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Abstract: Myrothamnus flabellifolia is the only woody resurrection plant found in the world. It has
a strong tolerance to drought and can survive long-term exposure to desiccated environments.
However, few genes related to its drought tolerance have been functionally characterized and the
molecular mechanisms underlying the stress tolerance of M. flabellifolia are largely unknown. In
this study, we isolated a dehydration-inducible bHLH transcription factor gene MfbHLH145 from
M. flabellifolia. Heterologous expression of MfbHLH145 enhanced the drought and salt tolerance
of Arabidopsis. It can not only promote root system development under short-term stresses, but
also improve growth performance under long-term treatments. Further investigation showed that
MfbHLH145 contributes to enhanced leaf water retention capacity through the promotion of stomatal
closure, increased osmolyte accumulation, and decreased stress-induced oxidative damage through
an increase in antioxidant enzyme activities. These results suggest that MfbHLH145 may be involved
in the positive regulation of stress responses in M. flabellifolia. This study provides insight into the
molecular mechanism underlying the survival of M. flabellifolia in extreme dehydration conditions.

Keywords: Myrothamnus flabellifolia; resurrection plant; drought tolerance; Arabidopsis; basic
helix–loop–helix (bHLH)

1. Introduction

The whole life of plants is threatened by a range of abiotic stresses, which can lead to
irreversible damage. To survive the changing environments, plants have evolved sophisti-
cated mechanisms to regulate their responses to stresses, which are controlled by complex
regulating networks involving a wide range of genes [1]. Among these, transcription factors
(TFs) play pivotal roles in strengthening the plant’s resistance to adverse conditions [2].

The basic helix–loop–helix (bHLH) superfamily is a large group of transcription
factors defined by the bHLH signature domain. The basic region in a bHLH protein is
usually composed of approximately 15 basic amino acid residues at the N-terminus and
mainly functions in protein–DNA interaction, whereas the HLH region is composed of
50–60 amino acids and bears two amphipathic α-helices linked to each other by a loop
motif (with variable amino acids) and is involved in the formation of protein complexes,
such as homodimers or heterodimers, through protein–protein interaction. These domains
are able to bind E- boxes (CANNTG) [3–6].

The bHLH family has been widely studied in eukaryotic lineages [7]. For example,
there are 225 members of the bHLH family proteins in Arabidopsis, 211 members in rice,
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and 308 members in maize [8]. Previous functional characterizations have indicated that
bHLH TFs play critical roles in regulation of various physiological processes, such as stom-
ata development [7], flowering regulation [9], trichome or root hair development [10,11],
chloroplast development [12], nodule vascular patterning [13], and photo-induced signal-
ing transduction [14]. Furthermore, recent research has indicated that bHLH transcription
factors are also involved in the regulation of adverse stress responses. Several Arabidopsis
bHLH genes, such as AtbHLH38, AtbHLH39, FER-LIKE IRON DEFICIENCY-INDUCED
TRANSCRIPTION FACTOR (FIT), AtbHLH100, and AtbHLH101, exhibit induced expres-
sion by which to mediate iron acquisition and regulate plant detoxicity to heavy metal
stress [15–17]. AtbHLH122 is important for drought and osmotic stress resistance in Ara-
bidopsis [18]. In response to drought stress, GhbHLH1 is suggested to function in the ABA
signaling pathway [19]. The Populus euphratica gene PebHLH35 confers drought tolerance
by controlling stomatal aperture and closure in leaf [20,21]. Overexpression of VvbHLH1
of Vitis viniferain in Arabidopsis enhanced tolerance to salt and drought [22]. OsbHLH148
of rice is involved in drought tolerance [23], and wheat TabHLH1 is crucial in mediating
osmotic stress tolerance through large modulation of the ABA-associated pathway [24].
Therefore, the bHLH TF family could be considered as a reservoir of genes essential for
abiotic stress tolerance.

