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Malignant transformation of mammalian cells with ras family oncogenes results in dramatic changes in cellular architecture and
growth traits. The generation of flat revertants of v-K-ras-transformed renal cells by exposure to the histone deacetylase inhibitor
sodium butyrate (NaB) was previously found to be dependent on transcriptional activation of the PAI-1 (SERPINE1) gene
(encoding the type-1 inhibitor of urokinase and tissue-type plasminogen activators). NaB-initiated PAI-1 expression preceded
induced cell spreading and entry into G1 arrest. To assess the relevance of PAI-1 induction to growth arrest in this cell system
more critically, two complementary approaches were used. The addition of a stable, long half-life, recombinant PAI-1 mutant to
PAI-1-deficient v-K-ras-/c-Ha-ras-transformants or to PAI-1 functionally null, NaB-resistant, 4HH cells (engineered by antisense
knockdown of PAI-1 mRNA transcripts) resulted in marked cytostasis in the absence of NaB. The transfection of ras-transformed
cells with the Rc/CMVPAI expression construct, moreover, significantly elevated constitutive PAI-1 synthesis (10- to 20-fold) with
a concomitant reduction in proliferative rate. These data suggest that high-level PAI-1 expression suppresses growth of chronic
ras-oncogene transformed cells and is likely a major cytostatic effector of NaB exposure.

1. Introduction

Histone acetyltransferases (HATs) transfer acetyl groups
from acetyl CoA to specific lysine residues in the amino
terminal histone “tails” to form ε-N-acetyl lysine promoting
an “open” or relaxed chromatin structure. Several transcrip-
tional coactivators, including CBP/p300 and SRC, have in-
trinsic HAT activity [1, 2]. Histone deacetylases (HDACs),
in contrast, catalyze the removal of acetyl groups on target
lysines [3, 4] creating a condensed, transcriptionally repres-
sed, chromatin organization [5]. Of the various HDAC
inhibitors (HDACi), several exhibit more or less specificity
for individual members of the four classes (I-VI) of human
HDACs [6, 7].

A major mode of action of HDACi (i.e., the transcrip-
tion-dependent mechanism) [5] affects gene reprogramming
as a consequence of HDACi type, concentration, and dura-
tion of exposure [8, 9]. Recent estimates place the number
of HDACi-impacted genes at 2–10% of the total expressed
repertoire, several of which negatively regulate cell cycle

progression [10–13] such as p21WAF1/CIP1 and plasminogen
activator inhibitor type-1 (PAI-1; SERPINE1) [14–21].
PAI-1 is particularly relevant in this context as this SERPIN
complexes with both urokinase (uPA) and tissue-type
(tPA) plasminogen activators to limit pericellular plasmin
generation effectively attenuating uPA-/plasmin-dependent
growth factor activation and cellular proliferative responses
[22, 23]. PAI-1, in fact, is both necessary and sufficient
for p53-dependent growth arrest [23–26] and required
for TGF-β1-mediated antiproliferative effects in human
keratinocytes and mouse embryo fibroblasts [27]. Activated
ras or raf oncogenes trigger the initiation of a senescence-like
growth arrest program, with induction of PAI-1, in several
cell types [28–31]. At least some cells transformed as a
consequence of chronic oncogenic ras expression, and that
escape ras-induced senescence can also undergo proliferative
arrest upon exposure to certain HDACi (e.g., sodium
butyrate; NaB) with concomitant high-level PAI-1 induction
[16, 17, 32]. It is not known, however, if HDACi-associated
growth inhibition of immortalized ras-transformants, like
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entrance of normal cells into replicative senescence [23], also
requires PAI-1-induction.

This paper details the involvement of PAI-1 expression
during HDACi-induced growth restriction in several well-
characterized v-Ki-ras and Ha-ras val−12-transformed epithe-
lial cell lines [15, 16]. NaB was selected for this study as
this HDACi is a potent stimulator of PAI-1 expression [14,
20] and cytostasis [16] in ras-transformed renal cells. NaB-
mediated growth inhibition was not evident in PAI-1 knock-
down (i.e., anti-sense) cells, but the HDACi-dependent
proliferative block could be rescued by vector-driven PAI-1
overexpression.

