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Abstract 

Background: Literature surrounding the statistical modeling of childhood growth data involves a diverse set of 
potential models from which investigators can choose. However, the lack of a comprehensive framework for com-
paring non-nested models leads to difficulty in assessing model performance. This paper proposes a framework for 
comparing non-nested growth models using novel metrics of predictive accuracy based on modifications of the 
mean squared error criteria.

Methods: Three metrics were created: normalized, age-adjusted, and weighted mean squared error (MSE). Predictive 
performance metrics were used to compare linear mixed effects models and functional regression models. Predic-
tion accuracy was assessed by partitioning the observed data into training and test datasets. This partitioning was 
constructed to assess prediction accuracy for backward (i.e., early growth), forward (i.e., late growth), in-range, and on 
new-individuals. Analyses were done with height measurements from 215 Peruvian children with data spanning from 
near birth to 2 years of age.

Results: Functional models outperformed linear mixed effects models in all scenarios tested. In particular, prediction 
errors for functional concurrent regression (FCR) and functional principal component analysis models were approxi-
mately 6% lower when compared to linear mixed effects models. When we weighted subject-specific MSEs according 
to subject-specific growth rates during infancy, we found that FCR was the best performer in all scenarios.

Conclusion: With this novel approach, we can quantitatively compare non-nested models and weight subgroups of 
interest to select the best performing growth model for a particular application or problem at hand.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Childhood growth modeling plays an important role in 
understanding and surveilling health outcomes at both 
individual and population levels. Specific uses include 
predicting health outcomes based on current trajecto-
ries (e.g. failure to thrive, obesity, stunting, wasting) and 
understanding associations between growth outcomes 
and childhood exposures (e.g. environmental, gestational, 
disease) [1, 2]. Many types of statistical approaches 
have been proposed to model growth measurements as 
functions of age and related baseline covariates [3–11]. 

Frequently used statistical models such as linear mixed 
effects, quantile regression, and functional principal 
components methods provide great modeling flexibility 
and are often able to address key features of growth data 
such as sparsity of sampling, cross-sectional skewness, 
and smoothness of growth trajectories [12–14].

Comparing models requires an objective criterion that 
can be uniformly applied to all of them. Nested models 
can be compared via metrics such as the likelihood ratio 
test (LRT) or F-test, and penalization for parametriza-
tion with the Akaike Information Criterion (AIC) or the 
Bayesian Information Criterion (BIC). However, com-
paring non-nested models is complicated because not 
all models optimize the same objective functions. There-
fore, a comprehensive model selection strategy among 
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competing, often non-nested, models necessitates devel-
opment of a universal selection criterion.

We propose a novel approach based on modifications 
of the mean squared error, including normalization, age-
stratification, and weighting for subject-specific growth 
rates. These methods differ from those mentioned above 
in that they measure model predictive performance 
rather than model fit. Quantifying predictive accuracy at 
the subpopulation level is critically important in auxol-
ogy applications. For example, subpopulations represent-
ing lower quantiles of growth often contain children who 
are either stunted or faltering and may require special 
attention. In such scenarios, model choice may necessar-
ily be driven disproportionately by accuracy of predicting 
outcomes among said subpopulations. These proposed 
modifications are centered on an idea of using out-of-
sample prediction accuracy as universal measures of 
model performance.

Methods
Study setting
This analysis used data collected in the CONTENT 
study, located in the two peri-urban communities of 
Pampas de San Juan Miraflores and Nuevo Paraíso. Both 
were high density populations located approximately 
25  km south of Lima [15]. The original purpose of this 
study was to examine the impact of Helicobacter pylori 
on child growth using World Health Organization Multi-
centre Growth Reference Study standards for calculating 
height and weight Z scores [15]. Further characterization 
of these regions can be found in previous publications 
[15, 16].

Study design
Data was collected longitudinally between May 2007 and 
February 2011 [15, 16]. Children were not included if they 
had severe disease requiring hospitalization, were part of 
a multiple pregnancy, had a birth weight less than 1500 
grams, and/or their parents had intentions of moving 
during the period of the study [15]. Data was collected at 
birth with follow up lasting until the age of 24  months. 
Additional information on study design, including more 
specific details on information collected, can be found in 
the original publication [15].