Myrothamnus flabellifolia is a woody homoiochlorophyllous resurrection plant dis-
tributed in the mountainous regions of central and southern Africa [25,26]. The molecular
mechanisms underlying the tolerance of M. flabellifolia to extreme drought conditions and
its ability to rapidly rehydrate are still largely unknown. Ma et al. (2015) performed
transcriptome analysis of M. flabellifolia during dehydration and found that many TFs
(295) were responsive to dehydration [27]. The MYB (MYB proto-oncogene), WRKY, and
bHLH families were among the largest groups during both dehydration and rehydration,
in which at least eight unigenes encoding putative bHLH TF were upregulated at early
stage of dehydration. In this study, one of the unigenes, comp43792_c0_seq1 was cloned and
characterized. To further investigate its functions in stress responses, it was overexpressed
in model plant Arabidopsis. The enhanced drought and salt tolerances in transgenic plants
were found and their potential roles involved in stress response regulation were further
characterized and discussed.

2. Results and Discussions
2.1. Isolation and Sequence Analysis of MfbHLH145

The obtained cDNA of unigene comp43792_c0_seq1 gene is 1020 bp in length (Figure 1a),
which contains a complete open reading frame (ORF) encoding 339 amino acids, with
predicted molecular mass of 37.42 kD and pI (isoelectric point) of 4.83 (Figure S1). We
performed a blastp search against Araport11 whole genome protein sequences of Ara-
bidopsis (www.arabidopsis.org, (accessed on 5 March 2022)) and found that it showed the
highest homology to bHLH145 of Arabidopsis (AT5G50010.1). Thus, we designated it as
MfbHLH145. Multiple alignment of amino acid sequences with several most homologous
sequences (obtained by blastp against NCBI nr database) and subsequent phylogenetic anal-
ysis indicated that they all contain a highly conserved HLH domain (Figures 1a and S1) and
share high similarity to the bHLH family members derived from various plant species, such
as Nelumbo nucifera, Vitis viniferap, Populus euphratica, Jatropha curcas, Corchorus capsularis,
etc. (Figure 1b). These results indicate that the MfbHLH145 belongs to bHLH family.

www.arabidopsis.org
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Figure 1. Comparison of MfbHLH145 and its homologous sequences. (a) Comparison of HLH do-
main; (b) phylogenetic relationship between MfbHLH145 and bHLH proteins from other plant spe-
cies. The species and accession numbers for the sequences used are as follows: Arabidopsis 
(AT5G50010.1), Nelumbo nucifera (XP_010272947.2), Vitis vinifera (XP_010664370.1), Juglans regia 
(XP_018833850.1), Jatropha curcas (XP_012067965.1), Populus euphratica (XP_011012705.1), Prunus 
avium (XP_021808181.1), Prunus mume (XP_016647743.1), Prunus persica (XP_007221781.1), Theo-
broma cacao (XP_007018176.2), Gossypium arboreum (XP_017606889.1), Gossypium hirsutum 
(XP_016748867.2), Gossypium raimondii (XP_012445605.1), Hevea brasiliensis (XP_021684509.1), Mani-
hot esculenta (XP_043810156.1), Durio zibethinus (XP_022773104.1). Phylogenetic reconstruction was 
performed using the neighbor-joining approach, and the bootstrap test was replicated 1000 times. 

2.2. MfbHLH145 Is Localized in the Nucleus 
A nuclear localization signal site (PSKKRKLSL) was found at position 241 of the de-

duced protein of MfbHLH145 (Figure S1), and no nuclear export signal was found by us-
ing LocNES [28]. We then investigated the subcellular localization of MfbHLH145 based 
on observation of the YFP signal derived from MfbHLH145-YFP fusion in the tobacco ep-
idermal cells. Fluorescence from 35S-YFP was detected in the cytoplasm and nucleus, 
whereas fluorescence from the 35S-MfbHLH145-YFP fusion was detected only in the nu-
cleus (Figure 2), which was consistent with in silico prediction and indicated that 
MfbHLH145 may function as a TF. 