2. Materials and Methods

2.1. Culture Conditions and Engineered Cells. The various
ras-transformed renal epithelial cell lines used in this study
[15, 16] grow in serum-free DMEM (at least over the
short time frame used in this study; 3–5 days) facili-
tating assessments of the proliferation-modulating effects
of NaB (1–10 mM) and exogenous PAI-1 (0.02–100 nM
stable mutant 14-1B, t1/2 = 145 hours; N150H, K154T,
Q319L, M354I) [33] in both the presence and absence
of FBS. The derivation of the PAI-1 functionally null
knockdown (PAI-1KD) 4HH cell line by transfection of
a 2.6 kb rat PAI-1 EcoR1/HindIII cDNA fragment (repre-
senting nucleotides −118 to +2572) cloned in anti-sense
orientation (Rc/CMVIAP) has been described [34, 35]. v-ras-
transformed cells were also transfected with the Rc/CMVPAI
sense vector to initiate high-level PAI-1 expression in the
absence of NaB or with the empty Rc/CMV construct [32].
Coupled in vitro transcription/translation assay confirmed
that a full-length immunoreactive PAI-1 protein was syn-
thesized using the Rc/CMVPAI vector as a template [35].
In some cases, Rc/CMVPAI transfectants were selected with
G418 [32]. Cloning strategy and cell line derivation are
detailed in the text. c-Ha-ras oncogene-expressing human
HaCaT II-4 keratinocytes were described previously [33, 36]
as were the PAI-1-deficient and reconstituted renal cell lines
[35].

2.2. Northern Blotting. Cytoplasmic RNA was separated
by electrophoresis on denaturing 1% agarose/2.2 M for-
maldehyde gels, transferred to nitrocellulose and blots hy-
bridized with a 32P-labeled EcoRI-HindIII fragment of rat
PAI-1 cDNA (specific activity 1-2 × 108 cpm/μg DNA) for
48 hr at 4◦C. The recombinant pBluescript (SK(-) pha-
gemid pRPAISS1-3, containing a 3.0-kb EcoRI/SstII-flanked
cDNA insert encoding PAI-1, was used for isolation of
the pRPAImr1-4 probe used for hybridization. Briefly,
pRPAISS1-3 was digested with EcoRI/Hind III at 37◦C for
1 hr and fragments separated in 1% agarose gels. After
staining with ethidium bromide, bands representing the
PAI-1 cDNA insert were excised and electroeluted. This
insert fragment (pRPAImr1-4) was labeled with 32P-dCTP by
random priming. Following hybridization, membranes were
washed sequentially for 20 minutes each in 2x SSC/0.1% SDS
(twice) and then in 1x SSC/0.1% SDS, all at 55◦C.

2.3. Extraction of Metabolically Labeled Cells and Gel Electro-
phoresis. Growth media (in 35-mm diameter cultures) were
aspirated, cells washed twice with HBSS and 1 mL of
labeling medium (FBS- and methionine-free RPMI 1640 me-
dium containing 50 μCi 35S-methionine (specific activity =
1100 Ci/mmol) added to each culture. At the end of a
6 hr labeling period, the substrate adherent-enriched (SAP)
cellular fraction was collected, clarified at 13,000×g, and
solubilized in lysis buffer (9.8 M urea, 2% Nonidet P-40,
2% ampholytes, and 100 mm dithiothreitol) [37]. 1-D gel
separations were as detailed previously [38]. For 2-D gel
electrophoresis, 50,000 cpm 35S-methionine-labeled protein
were loaded onto prerun 1.5 mm diameter tube gels (9.1 M
urea, 2% Nonidet P-40, 6% pH 5–7 ampholytes, 1.2% pH 3–
10 ampholytes, 4% acrylamide/bisacrylamide for isoelectric
focusing (IEF) for 18 hr prior to separation on SDS-10%
acrylamide slab gels [39]. Individual protein spots were
mapped and quantitated with a Bio-Image Investigator 2-D
Electrophoresis Analysis system interfaced to a SUN SPARC
workstation [40].

3. Results

3.1. PAI-1 Induction in v-ras-Transformed Renal Cells upon
Exposure to the HDACi NaB. Limited expression profiling
previously indicated that PAI-1 was among the most abun-
dant of the NaB-upregulated genes in ras-transformed
renal epithelial cells [14, 15] consistent with microarray
and bioinformatic analyses of genetic networks responsive
to NaB in colonic epithelial cells [20]. 1-D electrophoresis
(Figure 1(a)), northern blotting (Figure 1(b)), and 2-D pro-
teomic mapping (Figure 1(c)), moreover, confirmed a signif-
icant and rather selective PAI-1 induction in NaB-stimulated
v-ras-transformants (involving both the 50-kD and mature
52-kD glycosylated PAI-1 species), using 1-D/2-D mobility
and immunochemical identification criteria established
previously [16, 38, 41], relative to nondetectable PAI-1 levels
in control v-ras populations. PAI-1 upregulation correlated
with a prominent NaB-associated G1 arrest increased cell size
(Figure 2) and concentration-dependent proliferative inhibi-
tion resulting in a 63% (Figure 3(a)) and 48% (Figure 3(b))
decrease in population density in serum-free and 10%
serum-supplemented medium, respectively (summarized in
Figure 4). Collectively, these findings (Figures 1 and 4) are
consistent with the conclusion that v-ras-transformants that
escape ras oncogene-initiated cellular senescence [29, 42, 43]
are essentially PAI-1 null.

