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Impairment in cognition and decline in kidney function often converge in the aging

individual with chronic kidney disease (CKD). Cognitive impairment (CI) may be

preventable through modification of health behaviors and risk factors that contribute

to the vascular disease burden. CKD patients often have multiple coexisting comorbid

conditions contributing to vascular risk. These comorbidities include hypertension,

diabetes, cerebrovascular disease, and cardiovascular disease. Emerging evidence

suggests that themanagement and prevention of vascular risk factors and cardiovascular

diseases may indirectly contribute to the prevention of CI in CKD. Sodium glucose

transport protein 2 inhibitors (SGLT2i) are emerging as the standard of care for selected

individuals with CKD, type 2 diabetes (T2DM), and heart failure with rapidly expanding

indications being actively investigated. In this narrative review, we examine the intriguing

hypothesis that SGLT2i demonstrate potential disease modifying properties in CI among

individuals with CKD.
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INTRODUCTION

Cognitive impairment (CI) is the loss of brain functions including concentration, attention,
executive function, verbal fluency, and memory beyond what is expected for age (1–3). Chronic
kidney disease (CKD) is defined by two sequential measures of estimated glomerular filtration rate
(eGFR) <60 ml/min/1.73 m2 or albuminuria >30 mg/g more than 90 days apart (4, 5). CKD is a
worldwide emerging epidemic with an estimated incidence between 8 and 16% of the population
with a mortality rate of 42% (2, 5). CKD is not only related to increased mortality, but to other
comorbidities associated with CI such as T2DM, hypertension, stroke, and heart failure (6–8). End
stage kidney disease (ESKD) patients have significantly worse memory performance in comparison
to moderate CKD (9, 10). However, by CKD III, it is estimated that up to 20% of patients have
mild CI and up to 30% of patients with CKD IV have CI when screened with the Mini-Mental
Status Exam (MMSE) or Montreal Cognitive Assessment (MoCA) (11, 12). CI is less prevalent in
patients with early-stage CKD suggesting that there is a critical window for intervention to prevent
progression of both CKD and CI.

CKD patients experience a disproportionately greater number of vascular risk factors than the
general population, including T2DM, hypertension, congestive heart failure, and cerebrovascular
disease (7, 10, 13, 14). Vascular risk factors are a major contributor to the development of CI
(14, 15). Not surprisingly, CI steadily worsens with decline in eGFR (9, 13, 16). This triangulation
of CKD, comorbid illnesses that lead to vascular disease, and aging are key contributors to the
development and progression of CI. For example, CKD patients are at a 27% risk of atrial fibrillation
compared to the general population’s 10% risk (14). Atrial fibrillation places CKD patients at higher
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likelihood of developing cerebrovascular disease, which is a
significant factor in CI development. CKD patients also have both
an independently increased risk of stroke when eGFR is <60
ml/min/1.73 m2 and when macro-albuminuria is present (10,
17, 18). This can be correlated with increased microangiopathy
and silent infarcts identified in white matter lesions on MRI in
patients with lower eGFR (14).

Albuminuria is another aspect of CKD which has been
repeatedly linked to risk of CI (19–22). A prospective cohort
study found higher levels of albuminuria to be associated
with increased risk of incident dementia in a cohort of
9,967 patients age 54–75 followed for a mean of 18 years
independently of dementia risk factors such as hypertension and
diabetes (23). Data from the ONTARGET and TRANSCEND
study populations were used to assess the relationship between
albuminuria and CI, and the effect of ACEi or ARB therapy
on albuminuria and CI (19). They included 28,384 participants
with vascular disease or diabetes, all of whom underwent MMSE
and urine testing for albuminuria at baseline and 5 year follow
up. They found that those with micro-albuminuria and macro-
albuminuria were at higher risk of having a reduced MMSE score
<24 (OR 1.26 95% CI 1.11–1.44 micro-albuminuria, OR 1.49
95% CI 1.20–1.85 macro-albuminuria). Patients with baseline
macro-albuminuria who received ACEi or ARB therapy were at
a lower risk of MMSE decline compared with patients treated
with placebo (19). These findings support the notion that both
albuminuria and CI may share common pathogenic factors and
CI may respond to therapies that reduce albuminuria such as
ACEi, ARB, and potentially SGLT2i (19).