Figure 1. Comparison of MfbHLH145 and its homologous sequences. (a) Comparison of HLH do-
main; (b) phylogenetic relationship between MfbHLH145 and bHLH proteins from other plant species.
The species and accession numbers for the sequences used are as follows: Arabidopsis (AT5G50010.1),
Nelumbo nucifera (XP_010272947.2), Vitis vinifera (XP_010664370.1), Juglans regia (XP_018833850.1),
Jatropha curcas (XP_012067965.1), Populus euphratica (XP_011012705.1), Prunus avium (XP_021808181.1),
Prunus mume (XP_016647743.1), Prunus persica (XP_007221781.1), Theobroma cacao (XP_007018176.2),
Gossypium arboreum (XP_017606889.1), Gossypium hirsutum (XP_016748867.2), Gossypium raimondii
(XP_012445605.1), Hevea brasiliensis (XP_021684509.1), Manihot esculenta (XP_043810156.1), Durio
zibethinus (XP_022773104.1). Phylogenetic reconstruction was performed using the neighbor-joining
approach, and the bootstrap test was replicated 1000 times.

2.2. MfbHLH145 Is Localized in the Nucleus

A nuclear localization signal site (PSKKRKLSL) was found at position 241 of the
deduced protein of MfbHLH145 (Figure S1), and no nuclear export signal was found
by using LocNES [28]. We then investigated the subcellular localization of MfbHLH145
based on observation of the YFP signal derived from MfbHLH145-YFP fusion in the
tobacco epidermal cells. Fluorescence from 35S-YFP was detected in the cytoplasm and
nucleus, whereas fluorescence from the 35S-MfbHLH145-YFP fusion was detected only in
the nucleus (Figure 2), which was consistent with in silico prediction and indicated that
MfbHLH145 may function as a TF.
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Figure 2. Subcellular localization of MfbHLH145. Upper: Fluorescence detection of tobacco epider-
mis transformed with 35S:YFP; Lower: Fluorescence detection of MfbHLH145-YFP fusion protein 
in tobacco leaf epidermal cells. Scale bar indicates 20 μm. 

2.3. Overexpression of MfbHLH145 in Arabidopsis Enhanced Tolerance to Drought and Salt 
Although some bHLHs have confirmed involvement in regulation of biotic stress re-
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unclear. As MfbHLH145 is inducible by dehydration, whether it participates in stress re-
sponse regulation is an interesting question. We generated transgenic lines of Arabidopsis 
overexpressing MfbHLH145. To investigate the effect of drought stress on seedling 
growth, seeds of the two transgenic lines, line E and line F, and wild type (WT) were 
sowed on MS medium without (control) or with different concentrations of mannitol (200 
mM, 250 mM, and 300 mM). WT and transgenic lines showed similar growth on control 
medium. Under the mannitol treatments, the primary root growth of WT and transgenic 
lines were significantly inhibited. However, line E and line F exhibited significantly longer 
primary roots than those of WT (Figure 3a,b). The numbers of lateral roots of WT and 
transgenic seedlings were increased under 200 mM and 250 mM mannitol treatments. 
However, both transgenic lines exhibited significantly more lateral roots than that of WT 
(Figure 3a,c). Under treatment of 300 mM mannitol, the lateral root numbers of WT and 
transgenic lines E and F were significantly less than those of 200 mM and 250 mM manni-
tol treatments. However, they both had more lateral roots than that of WT. These results 
indicate that MfbHLH145 could promote development of a root system under drought. 
In maize, overexpression of a bHLH gene ZmPTF1 could increase root length and number 
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Figure 2. Subcellular localization of MfbHLH145. Upper: Fluorescence detection of tobacco epidermis
transformed with 35S:YFP; Lower: Fluorescence detection of MfbHLH145-YFP fusion protein in
tobacco leaf epidermal cells. Scale bar indicates 20 µm.

