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A Statistical Learning Framework 
for Materials Science: Application 
to Elastic Moduli of k-nary Inorganic 
Polycrystalline Compounds
Maarten de Jong1,*,†, Wei Chen2,*,‡, Randy Notestine3, Kristin Persson1,2, Gerbrand Ceder1,4, 
Anubhav Jain2, Mark Asta1,4 & Anthony Gamst3

Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate 
materials discovery and design. Such pursuits benefit from pooling training data across, and thus 
being able to generalize predictions over, k-nary compounds of diverse chemistries and structures. 
This work presents a SL framework that addresses challenges in materials science applications, where 
datasets are diverse but of modest size, and extreme values are often of interest. Our advances include 
the application of power or Hölder means to construct descriptors that generalize over chemistry and 
crystal structure, and the incorporation of multivariate local regression within a gradient boosting 
framework. The approach is demonstrated by developing SL models to predict bulk and shear moduli  
(K and G, respectively) for polycrystalline inorganic compounds, using 1,940 compounds from a growing 
database of calculated elastic moduli for metals, semiconductors and insulators. The usefulness of the 
models is illustrated by screening for superhard materials.

In recent years, first-principles methods for calculating properties of inorganic compounds have advanced to the 
point that it is now possible, for a wide range of chemistries, to predict many properties of a material before it 
is synthesized in the lab1. This achievement has spurred the use of high-throughput computing techniques2–5 as 
an engine for the rapid development of extensive databases of calculated material properties6–12. Such databases 
create new opportunities for computationally-assisted materials discovery and design, providing for a diverse 
range of engineering applications with custom tailored solutions. But even with current and near-term computing 
resources, high-throughput techniques can only analyze a fraction of all possible compositions and crystal struc-
tures. Thus, statistical learning (SL), or machine learning, offers an express lane to further accelerate materials 
discovery and inverse design2,5,13–27. As statistical learning techniques advance, increasingly general models will 
allow us to quickly screen materials over broader design spaces and intelligently prioritize the high-throughput 
analysis of the most promising material candidates.

One encounters several challenges when applying SL to materials science problems. Although many elemental 
properties are available, we typically do not know how to construct optimal descriptors for each property, over 
a variable number of constituent elements. For instance, if one believes that some average of atomic radii is an 
important descriptor, there are many different averages, let alone possible weighting schemes, that one might 
investigate. This challenge may be reduced by placing restrictions on the number of constituent elements or types 
of chemistries or structures considered, but such restrictions reduce the generalizability of the learned predictor. 
Materials science datasets are often also smaller than those available in domains where SL has an established his-
tory. This requires that SL be applied with significant care in order to prevent over-fitting the model. Over-fitting 
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leads to predictions that are less generalizable to new data than anticipated28, such that predictions are less accu-
rate than expected. At the same time, smaller datasets challenge us to use the available data as wisely as possible. 
This may include leveraging observations related to the smoothness of the underlying physical phenomenon, and 
the use of an appropriate risk criterion, rather than partitioning the available data into distinct training and test 
sets. For SL to have the greatest impact on materials discovery and design, we must pursue techniques that make 
maximal use of the available data. This requires approaches that are capable of systematically pooling training 
data across, and are thus capable of generalizing predictions over, k-nary compounds of diverse chemistries and 
structures.

The successful application of SL requires the selection of an appropriate set of descriptor candidates. In mate-
rials science problems, the candidates must be capable of both “uniquely characterizing”22 a diverse range of 
compounds, and sufficiently explaining the diversity of the phenomenon being learned. Thus, the selection of 
descriptor candidates is a crucial and active field of investigation within materials science (e.g. refs 14, 22 and 23),  
as the field endeavors to develop general models with high predictive accuracy. Previous work in materials science 
has included both categorical descriptors (e.g. refs 23 and 24) and continuous descriptors (e.g. refs 22 and 23).  
Although both types of descriptors may be legitimately used in SL, special care should be taken when using 
categorical descriptors, as each such descriptor essentially (i.e., unless there is sufficient smoothing across cells) 
partitions the space of compounds into disjoint cells, which quickly increases the degrees of freedom and thus the 
risk of over-fitting the model.