3.2. Growth Arrest in ras-Transformants Is Restored by Exoge-
nous Exposure to a Long Half-Life PAI-1 Mutant or by Vector-
Driven Reconstitution of PAI-1 Expression. Since targeted
suppression of PAI-1 leads to bypass of both replicative
senescence and TGF-β-induced growth arrest [23, 27], it
was important to determine if exogenously-delivered PAI-
1 could similarly regulate the proliferative response of PAI-
1-deficient ras transformants in the absence of NaB. The
addition of a long half-life recombinant PAI-1 mutant (PAI-
1 14-1B) effectively suppressed growth of v-ras-transformed
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Figure 1: Electrophoresis of the 35S-methionine-labeled saponin-
resistant (SAP) protein fraction of v-ras-transformed renal cells and
their NaB-treated counterparts indicated that PAI-1 (both the 50-
kD and fully glycosylated 52-kD species) were expressed in NaB
revertants but not in untreated cells (a). PAI-1 from normal kidney
cells (NRK) served as a marker. The band above PAI-1 in v-ras
cells (at 62-kD) is the heavily-glycosylated forms of osteopontin (a).
Northern blotting confirmed the absence of PAI-1 mRNA in v-ras-
transformants and the restoration of mRNA expression in response
to NaB (b). 2-D electrophoretic mapping of the SAP fraction
proteins derived from 35S-methionine-labeled cultures revealed,
furthermore, that PAI-1 induction in response to NaB treatment
was rather selective (c). Map positions of the glycosylated PAI-
1 isoforms are indicated (solid red outlined rectangle). Proteins
common between the cell types are highlighted in color (purple
circles, red dashed line box, blue ovals indicating vimentin, and
phosho-vimentin breakdown products and actin by black arrows)
and did not change in abundance despite the significant PAI-1
induction evident in the v-ras/NaB protein profile (c).

cells in a concentration-dependent manner with an 80%
reduction in final population density after a 5-day exposure
to 100 nM PAI-1 (Figure 5(a)). Indeed, the level of growth
inhibition in cultures exposed to 20 nM PAI-1 (45% reduc-
tion in population density relative to the corresponding con-
trol) (Figure 5(a)) approximated the 47.5% decrease induced
by 10 mM NaB even in the presence of serum (Figure 4(b)).
Ha-ras-transformed HaCaT cells, which express low levels of
PAI-1 in response to EGF [33], were also growth inhibited
by exposure to PAI-1 14-1B in the presence of FBS or EGF
(Figures 5(b) and 5(c)) largely due to G1 arrest (Figure 5(c)).
To assess this effect more critically in a genetic context,
antisense knockdown (PAI-1KD; 4HH) cells (Figure 6(a)),
which are resistant to NaB-dependent proliferative inhibi-
tion, were incubated in PAI-1-supplemented medium with
or without, addition of NaB. Recombinant PAI-1, at a final
concentration of 20 nM, effectively suppressed PAI-1KD cell
proliferation; the combination of PAI-1 + NaB did not
significantly impact the extent of cytostasis compared to PAI-
1 alone (Figure 6(b)). Transient vector-driven re-expression
of PAI-1 in Rc/CMVPAI v-ras transfectants (Figure 6(a))
similarly reduced cell growth relative to cells transfected
with the empty Rc/CMV construct (Figure 6(b)). Mass
cultures of Rc/CMVPAI-expressing cells and, in particular,
their G418-selected clonal isolates, but not cells transfected
with Rc/CMV without the 2.6 kb PAI-1 cDNA insert, had
significant numbers of very well-spread cells (a hallmark of
the growth arrest phenotype in renal epithelial cells [14–16])
compared to Rc/CMV populations. The marked reduction
in cell proliferation (Figure 6(b)) and increased spreading
in Rc/CMVPAI as compared to Rc/CMV transfectants
correlated with an approximately 22-fold increase in PAI-1
expression.