2.3. Overexpression of MfbHLH145 in Arabidopsis Enhanced Tolerance to Drought and Salt

Although some bHLHs have confirmed involvement in regulation of biotic stress
responses, the functions of bHLHs are largely unknown, and the roles of bHLH145s
are unclear. As MfbHLH145 is inducible by dehydration, whether it participates in stress
response regulation is an interesting question. We generated transgenic lines of Arabidopsis
overexpressing MfbHLH145. To investigate the effect of drought stress on seedling growth,
seeds of the two transgenic lines, line E and line F, and wild type (WT) were sowed
on MS medium without (control) or with different concentrations of mannitol (200 mM,
250 mM, and 300 mM). WT and transgenic lines showed similar growth on control medium.
Under the mannitol treatments, the primary root growth of WT and transgenic lines
were significantly inhibited. However, line E and line F exhibited significantly longer
primary roots than those of WT (Figure 3a,b). The numbers of lateral roots of WT and
transgenic seedlings were increased under 200 mM and 250 mM mannitol treatments.
However, both transgenic lines exhibited significantly more lateral roots than that of WT
(Figure 3a,c). Under treatment of 300 mM mannitol, the lateral root numbers of WT
and transgenic lines E and F were significantly less than those of 200 mM and 250 mM
mannitol treatments. However, they both had more lateral roots than that of WT. These
results indicate that MfbHLH145 could promote development of a root system under
drought. In maize, overexpression of a bHLH gene ZmPTF1 could increase root length and
number of lateral roots under normal and stressful conditions [29]. However, in our study,
lines overexpressing MfbHLH145 showed similar root growth with WT under normal
condition. This result indicates that MfbHLH145 indirectly promoted root growth under
drought stress.

We further investigated seedling growth performance under salt stress. 100 mM NaCl
significantly inhibited primary root growth. Whereas line E and line F showed longer
primary root length than that of WT (Figure 3d,e). On the other hand, they also exhibited
higher a number of lateral roots than those of WT under 100 mM NaCl, as well as those of
all three lines grown on control medium (Figure 3b,f). Under 150 mM NaCl, root growth of
all three lines was severely inhibited. Line E and line F still showed longer roots than WT
(Figure 3e).
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length and number of the lateral roots of transgenic lines and WT under salt stress. Mean values 
and standard errors (bar) are shown from three independent experiments. The asterisk represents 

Figure 3. Measurement of tolerance to drought and salt stresses at seedling stage. (a) The performance
of WT and transgenic Arabidopsis seedlings under artificially simulated drought stress. Seeds were
germinated on 1/2 MS culture medium and then were transferred to 1/2 MS culture medium
containing mannitol (0 mM, 200 mM and 250 mM, 300 mM) for 7 days. (b,c) Comparison of the
length of primary roots and number of lateral roots among transgenic lines and WT under drought
treatment. (d) The performance of WT and transgenic Arabidopsis seedlings under salt stress. Seeds
were germinated on 1/2 MS medium and then were transferred to 1/2 MS medium containing
NaCl (0 mM, 100 mM and 150 mM) for 7 days. (e,f) Comparison of the primary root length and
number of the lateral roots of transgenic lines and WT under salt stress. Mean values and standard
errors (bar) are shown from three independent experiments. The asterisk represents significant
difference (**, p < 0.01). col in (a,d), and CK in (b–f) indicate growing conditions without stress
treatment (control).



Int. J. Mol. Sci. 2022, 23, 5546 6 of 14

To further evaluate growth performance of adult plants under both types of stresses,
four-week-old plants were treated by natural drought stress and salt treatment. As shown
in Figure 4a, the dehydration symptoms could be observed on leaves after withholding
water for 8 days. After 16 days, significantly negative effects of drought on plant growth
were found. All the plants were significantly wilted. WT plants were more severely wilted
than line E and line F. After 18 days, the degree of leaf wilting of both WT and transgenic
lines continued to increase. Leaves of most of the WT plants were bleached, whereas major
part of leaves of transgenic lines stayed green. After rewatering, line E and line F recovered
more quickly than the WT plants did. Eight days after rewatering, about 50% of WT plants
died, whereas both transgenic lines returned to normal growth level.
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Figure 4. The performance of adult WT and transgenic plants under natural drought (a) and salt
treatments (b). WT, wild type. The pictures show the same pots photographed at different time
points. All experiments were repeated three times. Scale bar represented 5 cm.