Biostatistical models
When studying growth-related health outcomes and 
exposures, height and weight are usually collected at 
multiple time points to assess individual growth trajec-
tories [1, 4, 17–20]. Notable features of longitudinal data 
include within-subject correlation, heterogeneity of indi-
vidual baseline, and dynamic growth [21]. In this study, 
we employ traditional growth models such as linear 

mixed effects (LME), as well as less well known tech-
niques such as functional concurrent regression (FCR) 
and functional principal component analysis (fPCA) [13, 
21–24]. For simplicity, we used height as our growth out-
come in this study. Let Yij denote the height of child i at 
time point j, and tij is the corresponding age for child i at 
time point j, where i = 1, 2, . . . , 215, and j = 1, 2, . . . ,mi . 
Sex effect was included in LME and FCR models, and we 
denote Xi to be the sex for subject i. Even though linear 
regression with truncated cubic splines is well known 
and simple to implement, Grajeda et  al. showed they 
were inaccurate when modeling longitudinal growth 
because they did not account for the nature of repeated 
measurements clustered within subjects and because the 
assumption on independence between measurements 
was violated [21].

Parametric, linear mixed effects model
Inclusion of subject-specific random effects is a conveni-
ent way to account for subject level clustering and is easy 
to implement in most statistical software packages [3, 13, 
21, 25].

Since growth exhibits a pronounced non-linear asso-
ciation with age, population mean growth is modeled 
using truncated cubic splines with knots at 3, 6, 12, and 
18  months. Random slopes and intercepts were used to 
capture the heterogeneity in growth curves. Specifically, 
random intercepts depict shifts (up or down) of subject-
level growth from the population-level intercept, while 
random slopes represent subject-level growth velocity 
around the population prediction.

Although standard LME models are intended to 
account for within subject correlation, it has been shown 
that, in growth data, random intercept and slope mod-
els may have autocorrelated residuals [21]. Therefore, we 
used a continuous autoregressive error of order one to 
model the correlation structure between pairs of meas-
urements for any subject. The model is formulated as

Yij = (β0 + b0i)+ (β1tij + b1itij)+ β2t
2
ij + β3t

3
ij
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where β’s and γ’s represent the fixed effects of time and 
age on height, while b0i and b1i represent the random 
intercepts and slopes, respectively. We assume independ-
ence between subjects.

Nonparametric, functional models
It has been noted that some parametric models may not 
be sufficiently flexible to fully capture the non-linearity 
in individual growth trajectories [24]. Therefore, non-
parametric approaches have gained popularity in recent 
years to deal with longitudinal data. One reason to think 
of repeated measurements as functions at different time 
points is because the derivatives could be of interest 
as well (e.g. growth rates of children). Two functional 
approaches are discussed next.

Functional principal component analysis has become a 
first-line approach to analyzing functional or longitudinal 
data [22, 26–29]. It involves non-parametric estimation 
of the covariance structure and identifying the dominant 
features (eigenfunctions) of the covariance matrix. Sub-
jects’ random effects are a linear combination of a rela-
tively small number of the eigenfunctions. This allows for 
increased complexity in the shape of estimated subject-
level trajectories, but typically requires more parameters 
to be estimated than with LME models. Fast Covariance 
Estimations (FACEs) was developed as a fast bi-variate 
smoothing method for the covariance operator which 
has been proved to be widely reliable and computation-
ally efficient [30]. A newer version of FACEs was designed 
to handle sparse functional data with a revised bivari-
ate smoother, and a fast algorithm for approximating the 
leave-one-subject-out cross validation for selection of the 
smoothing parameter [31]. The model can be expressed as

where f (·) is a smooth mean function and bi(·) is gener-
ated from a zero-mean Gaussian process with covariance 
operator C(s, t) = Cov(bi(s), bi(t)). Detailed methods to 
model and estimate C(s, t) as tensor-product splines and 
to predict subject i’s growth curve Xi(t) = f (ti)+ ui

(

tij
)

 
can be found in Xiao et al. [31].