SL applications should always include descriptor candidates suggested by known, scientifically relevant rela-
tionships22,23. But in order to construct models that accurately generalize across diverse datasets, such candi-
dates will typically need to be augmented with additional descriptor candidates, capable of bridging across the 
simplifying assumptions that divide less generalizable models. Without these additional candidates, attempts to 
learn more general models will be stifled, as it will be impossible to discover new, unexpected relationships. Here 
we introduce the use of Hölder means, also known as generalized or power means, as an ordered approach to 
explicitly constructing descriptor candidates from variable length numeric lists. Hölder means describe a family 
of means that range from the minimum to maximum functions, and include the harmonic, geometric, arithme-
tic, and quadratic means29. This paper advances previous work by constructing descriptor candidates as Hölder 
means, which, to the best of our knowledge, has not previously been done in the field of materials science.

Having discussed the construction of descriptor candidates, we now introduce gradient boosting machine 
local polynomial regression (GBM-Locfit), which is a SL technique that we developed to leverage the available 
data as wisely as possible. Energy minimization problems often enforce smoothness in the functions mapping 
useful descriptors to outcomes. Statistical learning techniques may exploit such smoothness, when present, in 
order to produce models that are as accurate as possible for a fixed amount of training data; such considerations 
are more important when working with smaller training datasets than with larger datasets. GBM-Locfit uti-
lizes multivariate local polynomial regression, as implemented in Locfit30, within a gradient boosting machine 
(GBM) framework31. Local polynomial regression performs a series of weighted regressions within a moving 
window, with a weight function that gives greatest weight to observations near the center of the window, pro-
ducing a smooth curve that runs through the middle of the observations32,33. GBM uses a gradient descent algo-
rithm to iteratively assemble a predictor while minimizing an appropriate, typically squared error, loss function31. 
Our approach enforces more smoothness in the functions mapping descriptors to outcomes than traditional 
tree-based GBM methods, which we suggest is appropriate for this and many other materials science problems. 
Additionally, the enforced smoothness helps minimize boundary bias (i.e., when the solution is flat over some 
peripheral region of the space of descriptors), which can be problematic with tree-based techniques when the data 
has sparsely populated tails. We believe GBM-Locfit will be advantageous for many materials science problems 
where datasets are of modest size, the underlying physical phenomenon is reasonably smooth and sparse regions 
have been carefully studied and are of particular interest.

To illustrate both our GBM-Locfit approach and the use of descriptor candidates constructed as Hölder 
means, we predict the elastic bulk and shear moduli (K and G, respectively) of k-nary inorganic polycrystalline 
compounds. These moduli govern the stress-strain relations of isotropic materials within the linear-elastic range 
and are central to governing the mechanical behavior of materials in diverse contexts spanning geophysics to 
structural engineering. In addition, elastic constants are known to correlate with a wide range of other materials 
properties, including ductility and hardness34–37 and thermal conductivity38–40. Further, the single-crystal elas-
tic constants are a direct measure of the bonding strength and directionality in a material, and are thus widely 
employed in the development of theoretical models for interatomic forces. Due to the importance of these prop-
erties, extensive efforts have been devoted to developing theoretical models of elastic moduli, relating their mag-
nitude to structural and electronic properties such as atomic density, coordination, cohesive energy and Fermi 
energy27,41–46. But all of these models consider specific subsets of chemistries or structures, limiting their use for 
predicting the elastic properties of a diverse range of materials. A recent investigation employing nonparametric 
regression24 and categorical descriptors considered elastic constants for a diverse range of materials, but the results 
fail to generalize to new data (see Supplementary Figures S6 and S7). In this paper, we demonstrate the applica-
tion of the SL framework described above to develop broadly applicable models for K and G, expressed in terms 
of a few descriptors that are either currently tabulated or easily computed. We demonstrate how such models can 
be used to enable materials discovery, by screening the hardness of over 30,000 compounds to identify super-
hard inorganic compounds that are thermodynamically stable or weakly metastable at a temperature of 0 K. Our 
training dataset consists of 1,940 inorganic compounds from the Materials Project’s growing database of elastic  
constants constructed using first-principles, quantum mechanical calculations based on Density Functional 
Theory (DFT)12.

The outline of this paper is as follows. In the methods section, we detail our SL framework, which includes 
safeguards against over-fitting our models. Then the predictive models for the elastic moduli are described in the 
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results section, including an overview of the descriptors and the prediction accuracy. In addition, we present a 
screening process for superhard materials and present a DFT validation. In the discussion section, we examine 
known issues with the accuracy of the predictions and conclude with a summary of the main advances presented 
in this work.