Similar results were found in salt treatment. Four-week-old plants in each pot were
watered with 600 mL 300 mM NaCl solution. No significant difference was found between
WT and transgenic lines before treatment. After 20 days of treatment, some leaves of WT
and lines E and F were withered. After 23 days, significant leaf bleaching and wilting were
found in WT, and chlorisis was present in the line E and line F. After 33 days, almost all
WT leaves were bleached and wilted. Although all leaves of the transgenic lines were
wilted, only a few bleach symptoms was found. After 43 days, all WT plants were dead,
whereas green leaves could be clearly found in transgenic lines (Figure 4b). All these results
confirm that overexpression of MfbHLH145 can enhance tolerance to both drought and salt
stresses in Arabidopsis, suggesting that MfbHLH145 may function positively in regulation
of stress response in M. flabellifoli. bHLH145 belongs to subfamily 13 of bHLH family
in Arabisopsis [5], on which less attention has been paid. Rice bHLH142 plays a crucial
role in pollen development [30], bHLH144 has been reported to be involved in activation
of Wx to regulate grain quality in rice [31]. The functions of bHLH143 and bHLHL145
were previously unknown. Thus, MfbHLH145 is the first member of subfamily 13, which
participates in response to drought and salt stresses.
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2.4. MfbHLH145 Enhanced Leaf Water Retention Capacity under Drought and Salt Stresses

In response to drought or osmotic stress, plants are able to control their water content
and reduce water loss [32]. To further investigate the function of MfbHLH145 in responding
to abiotic stress, we compared the water retention capacity between the WT and MfbHLH145
overexpression lines. Water loss rate is dependable for assessing plant water status under
drought stress [33]. The measurement of water loss from detached leaves of WT and
transgenic plants Line E and Line F showed that the plants overexpressing MfbHLH145 lost
water more slowly than the WT after dehydration for 3 h (Figure 5a). After 7 h, the water
loss rate of the WT plants was approximately 49%, in comparison, the water loss rates were
~40% and ~38% in Line E and Line F, respectively.
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Figure 5. Evaluation of water retention ability. (a) Dynamic water loss rates of detached leaves.
About 0.5 g leaves from plants in similar growth state were cut off and used for measurement of
water loss rates. The experiments were performed with three replicates. (b,c) Stomatal closure in
response to artificially simulated drought conditions (200 mM and 300 mM mannitol). Mean values
and standard errors (bar) are shown from more than 100 stomata. The asterisk represents significant
difference (*, p < 0.05; **, p < 0.01). Col, control.

According to a previous study, water loss mainly depends on stomatal regulation [34].
We then compared stomatal apertures under simulated drought treatments with different
concentrations of mannitol (0 mM, 200 mM, and 300 mM). No significant difference of
stomatal aperture was found under stress-untreated conditions between the WT and trans-
genic lines. By contrast, after mannitol treatments, especially with 300 mM concentration,
transgenic lines showed a significantly higher degree of stomatal closure than that of WT,
which was not obviously altered (Figure 5b).

Calculation of the Stomatal Aperture Index (SAI) showed that under 300 mM man-
nitol, the SAIs of Line E and Line F were about 2.7 and 2.9, respectively, significantly
higher than that of WT (~2.0) (Figure 5c). These results indicate that transgenic lines
closed stomata more quickly and tightly under drought stress, which explain, at least
partly, the lower water loss rate in MfbHLH145 overexpression lines. Ectopic expression
of apple MdbHLH130 in tobacco showed significantly lower water loss rate and stomatal
aperture ratio (width/length), resulting in improved tolerance to water deficit stress [35].
This suggests that bHLH145 and bHLH130 may share a similar function in responding to
drought stress.