Functional principal component analysis is a way to 
examine functional variability, however, it is not directly 
comparable to LME models since it does not take into 
account effects of other covariates such as gender. As a 
generalization, we will consider functional concurrent 
regression (FCR) as a more natural extension of both 
LME and fPCA because they include time invariant gen-
der fixed effects which correspond with the LME mod-
els, but also utilize benefits of modeling growth data as 

Yij = f0
(

tij
)

+ bi
(

tij
)

+ ∈ij

∈ij∼ N
(

0, σ 2
)

a complex function similar to fPCA. Functional concur-
rent regression models were introduced and developed in 
recent years [24, 32–39]. The comparable FCR model to 
the LME model specified above can be expressed as

where f0(·) is a smooth estimate of the average popula-
tion growth curve, α1 is the time-invariant fixed sex 
effect, and bi(·) models the subject-specific random func-
tional deviation of subject i and is generated from a zero-
mean Gaussian process with covariance function C(s, t) . 
Furthermore, bi(·) and (∈i1, . . . ,∈imi) are assumed to be 
mutually independent across subjects. Smoothing param-
eters can be selected using either restricted maximum 
likelihood or generalized cross validation as described by 
Wood et al. [40, 41]. From a modelling perspective, it is 
notable that fPCA is a special case of FCR without effects 
from covariates other than time. The addition of fixed 
effects in this context is non-trivial. Details on the FCR 
estimation procedure are further described by Leroux 
et al. and an accompanied R package [42, 43].

Definition of comparison criteria metrics
In this section, we introduce three metrics to perform 
growth model comparison. Let Ŷ k

ij  be the fitted value 
obtained from model k, and i = 1, . . . , 215, j = 1, . . . ,mi , 
and k = 1, . . . , 3.

Mean squared error (MSE)
The first widely used selection metric is a subject specific 
mean squared error defined as

where i = 1, . . . , n. Subject-specific MSEs can be com-
bined to evaluate the performance of models on subpop-
ulations of interest. One of the key limitations of using 
the MSE is demonstrated in Fig. 1. The black lines show 
observed growth curves of two selected children (child A 
and B), while the red lines show predicted growth curves. 
Child A has more error among larger height values, while 
child B tends to have increased error among smaller val-
ues. Un-normalized MSEs may disproportionately favor 
the most recent, almost always the largest, observations. 
As a result, the MSE for child A is inflated and greater 
than that of child B. However, normalization revealed 
that child A has lower overall error compared to child 
B. The scale of the data is not always consistent among 
subjects. Thus, subjects with larger measurements might 
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dominate the comparisons when using metrics that con-
tain original measure units such as MSE [44]. Moreover, 
subjects with larger changes can bring more difficulty in 
comparison when using MSE [45]. Despite these prob-
lems, practitioners and academicians still tend to rely this 
kind of absolute error measurement [44–46]. We next 
introduce three  modifications to the MSE that better 
account for specifics of child growth data.

Normalized mean squared error (nMSE)
It has been widely accepted that using relative error 
measurements which are unit-free can improve compari-
son performance and account for differences in measure-
ment units as well as heteroscedasticity, thus providing 
fairer comparisons of predictive models [45, 47–49]. Sub-
ject-specific normalized mean squared error adds local-
ized normalization and is defined as

which can be considered as percentage errors. The error 
expressed in percentages gives a more robust metric of 
goodness-of-fit that can be uniformly applied across a 
wide age span.

Age‑stratified mean squared error (aMSE)
Age-stratified mean squared error performs age-stratifi-
cation and calculates within-strata subject-specific MSEs. 
It is defined as

nMSEk
i =

1

mi

mi
∑

j=1

(

Yij − Ŷ k
ij

)2

Y 2
ij

Weighted mean squared error (wMSE)
It is also possible to create a metric using the MSE, nMSE, 
or aMSE that weights subgroups of interest. For example, 
we weighted individuals based on their growth velocity 
between 3 and 12 months so that slower growing individu-
als carried more weight. We used the following equations

where hti are height values at the corresponding  ti (time 
points) closest to 3 and 12 months of age. We calculated 
quartile of height velocity based on each child’s growth 
velocity relative to all others in our sample. Therefore, 
the height velocities of children in the 0th–24th, 25th–
49th, 50th–74th, and 75th–100th would be assigned val-
ues of 1, 2, 3, and 4, respectively. This is one example of 
weighting specific individuals; one could also weight other 
subject-specific metrics of interest (e.g. those with poorer 
outcomes).