Methods
We begin our methods section with some background on local polynomial regression, which was introduced to 
the statistics literature by Stone32 and Cleveland33. Loader30 provides a general, yet thorough discussion of local 
regression, as well as implementation details of the Locfit software. Simply put, multivariate local regression pro-
duces a smooth surface that runs nominally through the middle of the observations. Thus, given response varia-
bles, y, and predictor variables, x, Locfit estimates a regression function, η, which relates these quantities, where  
 is noise (assumed to be independent and identically distributed with zero mean and finite variance):

η= ... +y x x x( , , , ) (1)m1 2 

Globally, no strong assumptions are made concerning the form of η, the underlying function being estimated. 
Locally, at each fitting point, the underlying function is assumed to be smooth, such that Taylor’s theorem allows 
the behavior to be described with a low order polynomial. Specifically, a once-differentiable function can be 
approximated locally by a linear function, and more generally, a k-times differentiable function can be approxi-
mated locally by a kth-order polynomial. In order to make local estimates of η, one must select a bandwidth, or 
smoothing window, and an appropriate smoothing kernel or weight function. Appropriate weight functions, such 
as Locfit’s default tricubic weight function, give greatest weight to observations near the center of the smoothing 
window and zero weight to observations outside the window. The local estimate of η, at each fitting point, is the 
intercept of the local regression centered at the fitting point, and these local estimates combine to produce a 
smooth estimate of the underlying function. We are interested in estimating smooth functions, because energy 
minimization problems often enforce smoothness in the functions mapping useful descriptors to outcomes.

In this paper, we distinguish between composition and structural descriptors. Composition descriptors, such 
as average atomic radius and weight, are calculated from elemental properties and only require knowledge of a 
compound’s composition. Structural descriptors, such as cohesive energy and volume per atom, require knowl-
edge of a compound’s specific structure (in addition to composition), and may be determined experimentally or 
calculated using DFT. We seek composition descriptors that generalize over k-nary compounds, but do not have  
a priori knowledge of how to combine the various elemental properties to construct descriptors that are optimal 
for our specific, yet very general problem. Thus we construct composition descriptors as a series of weighted 
Hölder means, rely upon Locfit to capture any necessary non-linearities, and rely upon model selection tech-
niques and our GBM framework to select which descriptors are most useful at each iteration, and for each specific 
problem. Because GBM implements a version of the least absolute shrinkage and selection operator (LASSO)47, 
our approach has similarities to the statistical learning approach advocated by Ghiringhelli et al.22, but is less reli-
ant upon sufficient, a priori, scientific insight and may thus be applied to more general problems.

In equation (2), μp(x) represents the Hölder mean μ, to the power p, of the property x, taken over i values, 
with associated weights wi

29. Equation (3) gives the Hölder mean when p equals zero. Hölder means describe a 
family of generalized means that range from the minimum function (when p =  − ∞ ) to the maximum function 
(p =  ∞ ). An example would be calculating the cubic mean (p =  3) of atomic radii over all constituent elements in 
a particular composition, where the weights would be the molar quantities of each element.
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In this work, we only consider the Hölder means with integer power values between negative and positive 
four, which include the well known harmonic mean (p =  − 1), geometric mean (p =  0), arithmetic mean (p =  1), 
and quadratic or Euclidean mean (p =  2). We construct these Hölder based composition descriptors for each 
of eight elemental properties listed in Table 1 (upper), using elemental properties from pymatgen48. We also 
consider the structural descriptors listed in Table 1 (lower); most of these descriptors are obtained directly or 
post-processed from a single density functional theory (DFT) calculation per compound. The cohesive energy 
per atom, Ec , is estimated from DFT by subtracting the atom-in-a-box energies of the constituent elements, from 
the formation energy of each compound. Following a Voronoi tessellation49 of each unit cell, atomic coordina-
tions, nearest-neighbor bond lengths, and bond angles between adjacent neighbors are calculated for each site. 
Additional structural descriptors are then constructed as Hölder means of these quantities over all sites; please see 
Supplementary Table SI for a full list of all investigated descriptors.