2.5. MfbHLH145 Increased Osmolytes Accumulation under Drought and Salt Stresses

Osmotic stress is the earliest challenge of plants under drought conditions [36]. Proline
is an important osmolyte in plants and is considered one of the compatible osmolytes in
combating/ameliorating the detrimental effects of drought stress in many plants [37]. We
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measured free proline content in the WT and transgenic plants under normal and stress
conditions. Under normal conditions, the WT and both transgenic lines showed no differ-
ence in proline content. However, line E and line F accumulated significantly more free
proline under both the drought and salt stress conditions (Figure 6a). We also measured
two other major osmolytes: soluble proteins (SP) and soluble sugar (SS) [38]. Similar to
the results of the proline content, transgenic lines also showed significantly higher SP and
SS accumulations under stress conditions comparing to WT (Figure 6b,c). These results
indicate that overexpression of MfbHLH145 increased accumulation of osmotic substances
to adjust responses to osmotic stresses caused by drought and salt treatments. Several
bHLHs were reported to play roles in osmotic stress tolerance. bHLHL92 is NaCl-induced
and confers tolerance to salt and osmotic stress which is partially dependent on ABA and
SALT OVERLY SENSITIVE 2 (SOS2) [2]. Overexpression of AtbHLH122 confers salt toler-
ance, osmotic-regulating capacity, and proline concentration [18]. The increased osmotic
regulatory ability of transgenic Arabidopsis could be also obtained by overexpression
of MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor [39]. Thus, enhance-
ment of osmotic-regulating capacity is a general function for bHLHs responsive to abiotic
stress. How MfbLHL145 regulates the accumulation of osmotic substances in responding
to drought and salt stresses deserves further study.
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2.6. MfbHLH145 Decreased Stress-Induced Oxidative Damage through Increasing Antioxidant
Enzyme Activities

Plants are usually injured from ROS-associated damage caused by environment
stress [40,41]. We then investigated ROS levels in WT and transgenic lines under drought
and salt stresses by evaluating accumulation of two major ROS species, H2O2 and super-
oxides. By using 3,3′-diaminobenzidine (DAB) and nitroblue tetazolium (NBT) staining,
as shown in Figure 7a, we found that WT and MfbHLH145 overexpression lines showed
similar and low levels of H2O2 and superoxides before treatment. However, after exposure
to drought and salt treatments, more H2O2 and superoxide accumulations were detected
in WT compared to the two transgenic lines. These results are consistent with measure-
ment of H2O2 content and anti-superoxide anion activity in leaves under drought and salt
treatments (Figure 7b,c).
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content, anti-superoxide anion activity, and MDA content, respectively; (e–g) indicated measurement
of the activities of antioxidant enzymes. All treatments and measurements were performed three
times. Mean values and standard errors (bar) are shown from three independent experiments. The
asterisk represents significant difference (*, p < 0.05; **, p < 0.01). DAB and NBT indicate leaves
stained by 3,3′-diaminobenzidine and nitroblue tetazolium, respectively.

The Malondialdehyde (MDA) content is a reflection of lipid peroxidation and is usually
used to measure stress-induced damage [38]. Under normal conditions, WT and transgenic
lines E and F showed low levels of MDA content, although MDA levels in two transgenic
lines were slightly higher than that of WT. After treated by drought and salt stresses, MDA
levels in WT and transgenic lines remarkably increased. However, both line E and line F
exhibited significantly lower levels of MDA compared with those of WT (Figure 7d). These
results indicate that overexpression of MfbHLH145 protected plants from stress-induced
oxidative damage.

To further uncover potential mechanisms underlying decreasing oxidative damage
in MfbHLH145 overexpression lines, we measured the activities of antioxidant enzymes,
i.e., catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Our results indi-
cate that under normal conditions, activities of three enzymes were similar in WT and
transgenic lines. After exposure to drought and salt stresses, dramatically increased ac-
tivities of CAT, POD, and SOD were found in WT, line E and line F. However, those of
transgenic lines were significantly higher than those of WT (Figure 7e,f). These results
show that overexpression of MfbHLH145 increased ROS-scavenging ability and resulted in
decreased stress-induced oxidative damage under drought and salt stresses.

