively, and so does not have any prior knowledge of crystal-
line phases: it therefore demonstrates true transferability,

which is a crucial prerequisite for applications in chemistry. The
method is orders of magnitude faster than DFT and can, in

principle, be coupled with any algorithm for structure predic-

tion. Machine-learning models therefore seem promising to
enable large-scale structure searches in the future.

Exploring structural space—of allotropes, polymorphs, materi-
als—is today not only done experimentally but also by compu-

tational techniques and in an increasingly automated fashion.[1]

Indeed, with advanced algorithms and high-performance com-
puting centres available, ab initio crystal structure prediction

methods revealed novel and intriguing structures of elements
and compounds, including stoichiometric compositions and

coordination modes that would not have been expected from

textbook knowledge. Many of these predictions were subse-

quently validated by experiments.[2]

Among the elements, carbon is one of the structurally most

diverse, and naturally has long been the target of crystal-chem-
ical considerations[3] and later of structure-searching algorithms.

New carbon allotropes have been predicted using practically

every computational method available, including ab initio
random structure searching (AIRSS),[4] genetic algorithms,[5] par-

ticle swarm optimization,[6] metadynamics,[7] and minima hop-
ping.[8] A recent, critical survey of the field is in Ref. [9].

Despite their predictive power, ab initio structure searches
are inherently limited by the underlying computational work-

horse, most commonly density-functional theory (DFT), which

becomes prohibitively expensive for larger system sizes. To
overcome the latter, more general problem, a novel class of in-

teratomic potentials based on machine learning (ML) is cur-
rently emerging in the solid-state theory communities.[10] Such

ML potentials are trained on DFT or other quantum-mechanical
data, and in doing so provide a high-dimensional fit of the po-

tential-energy surface. These potentials enable simulations that

can come close to DFT accuracy, but are faster by many orders
of magnitude; they are still much slower than established em-

pirical force fields, but the trade-off is often worthwhile. For ex-
ample, an ML-based neural-network potential enabled realistic,

atomic-scale insight into the graphite-diamond transition,
learning from DFT computations on structural snapshots taken

from graphite, diamond, and intermediates.[11] It was recently

suggested that ML potentials might be beneficial for structure
searches.[12]

Herein, we show that structural information from liquid and
amorphous forms of carbon can be harnessed, via machine

learning, to guide searches for crystalline phases (Figure 1).
This serves as proof-of-concept that ML models, if properly

trained, can indeed be used for applications in solid-state
chemistry, including the exploration of (previously unknown)
structural space.

To validate our approach, we performed a numerical experi-
ment, starting with a set of of fully DFT-driven structure search-

es[1d] using 1,000 randomized unit cells that each contained
eight carbon atoms. DFT relaxation of these cells readily identi-

fied diamond and graphite, and also several less stable struc-

tures with mixed coordination numbers, all as expected (Fig-
ure 2 a). We then performed Gaussian approximation potential

(GAP)-driven searches, starting from the same initial configura-
tions and probing how close the results would come to DFT.

Initially, this led to a set of structures slightly higher in energies
than the reference data, but this can be easily remedied by
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a subsequent DFT relaxation (Figure 2 a, left). Likewise, the dis-

tribution of optimized volumes is similar for the DFT- and GAP-
based procedure (right). This justifies our strategy: we perform
large numbers of GAP-driven searches, and then re-relax only
the most promising candidates using DFT.

The main result of this work is summarized in Figure 2 b. We
have here performed a large-scale search for allotropes with

fourfold coordination exclusively, but we stress that our GAP
model can describe mixed coordination environments just as
well.[13] Our search yielded 197 distinct carbon networks which

were classified according to their topology;[14] they were
checked against the Samara Carbon Allotrope Database

(SACADA; Ref. [9]) and furthermore against other topological
nets as collected in ToposPro TTD;[14] some of these were seen

in zeolites or metal-organic frameworks but not in carbon allo-

tropes. These structures are considered known and here re-
ferred to as such.

In addition, our search returned 150 possible allotropes that
are neither known to SACADA nor from other topology

databases; of these, 52 are no more than 0.3 eV per atom
(&30 kJ mol@1) above diamond in their DFT-computed energy.