Our GBM-Locfit implementation uses established model selection techniques, including 10-fold 
cross-validation and a conservative risk criterion, to determine which descriptors are the most useful for predict-
ing K and G, without over-fitting the training data. The GBM framework iteratively assembles a predictor, P, as a 
sum of Locfit smoothed weak learners, ηi. At each iteration, GBM selects the smoothed weak learner candidate 
that leads to the greatest reduction in the size of the residual, ∆i , but attenuates each weak learner by the  
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learning rate, λ, as shown in equation (4). Both of our final models use a learning rate of 5% and limit the level of 
interaction to 3 descriptors, Dj, meaning that Locfit is only run with three descriptors at a time, to create each 
smoothed weak learner candidate.

∑λη η= = ∆
=

−P D D D, Locfit( , , , )
(4)i

N

i i i j k l
1

1

Although it is possible that the number of iterations required to achieve a given prediction error could be reduced 
by tuning Locfit’s smoothing parameters, we have opted to use Locfit’s default smoothing parameters and rely on 
the GBM method to provide an appropriate amount of flexibility to the fitted model. The one exception to this, 
is that Locfit’s degree of local polynomial is set to linear for all models, rather than using the default setting of 
quadratic.

Our GBM-Locfit implementation utilizes all of the available data for training and relies on a conservative risk 
criterion to limit the number of iterations, rather than an explicitly partitioned test dataset, to avoid over-fitting 
the model to the data. As summarized graphically in Fig. 1, we perform 10-fold cross-validation (CV), using 90% 
of the data to select the weak learner that minimizes the squared error loss function and the remaining 10% of the 
data to estimate the mean and standard deviation of the out-of-sample squared errors, for each iteration and fold. 
After this process is completed for each fold and for a large number of iterations, the prediction errors are calcu-
lated as the mean (over folds) out-of-sample squared error for each iteration, and the standard errors of the pre-
diction errors are estimated from the standard deviations of the out-of-sample squared errors for each iteration. 
The risk criterion determines the iteration threshold as the first iteration for which the prediction mean squared 
error (MSE) is less than the sum of the minimum prediction MSE (over all iterations) and the standard error of 
the prediction MSE at that minimum50, which has been shown to be conservative51. Please see Supplementary 
Fig. S1 for example performance curves. A more commonly used, but unconservative risk criterion is to simply 
establish the iteration threshold as the minimum prediction MSE (without adding one standard error), but this 
seems overly optimistic, particularly when the sample size is small (relative to the number of descriptor candi-
dates) or the prediction MSE curve lacks a distinct minimum. After the iteration threshold is determined, a final 
GBM-Locfit model is fit using 100% of the data, but limiting the number of iterations to the previously established 
iteration threshold, to avoid over-fitting the model to the data. By limiting the number of GBM iterations, we 
inherently limit the number of weak learners, since each iteration adds one weak learner term to the predictor, 
as in equation (4).

Results
We demonstrate GBM-Locfit by learning the Voigt-Reuss-Hill (VRH) averages52 of the elastic bulk and shear 
moduli (K and G, respectively) which characterize polycrystalline compounds. More specifically, we learn log(K) 
and log(G) to avoid having the squared error loss function severely overweight the higher moduli materials. We 
present our predictions graphically for K and G in Fig. 2, by comparing the VRH moduli from our DFT training 
set12 with those learned by our GBM-Locfit method.

Our best four descriptor models for log(K) and Glog( ) are summarized in Table 2. None of our models with 
more than four descriptors have significantly better predictive accuracy than these four descriptor models, based 

Symbol Description

Gn group number in periodic table

M atomic mass

R atomic radius (empirical)

Rn row number in periodic table

Tb boiling temperature

Tm melting temperature

X electronegativity

Z atomic number

Ec cohesive energy per atom

Ef formation energy per atom

Eg band gap

Eh energy above hull per atom

ρ density

log(V) log of volume per atom

Vc Voronoi based site coordination

Vl Voronoi based site bond lengths

Vθ Voronoi based site bond angles

Table 1.  Overview of descriptor candidates. Descriptor candidates for both moduli include composition 
descriptors constructed as Hölder means and geometric and arithmetic standard deviations of eight elemental 
properties (upper) and structural descriptors from DFT and subsequent post-processing (lower).
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10−Fold Cross−Validation Loop

GBM Loop (each with 90% of data) GBM Loop (with 100% of data)