3. Conclusions

In this study, we isolated and characterized a dehydration-inducible bHLH transcrip-
tion factor gene MfbHLH145 from M. flabellifolia, the only woody resurrection plant in
the world. Heterologous expression of MfbHLH145 in Arabidopsis enhanced tolerance
to drought and salt. Our results show that MfbHLH145 can not only promote root sys-
tem development under short-term stresses, but also improve growth performance under
long-term treatments. MfbHLH145 contributes to enhanced leaf water retention capacity
through promotion of stomatal closure, increased osmolytes accumulation, and decreased
stress-induced oxidative damage via increased antioxidant enzyme activities. All these data
suggest that MfbHLH145 may be involved in positive regulation of abiotic stress responses
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in M. flabellifolia. No study has reported involvement of bHLH145 in responding to drought
and salt stress previously. Therefore, bHLH145 has potential application value in the
genetic improvement of plant stress tolerance. Further work on how it works at a molecular
level is necessary for better understanding of the molecular mechanism underlying the
survival of M. flabellifolia from extremely dehydration conditions.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The Arabidopsis ecotype Columbia (Col) is conserved by our lab. The seeds were
surface-sterilized with 50% bleach for 5 min, and washed with sterilized water three times.
The sterilized seeds were sowed on one-half-strength Murashige and Skoog (MS) medium
(supplemented with 3% sucrose and 0.8% agar and adjusted pH to 5.8) plates. To break
dormancy, seeds were incubated at 4 ◦C for two days in the dark before germination and
then placed in a plant growth incubator (22 ◦C, 16 h light/8 h dark cycle). After one-week
growth in the incubator, seedlings were transferred into soil in a growth chamber at 22 ◦C
under 16 h light/8 h dark cycle.

4.2. Gene Cloning and Sequence Analysis

Total RNA was extracted from leaves of M. flabellifolia using Plant Total RNA Iso-
lation kit (TIANGEN Co., Beijing, China) and cDNA synthesis was performed by Re-
verse Transcriptase M-MLV (RNase H-) (TaKaRa Bio, Dalian, China). The coding se-
quence of MfbHLH145 gene was amplified by PCR with gene-specific primers containing
NcoI and SpeI (forward: 5′-CATGCCATGGGAAAGGACTGTGGATCC-3′, and reverse:
5′-GCTAGTGAGAGAATCAAGTCCTAAAGCTTTG-3′) and then cloned into pEasy-T1
Simple vector (TransGen Biotech, Beijing, China). The constructs were transformed into the
E. coli strain DH5α, and three positive clones were randomly selected and sequenced by
commercial company (TsingKe, Beijing, China).

The SMART (http://smart.embl-heidelberg.de/ (accessed on 5 March 2022)) was used
to predict the domain of gene structure. The BLAST program was used to search NCBI nr
database for homologues in other plant species and the putative functional domains in the
deduced amino acid sequence [42]. The multiple sequence alignment and phylogenetic
analyses were performed using MEGA 7 [43].

4.3. Subcellular Localization of MfbHLH145

By using the primers FP (ACCAGTCTCTCTCTCAAGCTTATGGGAAAGGA-CTGTG
GATCC), and RP (GCTCACCATACTAGTGGATCCGAGAGAATCAAGTCCTA-AAGCTTTG),
the cDNA fragment containing the MfbHLH145 coding region without stop codon was
cloned and inserted downstream of the Cauliflower Mosaic virus (CaMV) 35S promoter
and in frame with the 5′ terminus of the YFP gene in the PHB vector.

The plasmid construct 2*35S:MfbHLH145:YFP was transformed into Agrobacterium
tumefaciens strain GV3101 through freeze-thaw method and the Agrobacterium-mediate
transformation into Nicotiana benthamiana was conducted by impregnation method. To
examine the subcellular localization of MfbHLH145, the 2*35S:MfbHLH145:YFP fusion
protein was observed using a confocal laser scanning microscope (LSM510 META, Zeiss,
Jena, Germany).