Sodium glucose transport protein 2 inhibitors (SGLT2i)
improve cardiovascular outcomes and reduce the effects of
vascular risk factors (24–26). RCT evidence demonstrates that
SGLT2i prevent diabetes, albuminuria, stroke, and cardiovascular
mortality in CKD patients. SGLT2i are a class of medications
which increase urinary glucose excretion by inhibiting the
sodium-glucose cotransporter 2 (26). They lower blood pressure
through by an osmotic effect, decreasing plasma volume and
natriuresis. Randomized controlled trials of several SGLT2i
showed protective effects including all-cause mortality, decrease
in death from cardiovascular disease, hospitalization for heart
failure and all-cause mortality (26–28). Studies including DAPA-
CKD which showed decreased composite risk of sustained
decline in eGFR of at least 50%, ESKD, or death from renal
or cardiovascular causes, and DAPA-HF showing decrease in
cardiovascular death and worsening heart failure in those with
reduced ejection fraction have led to changes in practice and
guidelines (24, 29–31). As such, they have become standard of
care in patients with type 2 diabetes (T2DM) and cardiovascular
disease (32, 33). With the effects these medications have on

Abbreviations: AD, Alzheimer’s dementia; ACEi, Angiotensin converting enzyme

inhibitor; ACR, Albumin to creatinine ratio; ARB, Angiotensin II receptor blocker;

CI, Cognitive impairment; CKD, Chronic kidney disease; DPP4, Dipeptidyl

peptidase-4; eGFR, Estimated glomerular filtration rate; ESKD, End stage kidney

disease; HFpEF, Heart failure with preserved ejection fraction; MMSE, Mini-

mental status exam; MoCA, Montreal Cognitive Assessment; RCT, Randomized

controlled trial; SGLT2i, Sodium glucose transporter 2 inhibitor; T2DM, Type 2

diabetes mellitus.

cardiovascular outcomes, blood pressure, glycemic control, CKD
and albuminuria (26, 27, 34), one can speculate that these
protective effects could extend to prevention of CI. In this
review, we outline the factors associated with CI in CKD and the
potential benefits of SGLT2i in the prevention and management
of CI in CKD.

SGLT2I: A NOVEL THERAPY FOR

VASCULAR RISK FACTORS AND

RENOPROTECTION

The SGLT2i include dapagliflozin, canagliflozin, empagliflozin,
ertugliflozin, ipragliflozin, luseogliflozin, and tofogliflozin.
SGLT2i inhibit the SGLT2 enzyme on the apical surface
of segments 1 and 2 of the proximal convoluted tubule of
the nephron that reabsorbs glucose back into the blood,
inducing glucosuria and natriuresis (35). Potential adverse
events related to SGLT2i use include urinary tract infections,
genital yeast infections, and euglycemic diabetic ketoacidosis
(36–38). Reduction of intravascular volume through diuresis
and natriuresis have made them an adjunct to diuretics in
hypertension and heart failure (30, 39). The EMPA-REG RCT
enrolled over seven thousand patients with T2DM. Patients in
the trial were given 10mg or 25mg of empagliflozin, or placebo
(26). Patients in the empagliflozin group had significantly
improved outcomes including improved cardiovascular and all-
cause mortality outcomes. Both superiority and non-inferiority
analyses were significantly in favor of empagliflozin with respect
to death from non-fatal myocardial infarction and non-fatal
stroke (26). CANVAS included over nine thousand patients
enrolled in the trial with 29% prescribed canagliflozin (40). The
participant mean eGFR was 75 ml/min/1.73 m2 and mean urine
albumin to creatinine ration (ACR) was 12.3 mg/g. Patients in
the canagliflozin treatment group had significantly improved
outcomes in fatal and cardiovascular outcomes, fatal and
non-fatal stroke, progression of albuminuria and use of renal
replacement therapy (34). The CREDENCE RCT studied the
effect of SGLT2i canagliflozin on over four thousand patients
with T2DM and albuminuria with eGFR < 30 ml/min/1.73
m2 and also treated with renin and angiotensin blockade with
primary outcomes of ESKD, doubling of serum creatinine or
death from renal or cardiovascular causes after being followed
for almost 3 years decreasing mortality by 30% (41).

SGLT2I INHIBIT PRO-INFLAMMATORY

PATHWAYS IN NEURONS OF ANIMAL

MODELS OF VASCULAR DISEASE

Recently, the SGLT2 protein has been shown to be implicated in
CI-related neuronal pathways in animal models. Several studies
demonstrated that SGLT2 inhibition results in amelioration
of signaling involved in oxidative stress pathways. It’s been
hypothesized that the SGLT2 protein has a binding site for
acetylcholinesterase in computational biology studies and it’s
through this mechanism that SGLT2i serve a role in both blood
glucose regulation and cognition (42, 43). Lin et al. published one
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of the first animal studies examining the effects of SGLT2i on
cardiovascular, renal, and cognitive outcomes in an obese mouse
model (44). Mice treated with empagliflozin for 10 weeks were
found to have decreased cardiac and coronary interstitial fibrosis
thought to be associated with a reduction in oxidative stress.
Lin et al. also examined the cognitive effects of empagliflozin
on their mice. Cognition was assessed by the Morris water
maze test and was found to be impaired in diabetic mice. Mice
given empagliflozin had improved performance after treatment
with SGLT2i, suggesting a role for empagliflozin in preservation
and/or improvement in cognitive function (44).