Step 1: Determine Iteration Threshold Step 2: Construct Predictor

GBM−Locfit Implementation Overview

Add Best Weak Learner to Model
Locfit

Weak Learner Evaluation Loop

Add Best Weak Learner to Model
Locfit

Weak Learner Evaluation Loop

Save PredictorSave (only) the Iteration Threshold: T

For Many Iterations For T Iterations (only)

Evaluate Risk Criteria

Figure 1. GBM-Locfit implementation consists of two distinct steps. First, the iteration threshold is 
determined per the risk criterion, by running the GBM loop within a 10-fold cross-validation loop, in order 
to estimate the prediction mean squared error and associated standard error for each iteration. Second, the 
final GBM-Locfit model is fit with 100% of the data, while limiting the number of GBM iterations to the 
iteration threshold. This approach utilizes all of the available data for training, gives equal consideration to each 
compound, and avoids over-fitting the model to the data.
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Figure 2. Predictions. Comparison of DFT training data with GBM-Locfit predictions for K (a) and G (b). 
Training set consists of 65 unary, 1091 binary, 776 ternary, and 8 quaternary compounds.

Model Rank Descriptor Underlying property RI (%)

K

1 log(V) volume per atom 46.6

2 μ1(Rn) row number 24.5

3 Ec cohesive energy 19.4

4 μ−4(X) electronegativity 9.5

G

1 Ec cohesive energy 37.0

2 log(V) volume per atom 35.9

3 μ−3(Rn) row number 13.8

4 μ4(X) electronegativity 13.3

Table 2.  GBM-Locfit model summaries. Descriptor rank and relative influence (RI) for our best four 
descriptor models for K and G. Composition descriptors are constructed as Hölder means to the power p, μp(x), 
of property x.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:34256 | DOI: 10.1038/srep34256

on comparisons of prediction mean squared error and their associated standard errors. And all of our models 
with less than four descriptors have significantly less predictive accuracy.

For both K and G, the structural descriptors log(V), log of volume per atom, and Ec , cohesive energy per 
atom, are very important, with a combined relative influence of 66.0% for K and 72.9% for G. Notably, these 
two descriptors are more useful for predicting K and G than any of the Voronoi based structural descriptors, 
which were constructed to capture individual attributes of the local environments. Yet the usefulness of these two 
information-rich descriptors is not surprising, since log(V) and Ec incorporate information regarding the local 
environments, including coordination, bond angles, and bond lengths.

For modulus X, relative error is defined as:

=
−X X

X
Relative Error

(5)
GBM DFT

DFT

Over half of our predictions have a relative error of less than 10% for K, and less than 20% for G, as shown in 
Table 3.

Figures 3 and 4 show marginal predictor, or partial dependence, plots for K and G, which provide a one 
dimensional summary of the effect of each descriptor on the overall prediction. Marginal predictor summaries 
account for the effects of the other descriptors28, so any correlation between descriptors reduces the predictive 
influence of one or more of the correlated descriptors. The marginal predictor plots indicate an inverse, nearly 
linear relationship between log(V) and log(K), and log(V) and log(G). This agrees with previous findings for 
K53–56, but our results support that this relationship generalizes beyond the specific material classes previously 
studied, and also applies approximately to G. Additionally, the marginal predictor plots indicate an inverse, gently 
non-linear relationship between Ec and log(K), and Ec and log(G). Thus, our models indicate compounds with 
high K and G are generally densely packed (low log(V)) and strongly bonded (high Ec), which agree with both 
previous findings53–56 and physical intuition. Furthermore, the strong influence of log(V) and Ec on K and G, 
combined with their similar marginal predictor plots, underscore the strong correlation between the two moduli.

Although Ec is an important predictor of K, the composition descriptor μ1(Rn), arithmetic mean of elemental 
row number, ranks as the second most influential descriptor of K. The marginal predictor plot for μ1(Rn) indicates 
a roughly quadratic relationship with log(K), indicating that compounds with a higher arithmetic average of row 
number generally have a higher K. The final descriptor for K, with a comparatively small relative influence in our 
model, is μ−4(X), the quartic-harmonic mean of elemental electronegativity, whose marginal predictor plot indi-
cates that compounds with low average electronegativity generally have a lower K. Although this electronegativity 
descriptor has a small relative influence and fairly weak partial dependence, these are both after accounting for 
the influence of the other descriptors. The Spearman’s rank correlation between μ−4(X) and K is approximately 
0.50, which is a moderately strong correlation, as evident in Fig. 3(d). Hölder means of Rn and X also complete the 
set of top four descriptors for G, although for G the most useful Hölder means are μ−3(Rn), the cubic-harmonic 
mean of elemental row number, and μ4(X), the quartic mean of elemental electronegativity.