4.4. Generation of Transgenic Plants

The amplified cDNA fragment of coding region was digested by NcoI and SpeI
and ligated onto pGSA1403 driven by the CaMV 35S promoter. The recombinant vector
35S:MfbHLH145:pGSA1403 was transformed into A. tumefaciens strain LBA4404 and then
used to generate transgenic Arabidopsis plants with the floral dip method [44]. In order to
screen positive transgenic lines, approximately 100 seeds were placed on 1/2 MS medium
containing 3% sucrose and 0.8% agar and 100 µg/mL Kanamycin. The seeds were treated
under 4 ◦C for two days in the dark and transferred into an incubator (22 ◦C, 16 h light/8 h
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dark cycle). Dark green plants were transferred into soil after a week to harvest seeds. The
positive transgenic plants were identified by PCR, and two homozygous T3 lines, ling E
and line F, were randomly selected for further investigation.

4.5. Drought and Salt Treatment

For seedling drought and salt treatments, sterilized seeds of wild type (WT) and T3
transgenic lines E and F were sown on square plates containing solid 1/2 MS medium
(supplemented with 3% sucrose and 0.8% agar and adjusted pH to 5.8) with different con-
centrations of mannitol or MS medium with different concentrations of NaCl, respectively.
After two-days incubation at 4 ◦C in dark, the seeds were vertically grown in an incubator
(22 ◦C, 16 h light/8 h dark cycle), and the root length and the number of lateral roots were
recorded after two weeks. For each sample, 15 seedlings in every petri dish was measured
and each experiment was performed in three replicates.

To evaluate tolerance of adult plants to drought and salt stresses, seeds of WT and
T3 transgenic line E and line F were germinated on 1/2 MS medium in normal condition,
and then transferred to 10cM pot filled with peat soil and grown under normal condition
for four weeks. The natural drought treatment was performed. The four-week-old plants
of WT, line E and line F were firstly well watered and then the water was withheld. To
perform salt treatment for the adult plants, 300 mM NaCl solution was applied in the tray
of cultivation pots for irrigation, and to keep the soil moist during the processing. All
experiments were repeated three times. The morphological changes of the plants were
constantly observed and photographed.

4.6. Assays of Water Loss and Stomatal Aperture Closure

To determine the water loss rate, leaves from five-week-old WT and transgenic plants
(about 0.5 g leaves from plants in similar growth state) were cut off and weighed immedi-
ately on a piece of weighting paper, then dried on 3 mm filter paper at room temperature
(40% relative humidity) and weighed at designated time points. The percentage loss of
fresh weight was then calculated. The experiments were performed with three replicates.

For stomata aperture measurements, WT and transgenic plants were grown on soil
under normal conditions for four weeks. Rosette leaves were detached and floated for 2 h
in MES-KCl solution containing 50 mM KCl and 10 mM MES (pH 6.15), and a cool white
fluorescent light was employed to induce maximum stomata opening. For measurements
under simulated drought stress, leaves from WT and transgenic plants were floated in
MES-KCl solution with additional 300 mM mannitol. Stomatal aperture was scored as
width/length pore ratio of at least 100 stomata (n = 100).

4.7. Measurement of Biochemistry Parameters Related to Stress Responses

Plants were grown under normal conditions for four weeks. The samples without
treatment were used as control. Then, the plants were watered with 300 mM NaCl solution
for 2 days or exposed to drought by withholding water for 14 days. For the proline
and soluble protein content measurements, about 0.5 g of leaves from each line were
sampled from more than five individual plants with similar growth. The extraction and
measurement were conducted according to previous report [34]. The soluble sugar was
measured using Plant Soluble Saccharide Assay Kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China).

Accumulation of malondialdehyde (MDA) and activities of three major ROS-scavenging
enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were mea-
sured according to methods used in previous work [38]. The content of H2O2 was measured
using Hydrogen Peroxide Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China), and Anti-superoxide Anion Activity was measured using Anti-superoxide
Anion Activity Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). All
experiments were repeated three times.
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