4. Discussion

Data mining of microarray and serial analysis of gene expres-
sion profiles consistently identified increased PAI-1 levels as
characteristic of specific growth arrest states (e.g., [23, 27,
35, 36, 39, 42–46]). Similar to other HDACi-regulated genes,
several of which negatively regulate cell cycle progression
[10–13], PAI-1 is a particularly relevant candidate as this
SERPIN attenuates uPA-/plasmin-dependent growth factor
activation and cellular proliferative responses [22, 23],
mediates p53-dependent cytostasis [23–26], and is required
for TGF-β1-mediated antiproliferative responses [27]. In
cells expressing activated ras or raf oncogenes, moreover,
induced PAI-1 initiates the engagement of a senescence-
like phenotype [28–31] while, for those cells that escape
ras-induced senescence, the growth arrest program can be
“rescued” upon exposure to certain HDACi (e.g., NaB)
with concomitant high-level PAI-1 induction [16, 17, 32].
While molecular events underlying NaB-stimulated PAI-1
expression is unclear, NaB enhances Smad3 phosphorylation
and potentiates TGF-β-induced PAI-1 expression [47], con-
comitant with NaB-induced G1 arrest [48]. Indeed, overex-
pression of SMAD3 in v-Ha-ras-transformed keratinocytes
induced a cytostatic response, stimulated PAI-1 promoter
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Figure 3: NaB suppressed cell growth in serum-free or supplemented culture conditions. Proliferative restriction was maximal at 10 mM
resulting in final population densities of just 47% (a) and 52% (b) compared to respective controls. Data plotted is the mean ± standard
deviation for triplicate assessments of final cell densities (i.e., % confluency) for each NaB concentration under the two growth conditions.
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Figure 6: PAI-1 antisense and sense expression vectors were used to generate the PAI-1 knockdown (4HH; PAI-1KD) and overexpressing
(Rc/CMVPAI) cell lines, respectively, (a). PAI-1-deficient 4HH cells were resistant to NaB-mediated cytostasis but remained sensitive to
PAI-1-induced growth arrest. The combination of NaB+PAI-1 reduced final population densities similar to that of PAI-1 alone cultures
(b). Vector-driven PAI-1 overexpression in v-ras transformants also inhibited cell growth consistent with results of the PAI-1 add-back
experiments (e.g., Figure 5). Data plotted represents the mean ± standard deviation for triplicate assessments of final cell densities (i.e., %
confluency).

(3TP-Lux reporter)-dependent transcription, and increased
the incidence of senescent epithelial cells [49]. The present
findings are consistent with these and previous data that
TGF-β-initiated growth inhibition as well as senescence
arrest is PAI-1-dependent [23, 27] and establish, moreover,
PAI-1 as a mediator of NaB-initiated cytostasis. Whether this
response can be adapted for directed “senescence therapy” of
human cancers, remains to be assessed.

NaB upregulates the cell cycle inhibitors p21WAF1/CIP1 and
p16INK4A in human fibroblasts although targeted disruption
of p21 only weakly impacted HDACi-induced senescence-
like growth arrest. p53−/− mouse embryo fibroblasts (MEFs),
moreover, are resistant to NaB-initiated cytostasis indicating
that this tumor suppressor is a major senescence determinant
in MEFs [50], and NaB-mediated apoptosis in human mel-
anoma cells is p53-dependent [51]. Indeed, nutlin-3, an
MDM2 inhibitor which restores p53 function in tumor cells
that retain a wild-type p53, cooperate with several HDACis

(including NaB) to induce cell death in p53 wild-type
tumor cell lines but not in p53-null PC-3 prostatic carci-
noma likely by HDACi-induced p53 hyperacetylation and/or
MDM2/MDM4 downregulation [52]. This may be depen-
dent, in part, on the extent of increased p53 expression
in response to NaB [53]. Similarly, NaB-stimulated p53
transcriptional activity initiated irreversible G1/S cell cycle
arrest in c-Ha-ras-transformed rat embryo fibroblasts that
were p53 wild-type but not in cells with an inactivated
p53 [54]. While the actual contribution of p21 versus
INK4A/ARF-encoded genes (e.g., p19) in NaB-induced
growth arrest is uncertain [55, 56], the role of p53 (at
least in MEFs) may be more relevant since p53 is required
for PAI-1 expression and growth arrest (see [27, 57]; and
Overstreet et al., in preparation). p53 status, therefore, may
be a major aspect of HDACi-induced cell cycle arrest through
its transcriptional control of PAI-1 and, thereby, PAI-1-
dependent cytostasis.
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