Model comparisons
Four common scenarios in growth modeling were con-
sidered: forward, backward, in-range, and new individual 
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Fig. 1 Age (x-axis) versus longitudinal height measurements (y-axis) showing fitted values (red) and observed values (black) for two separate 
individuals (child A and child B)
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prediction (Fig.  2). Forward prediction represents the 
scenario where missingness happens in the later stages of 
growth and the goal is to use data from the earlier stages 
to predict missingness in later stages. Backward pre-
diction is opposite to forward; missingness in the early 
stages is predicted using data from later stages. In-range 
prediction happens where missingness takes place inside 
of the monitoring period, and new individual prediction 
occurs when there is missingness for an entire individual.

Error was measured by holding out a portion of the 
data (out-of-sample), fitting models to in-sample data, 
and then measuring predictive accuracy on the observa-
tions held out. With forward, backward, and in-range, 
analysis was performed by randomly selecting 50% of the 
children and subsequently holding out 10, 20, and 50% of 
their data. For new individual prediction, we randomly 
selected 10, 20, and 50% of the children to hold out. Pri-
mary analysis was performed using the 20% method, 
with the 10 and 50% used for comparison in sensitivity 
analysis.

Model performance will be presented as median and 
interquartile range (IQR) of MSE, nMSE, wMSE, or 
aMSE for each of the three model types (i.e. LME, fPCA, 
and FCR).

Results
Population characteristics
The final sample included 215 with complete data out 
of 304 eligible children. Eleven (3.6%) had incomplete 
anthropometric data and 78 (25.7%) did not have fol-
low up past the age of 1 year. There were 39 observations 
per individual on average, with males representing 49% 
(n =  106) of the sample. Median lag between observa-
tions was 14 days (interquartile range 11–27).

In‑range
In-range prediction error was lowest with fPCA when 
using nMSE, lowest with FCR when using wMSE, and the 
same when using MSE (Tables 1, 2, and 3). Median nMSE 
ranged from 10.1E−5 (IQR 5.6E−5 to 18.1E−5) for LME 

Fig. 2 Age (x-axis) versus longitudinal height measurements (y-axis) stratified by those which were in-sample (used to fit regression models) versus 
out-of-sample (held out to make predictions on) and location of sampling. In-sample observations (grey) were used to fit models, while out-of-
sample observations (red) were used to measure prediction accuracy
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to 5.6E−5 (3.7E−5 to 7.7E−1) for FCR. Distributional 
properties of prediction error for each model, metric, 
and sampling method can be seen in Fig. 3. Using aMSE, 
we saw varying distributions again with in-range predic-
tion. FCR and fPCA performed similarly well followed by 
LME (Fig. 4).    

Forward
Model error with forward prediction, using median 
nMSE, ranged from 0.79 (IQR 0.39–1.74) for LME to 0.62 
(0.32–1.42) for fPCA. Model error was lowest for fPCA 
when utilizing MSE and nMSE, but FCR slightly out-
performed fPCA with wMSE (Tables 1, 2, and 3). There 
were similar results using aMSE with fPCA performing 
best, followed by FCR and LME (Fig. 4). Intra-strata com-
parison showed a trend, with FCR, fPCA, and LME per-
forming better in ages 12–18 months compared to ages 
18–24 months.

Backward
Backward prediction revealed similar results. fPCA per-
formed best using MSE and nMSE, but FCR performed 
best with wMSE (Tables  1, 2, and 3). Median nMSE 

ranged from 18E−5 (IQR 9.8E−5 to 43.9E−5) for LME 
to 16.2E−5 (8.1E−5 to 32.3E−5) for fPCA. All pre-
dicted points in backward prediction fell between ages 
0–6  months. Therefore, the aMSE did not stratify the 
data and was interpreted as the standard MSE.