Both empagliflozin and dapagliflozin improve cognition in
animal models of dementia and CI with a high fat diet. SGLT2
inhibition in rodent studies of neuroprotection in diabetes is
significantlymore effective than other classes of medications such
as dipeptidyl peptidase-4 (DPP4) inhibitors (45). Sa-Nguanmoo
et al. used a rat model of high-fat diet induced diabetes
to investigate the effects of DPP4 inhibitors vs. SGLT2i on
insulin resistance and cognitive function (45). Dapagliflozin
administered to rats at a dose of 1 mg/kg showed improved
hippocampal synaptic plasticity in comparison to the DPP4
treated group. Furthermore, in rats fed a high fat diet, a marker of
inflammation (NFkB) activity, decreased with SGLT2i treatment.
Their results demonstrated that SGLT2i were more effective in
comparison to the DPP4 inhibitors at improving hippocampal
synaptic plasticity in rats fed a high fat diet. The researchers
hypothesize the improvement in neuronal plasticity occurred
through prevention of insulin resistance and decreased neuronal
apoptosis in the SGLT2i group (45).

Aside from reducing inflammation, SGLT2i may reduce CI
through their role in energy metabolism pathways such as the
mTOR pathway. The mTOR pathway is linked to changes in
the regulation of anabolism and catabolism, especially nocturnal
regulation of homeostasis of glycemic pathways (46). The
SGLT2i role in regulation of the mTOR pathway is in its
glucosuria, which is hypothesized to confer more favorable
outcomes for mTOR signaling that could relate to a decrease
in CI. The theory from Esterline et al. regarding SGLT2i
improvements in multi-organ function relate to its glucosuria
that is hypothesized to restore diurnal switching between
anabolic and catabolic states by mTOR signaling (46). The
increase in glycogenolysis and gluconeogenesis with SGLT2i
decreases mTOR signaling (46).

Lastly, SGLT2 may reduce the physical disruption of
neurons. In a murine model of AD and T2DM, researchers
demonstrated treatment with empagliflozin at a dose of
10 mg/kg for 22 weeks reduced neuronal loss on necropsy
(47). Specifically, SGLT2 treated mice showed reductions
in amyloid plaques and tau protein (47). The investigators
hypothesized that a decrease in cortical thinning is due to
improved glycemic control with empagliflozin. In addition to
histopathological differences, empagliflozin-treated mice also
demonstrated significant improvement in their memory and
learning performance.

SGLT2I MAY REDUCE CI THROUGH

REDUCTION IN CEREBROVASCULAR

DISEASE

Macrovascular complications of diabetes such as stroke play a
significant role in the development of CI (27, 40). From the
major RCTs for SGLT2i and cardiovascular outcomes, it was
previously thought that SGLT2i had a neutral effect on stroke
outcomes (48). In a meta-analysis of the RCTs of SGLT2i, Tsai et
al. performed a subgroup analysis of stroke outcomes (48). Their
search included 5 studies including EMPA-REG OUTCOME,
CANVAS, DECLARE TIMI 58, and VERTIS where number of
participants ranged from 4,000 to 17,000 from 2 to 4 years study
length (48). SGLT2i were not associated with a reduction in
ischemic stroke, transient ischemic attack, or fatal stroke, but that
use of SGLT2i may be associated with a significant 50% reduction
in hemorrhagic stroke (RR= 0.49, 95% CI 0.30–0.82, P= 0.007);
however, this was among a small absolute number of events (48).

CKD and micro-albuminuria increase patients’ risk of
hemorrhagic and ischemic stroke. In a meta-analysis of the
CREDENCE trial, subgroups with diabetes and atrial fibrillation
were assessed for stroke events using a post-hoc analysis
(49). There was a total of 142 patients diagnosed with
stroke during the trial (49). It was determined that patients
with decreased eGFR influenced SGLT2i effects on stroke.
For patients included in the analysis with the lowest renal
function (eGFR <45 ml/min/1.73 m2), there was evidence for
protective effect in the SGLT2i treatment group (49). They
concluded from their subgroup analysis that there may be
benefit for protection against hemorrhagic stroke prevention for
patients with CKD.