Many of these structures are best understood by dissecting
them into characteristic, topological building blocks.[15, 16] For

example, carbon atoms in diamond form six-membered rings

exclusively, and four of these combine into an adamantane-like
cage, such that the tiling symbol for dia is written as [64] (de-

tails may be found in Ref. [17]). It was previously pointed out
how other structural motifs can be combined with dia (or lons-

daleite, lon) cages to form more complex allotropes.[8b, 15] Fig-
ure 3 a illustrates this using an example: combining dia, lon,

and the characteristic five- and seven-membered ring frag-
ments of cbn (M-carbon; Ref. [5a-b]) leads to a new structure,
G95, that is found by our search. (We label all new structures
with a G for GAP, and the number is simply a running index).

We also find several new 5 + 5 + 8 allotropes[8b] that contain,

as the name suggests, sets of five-and eight-membered ring
fragments (Figure 3 b). In G12, layers of such motifs (blue/

yellow) are interwoven with two consecutive layers of dia
spacers (empty). The stacking sequence of the building units
can be written as AabAab, where capital letters denote the

stacking of the defining ring structures, and lowercase italics
refer to the spacers. Reducing the concentration of the latter,

we have G21 (and G6, which is similar but with a less favoura-
ble stacking sequence). We also find a corresponding structure

Figure 1. Flowchart of the strategy employed in the present work. Starting
from liquid and amorphous carbon structures, we generate a Gaussian ap-
proximation potential (GAP) similar to that in Ref. [13] but here excluding
any crystalline training data on purpose. We then use this for random struc-
ture searching,[1d] and subsequently re-relax suitable candidate structures
with DFT (see text).

Figure 2. a) Tests of energy and volume distributions from a trial set of DFT-
and GAP-driven structure searches. To enable comparison, all energies given
have been re-computed using DFT. b) Energy–volume plot for the results of
our main, much larger structure search, including known (purple, black) and
new (green) carbon allotropes. Topology symbols[14] such as „dia“ are given
for a number of representative known structures. Our search also found
lonsdaleite (lon) and a mixed dia/lon stacking sequence that are omitted for
clarity; detailed results are given in the Supporting Information.
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without any diamond-like cages, G105, which is higher in
energy as there is no dilution by dia spacers. In general, no

straightforward correlation exists between the simplicity of the
structures and their stability (Supporting Information, Fig-

ure S8).
As pointed out by Botti et al. ,[8b] one may freely add more

and more dia (or lon) like spacers to such structures, and
therefore create infinite numbers of topologically unique net-
works. Where is the limit? Figure 3 b suggests a possible

answer: we believe that truly distinct carbon allotropes should
be restricted to cases with clear and simple stacking sequences

both for the mixed-ring units and the spacers. For the same
reason, we have excluded a combination of only dia and lon
cages from the plot in Figure 2 b, as an infinite number of simi-
lar polytypes can be trivially defined.

The critical reader will now ask whether one needs high-
throughput computations to devise such simple stacking se-
quences. Indeed, the true strength of GAP-driven structure
searching is that due to its speed (our search comprised over
290,000 runs), it is likely to unveil more complex cases that

depart from previously established structural principles but are
still energetically viable.

In the latter category fall carbon allotropes with what we

call pseudo-tiling patterns (Figure 4). Drawing 2D projections
of such structures gives the impression of very small, three-

and four-membered rings—but in fact the relevant atoms lie
atop each other along the viewing direction, and so only

create the illusion of touching. Figure 4 a illustrates this for
43T143, a variant of the chiral unj net[18] that has been ob-

served in a database of hypothetical zeolites;[15, 19] we note that

the same topology was very recently described for Si allo-
tropes.[16] In unj, chiral tubes of fivefold rings form what looks

like a honeycomb structure when viewed down the tube axis
(Figure 4 b).[18] Similar tubes exist in 43T143 but there they

form 2D sheets (in the ab plane), and these are then stacked
perpendicularly along c. Hence, the fivefold rings seen in Fig-
ure 4 c are the actual structural motif, observed when a tube is

Figure 3. a) G95, a predicted carbon allotrope that combines structural
motifs from diamond (dia), lonsdaleite (lon), and „M-carbon“ (cbn), as re-
vealed by topology analysis. b) Predicted carbon allotropes with „5 + 5 + 8“
building blocks. Cages that involve an eight-membered ring, typically
[52.62.82] , are highlighted in yellow; [52.62] cages are blue. Interestingly, the
apparent end-member of this series, G105, is different in cage topology
from the others, and filling space exclusively with [52.62.82] and [52.62] cages
would yield the bik network instead (Supporting Information). All energies
are given relative to diamond.