New individuals
When predicting in-range on new individuals, FCR 
slightly outperformed fPCA for all metrics and sam-
pling methods. Median nMSE ranged from 8.6E−5 
(IQR 6.6E−5 to 12.2E−5) for LME to 3.9E−5 (3.0E−5 to 
4.8E−5) for FCR. Error distributions using aMSE were 
consistent with the above findings, with FCR and fPCA 
performing best followed by LME (Fig.  4). Between-
strata differences were more apparent for LME, with 
LME showing less error at higher age ranges.

Sensitivity analyses
As seen in Fig. 5, prediction error in backward, forward, 
and in-range tended to be larger with increased number 
of observations held out. This trend was not as apparent 
when predicting on new individuals.

Discussion
This analysis demonstrates how to compare growth 
models (both nested and non-nested) by measuring 
prediction error via nMSE, wMSE, and aMSE. Each 
metric is subject-specific and can be used in a variety 
of real world situations. Sampling techniques can be 
adjusted to replicate exact scenarios of interest. Uti-
lizing the nMSE and aMSE addresses the issue of the 
MSE favoring larger measurements. Furthermore, the 
aMSE can illuminate intra-age group performance 
differences and the wMSE demonstrates the ability 
to weight specific subgroups of interest, potentially 
helping to further detect performance gaps between 
growth models.

Table 1 Median and interquartile range for MSE stratified 
by location of prediction and model type

Best performing models are in italics. Error was measured by holding out a 
portion of the data (out-of-sample), fitting models to in-sample data, and then 
measuring predictive accuracy on the observations held out. With forward, 
backward, and in-range, analyses were performed by randomly selecting 50% of 
the children and subsequently holding out 20% of their data

Backward Forward In‑range New individu‑
als

LME 0.58 (0.29, 
1.40)

0.79 (0.39, 
1.74)

0.41 (0.27, 
0.73)

0.39 (0.29, 0.47)

FCR 0.49 (0.26, 
0.92)

0.71 (0.29, 
1.29)

0.23 (0.17, 0.36) 0.17 (0.13, 0.22)

fPCA 0.48 (0.24, 0.90) 0.62 (0.32, 1.42) 0.24 (0.17, 
0.35)

0.18 (0.14, 0.22)

Table 2 Median and interquartile range for nMSE, strati-
fied by location of prediction and model type

Best performing models are in italics. All values in Table 2 were multiplied by  105 
to help better visualize performance differences. Error was measured by holding 
out a portion of the data (out-of-sample), fitting models to in-sample data, and 
then measuring predictive accuracy on the observations held out. With forward, 
backward, and in-range, analyses were performed by randomly selecting 50% of 
the children and subsequently holding out 20% of their data

Backward Forward In‑range New individu‑
als

LME 18.19 (9.77, 
43.90)

11.67 (6.25, 
24.59)

10.14 (5.59, 
18.08)

8.55 (6.75, 
12.21)

FCR 17.44 (8.11, 
31.11)

10.84 (4.47, 
18.78)

5.57 (3.73, 7.67) 3.85 (3.02, 4.78)

fPCA 16.17 (8.05, 
32.35)

9.78 (4.72, 
19.86)

5.72 (3.81, 7.98) 4.10 (3.17, 4.76)

Table 3 Median and interquartile range for wMSE, strati-
fied by location of prediction and model type

Best performing models are in italics. Error was measured by holding out a 
portion of the data (out-of-sample), fitting models to in-sample data, and then 
measuring predictive accuracy on the observations held out. With forward, 
backward, and in-range, analyses were performed by randomly selecting 50% of 
the children and subsequently holding out 20% of their data

Backward Forward In‑range New individu‑
als

LME 0.23 (0.12, 
0.68)

0.39 (0.17, 
0.76)

0.18 (0.11, 
0.39)

0.17 (0.12, 0.27)