A study reporting a significant association between cognitive
impairment and short term SGLT2i use was recently published.
A single center RCT from Mone et al. examined the effects
of SGLT2i on frail elderly with diabetes and heart failure
with preserved ejection fraction (HFpEF) (50). In their study,
seniors were randomized to empagliflozin (N = 52), metformin,
or insulin and administered the MoCA at baseline and 1
month after treatment (50). The study included adults >65
with MoCA scores < 26 and approximately one third of their
participants had previous diagnoses of CKD (50). There was a
significant improvement in MoCA sores in the empagliflozin
treatment group: The mean MoCA scores in the three groups
at baseline and 1-month follow-up were 19.80 ± 3.77 vs.
22.25 ± 3.27 (P < 0.001) in the empagliflozin group (50).
The metformin and insulin groups did not have significant
improvement in MoCA scores. This study provides promising
evidence that empagliflozin may have CI benefits over other
diabetes treatments (50).

DISCUSSION

CI is common in patients with CKD and CI may be
preventable by targeting vascular risk factors associated
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with CKD progression. A relatively new treatment for CKD
and cardiovascular disease has become available, allowing
Nephrologists to potentially target multiple vascular risk factors
for CI in CKD with one medication. SGLT2i demonstrate
significant benefit in reducing all-cause mortality and
cardiovascular adverse outcomes in virtually all published
SGLT2i RCTs.

However, the understanding of SGLT2i’s putative role in
cognitive impairment is in its very early stages. In animal model
studies published to date, SGLT2i-treated rodents have improved
memory performance. There are few studies of animal model
cognitive function after treatment with SGLT2i, however, these
studies suggest that use of SGLT2i are protective from CI mainly
through regulation of blood glucose and decreased activity of
inflammatory pathways. Why do the human participant RCTs
and the animal model evidence differ with respect to their
results regarding SGLT2i putative involvement in preventing
cognitive impairment? Animal models showed potential for
SGLT2i involvement in cognition whereas the RCTs showed
some significant composite all-cause mortality results when non-
fatal stroke was included. There were no CI outcomes included
in the major human SGLT2i RCTs. There may be several reasons
to account for this discrepancy: The animal model studies had
shorter study durations and larger doses of the SGLT2i (i.e., 1
mg/kg) than the human RCTs. The N number of animal models
is much smaller than RCTs with possibility that the neurological
improvements in the animal studies may bias the results due to
large variability and low reliability.

It is difficult to compare or conclude that CI can be
improved from the limited RCT data we have at this time.
We could hypothesize that SGLT2i function to improve CI
risk through their reduction in vascular risk factors based
on the outcomes of the trials. For example, CREDENCE
primary endpoints were cardiovascular and renal disease and
included stroke as a secondary outcome without inclusion of CI,
dementia as secondary outcomes (25). Similarly, both EMPA-
REG-OUTCOME and CANVAS did not examine outcomes
in cognitive impairment but did have a significant primary
outcome of non-fatal stroke (26, 27). In DAPA-CKD, patients
with stroke or TIA were excluded from the study and CI, CVA

or related adverse event was not included in their study analysis;
however, significant reduction in renal and cardiovascular
mortality demonstrated suggests dapagliflozin improves vascular
risk factors (24). We do not know if SGLT2i directly impact
CI development in patients with CKD, but the RCT data show
compelling data to choose SGLT2i in patients with CI/vascular
risk factors.

We now have the first preliminary evidence to suggest that
SGLT2i improve CI in patients with T2DM (50). SGLT2i may
be associated with neuroprotection including possible reduction
in inflammation, and inhibition of acetylcholinesterase (50). To
this end, there is increasing interest in further examination of
SGLT2i role in CI. The EMPA REG ELDERLY is underway
in Japan using the MMSE-J to measure CI and may provide
further support for the use of SGLT2i in the elderly for CI
protection (51). Results of these studies will provide further
insight into the promising involvement of SGLT2i in prevention
of CI.

CI is a progressive, and irreversible disease that is prevalent
in older patients with CKD. Vascular risk factors for CI
including hypertension, diabetes, cardiovascular disease,
albuminuria, and cerebrovascular disease can be preventable
if early intervention occurs. SGLT2i are an emerging therapy
to manage and prevent all of these risk factors. Like ACEi
and ARBs, SGLT2i decrease albuminuria, which may have
benefit in prevention of CI. SGLT2i demonstrate compelling
evidence for reduction in mortality and adverse cardiovascular
outcomes in RCTs and a modest, but significant reduction
in hemorrhagic stroke in RCT sub-analysis. Clinicians could
consider earlier use of SGLT2i in older patients to provide
cardiovascular and renoprotective benefits with potential
downstream cognition benefits. Further longitudinal data are
needed to determine if SGLT2i have a similarly protective effect
against CI in CKD.
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