Figure 4. a) 43T143, a variant of the chiral unj framework: the structure is composed of five-membered rings, but viewing it down the a or the b axis as indi-
cated creates the impression of three-, four-, and six-membered ones. b–g) Projection views of known and new structures found in our search.
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looked upon in side view. Both structures are generated by fill-
ing space with the same topologically unique cage, [52.82] .

Just like combinations of small polygons can create diverse
patterns, the putative family of pseudo-tiling allotropes is here

found to span a wider range. Figure 4 d shows G241, a related
motif in which unj-like [52.82] cages are mixed with dia-like [64]

ones; Figure 4 e shows G78 which adds cages with seven-
membered rings instead; both structures are chiral in space
group C2221. There are further pseudo-tiling patterns without

apparent six-rings, as we find for G230 and G27 (Figure 4 f,g) ;
both are loosely reminiscent of the P41212 spiral structure for
group-14 allotropes predicted recently from AIRSS (43T130 in
SACADA).[4b] All these structures need not only be hypothetical

constructs : recent experiments showed that complex Si allo-
tropes of such type may indeed be formed in “microexplo-

sions“, locally induced in a crystalline matrix by ultrashort laser

pulses.[20]

We stress that AIRSS, like all ab initio methods, can only

span a certain subspace: that of structures with a small
number of atoms in the primitive unit cell (here, ,16). By con-

trast, novel carbon allotropes have been predicted based on
chemical knowledge, deriving them from zeolites[15, 21] or clath-

rate structures ;[22] these are often highly competitive in energy,

but inaccessible to DFT-based searches. In the future, ML-
based techniques might enable the ab initio prediction of net-

works with hundreds of atoms in the primitive cell. And in the
end, the crucial task will be not only to generate large num-

bers of structures out of the infinitely many possible ones
(which a machine can do), but to derive new chemical insight

and guidelines for experiments (which a machine cannot).

In conclusion, we have explored the structural space of
carbon allotropes by combining random structure searching

with an efficient machine-learning based interatomic potential.
Our GAP model readily enables predictions of crystalline

phases, despite having been trained on liquid and amorphous
structures alone. This represents a hard test in terms of trans-

ferability, and it opens up the road for further applications of

ML models in solid-state chemistry—where the ability to as-
semble and correctly describe new structures is paramount.

We focused on one particular structure-prediction method, but
the ML model might just as well be coupled to others (such as
genetic algorithms), or even to the nested-sampling technique
to assess temperature-pressure phase diagrams fully from first
principles.[23] Likewise, the field of organic crystal-structure pre-
diction might benefit from similar techniques,[24] albeit in that
case the focus is on long-range dispersion interactions rather

than on the making and breaking of covalent bonds.[25] Further
work will extend our present findings to carbon allotropes at

(very) high pressure, to networks with mixed coordination
numbers, and to other materials for which similar approaches

seem promising.

Computational Methods

A GAP model[10b] was fitted to DFT energies and forces using the
same protocols and parameters as outlined in our preceding, more
technical work in Ref. [13]. The input for this was a database of

3,070 liquid and amorphous carbon configurations taken from
Ref. [13]. Using this GAP, a total of 290,885 relaxations were per-
formed for randomized cells containing 3–16 atoms, at ambient
and elevated pressure. No symmetry operations were applied
during the search itself, to allow for maximal degrees of freedom;
instead, space-group symmetry was determined a posteriori. Only
structures with fourfold coordinated atoms are reported (deter-
mined using a cutoff of 1.70 a), and candidates with three-mem-
bered carbon rings were discarded due to the associated large
strains. Post-processing of remaining candidate structures was
done by full DFT-GGA[26] relaxation of lattice parameters and
atomic positions to zero external pressure, using CASTEP;[27] the
final structures are provided as Supporting Information in CIF
format. Symmetry analyses were done as implemented in PHONO-
PY,[28] PLATON,[29] and SYSTRE;[30] structures were visualized using
GAVROG (www.gavrog.org) and VESTA.[31]
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