FCR 0.19 (0.10, 0.28) 0.24 (0.12, 0.45) 0.10 (0.06, 0.16) 0.07 (0.05, 0.12)

fPCA 0.21 (0.12, 
0.45)

0.25 (0.10, 
0.62)

0.12 (0.07, 
0.19)

0.08 (0.06, 0.13)
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Fig. 3 Prediction error (x-axis) versus model type (y-axis) stratified by prediction error metric (MSE, nMSE, and wMSE) and location of prediction 
(backward, forward, in-range, and new individuals). Median and interquartile range are presented in red (diamonds and error bars, respectively) and 
individual observations are presented in black (dots). The x-axis is log-scale with different ranges for MSE, nMSE, and wMSE due to differences in 
scale of prediction error values
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Based on the results of this study, functional models 
outperformed traditional linear models in all scenarios. 
Even when utilizing proven techniques with LME (i.e. 
truncated cubic splines and autoregressive correlation 
correction), FCR and fPCA performed better in all sce-
narios tested [21, 50]. The difference in prediction error 
between FCR and fPCA in most situations was relatively 
small. Employing the wMSE revealed a shift in the best 
performing model when predicting backward, forward, 
and in-range. In these situations, the MSE and nMSE 
preferred fPCA as the best performing model while the 
wMSE showed FCR outperforming fPCA (Tables  1, 2, 
and 3). While functional models consistently outper-
formed LME, it seems they were more sensitive to the 
proportion of data removed when predicting backward 
and in-range (Fig.  5). One possible explanation is that 
shapes of curves  are well defined for LME with cubic 
splines; however, for functional approaches, it is more 
difficult to predict trajectories of growth curves with lim-
ited amount of data.

A limitation of the MSE is its tendency to be inflated 
by outliers. Using subject-specific estimates partially 
addresses this, but there is still the possibility of having 
outliers within subjects. Sensitivity analysis should be 
performed to assess whether more robust (outlier-insen-
sitive) approaches are necessary. There are a few other 
limitations  to this study. First, even though we used a 
variety of sampling strategies, they do not comprehen-
sively represent real world situations. There are more sce-
narios that could not be included in this analysis, such as 
predicting backward and forward on new individuals as 
well as choosing different hold out percentages. Second, 
aMSE can be less useful in certain situations. For exam-
ple, age-stratification may not be needed when predicting 
over a relatively short age range or if data is sparse with 
fewer observations in each age group.

Our study also has some potential strengths. First, 
the proposed method is a novel approach of transform-
ing the subject-specific MSE (i.e. nMSE, aMSE, and 
wMSE) to assess prediction error differences between 

Fig. 4 Results from age-stratified mean squared error (aMSE). MSE values (x-axis) versus age-group (y-axis) stratified by location of prediction (back-
ward, forward, in-range, and new individuals) and model type (LME, FCR, and fPCA). Median values are presented as diamonds and interquartile 
ranges as error bars

Fig. 5 Prediction error (x-axis) versus model type (y-axis) stratified by location of prediction (backward, forward, in-range, and new individuals). 
Median and interquartile range are presented in red (diamonds and error bars, respectively). The x-axis is log-scale
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both nested and  non-nested growth models. Alterna-
tive methods such as AIC, BIC, F-test, and the LRT only 
work for nested models. Second, our approach is flex-
ible, allowing adaptation to specific real-world situations. 
The ability to weight subgroups of interest and adapt the 
age ranges used with aMSE contributes to this. Third, 
the CONTENT dataset is of high quality and high reso-
lution. There were very few outliers regarding growth 
trends and the average number of observations per child 
was approximately 40 within a 2-year span. Finally, this 
analysis employed modern growth modeling techniques. 
FCR, fPCA, and LME are proven effective techniques for 
longitudinal growth modeling [13, 22, 24, 26–29, 32–39, 
51–53].

Conclusion
Subject-specific normalized mean squared error, age-
stratified mean squared error, and weighted mean 
squared error are useful metrics for comparing both 
nested and non-nested growth models. We applied these 
metrics to three competing modeling methods and dem-
onstrated the ability to weight subgroups of interest and 
evaluate performance gaps.
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