The influence of log(V) suggests that it may be possible to develop higher moduli materials from existing com-
pounds by filling interstitial sites (to decrease average volume per atom). But the influence of mean elemental row 
number will at least partially offset the possible improvement, since elements that could be added to interstitial 
sites (with minimal disruption of the structure) will generally be smaller than the neighboring elements.

Screening for superhard materials. As an example illustration, we use the SL model to screen for super-
hard materials. More details and analyses resulting from this application will be presented in a forthcoming article.  
Here we focus on the main results to illustrate the utility of such a SL model.

The SL predictors developed in this work allow the rapid estimation of K and G for thousands of compounds, 
for which the required descriptors may be easily calculated. Additionally, with appropriate caution, these pre-
dictors may be plugged into other relationships, to estimate additional material properties that can be expressed 
as functions of K and G. As an example, we estimate Vickers hardness, and then screen for superhard materi-
als, defined as those having a hardness exceeding 40 GPa57. Vickers hardness is estimated using a recently pub-
lished model, that has shown good agreement with experimental measurements for both cubic and non-cubic 
materials35,58,59:

=










−
.

H G
K

2 3
(6)

v

3

2

0 585

Model
Iteration 

Threshold
Prediction RMSE 

(log(GPa))

Percent of Predictions within 
Relative Error of

5% 10% 20% 30%

K 99 0.0750 33.1 58.4 87.3 94.5

G 90 0.1378 13.6 28.8 53.0 73.0

Table 3.  GBM-Locfit prediction accuracy. Iteration threshold as determined by cross validation, prediction 
root mean squared error (RMSE), and percentage of predictions within 5, 10, 20, and 30 percent relative error 
per equation (5) for our best four descriptor models for K and G.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:34256 | DOI: 10.1038/srep34256

In general, one should exercise caution when plugging results from one or more statistical models into other 
equations, without an understanding of the error associated with each model and the effect of such errors upon 
the new outcome. In our case, because the residuals of our SL models for log(K) and log(G) are positively corre-
lated, the plugin approach should be reasonably accurate when used to generate a relative ranking of hardness. 
Additionally, we are only using this approach for screening, to identify compounds for more thorough investiga-
tion via our DFT workflow.

The screening process for superhard materials starts by considering approximately 30,000 compounds that 
form a subset of the 66,000 compounds currently in the Materials Project. This subset contains only elements and 
compounds for which DFT calculations based on the generalized gradient approximation (GGA) are expected 
to be accurate. In particular, materials containing f-electrons or d-electrons that require beyond-DFT treatments 
(such as DFT +  U) are not considered in the screening process. This represents a realistic materials-discovery sce-
nario in which screening is carried out on a large number of compounds for which the desired physical property 
is unknown, either from experiments or calculations.

The SL model is used to estimate the hardness for the 30,000 compounds by employing equation (6). The 
resulting distribution of hardness values is shown in Supplementary Fig. S8. To further refine the SL predic-
tions of hardness, DFT calculations are performed on the most promising candidates, as identified by the SL 
model. Consistent with experiments, our SL model identifies diamond as being the hardest compound (among 
the 30,000 materials considered in the screening), followed by (cubic) boron nitride, a well-known superhard 
compound57. Both of these findings were confirmed by subsequent DFT calculations. Some other compounds 
that are predicted to be superhard or near-superhard according to the SL model and subsequent DFT calculations 
are Be2C and the family of borides of the form X-B2, where X =  Ti, Hf, Zr, Sc, Re, V, together with B4C. These com-
pounds are all known (near-) superhard materials60,61. Some compounds have been identified from the SL model 
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Figure 3. Partial dependence plots for K. Partial dependence curves are shown as solid black lines for:  
(a) volume per atom, (b) arithmetic mean of elemental row number, (c) cohesive energy, and (d) quartic-
harmonic mean of elemental electronegativity. Training data points are shown in the background, colored per 
the descriptor indicated below each colorbar, to help illustrate the relationship between descriptors. The mean  
of the outcome (K) is shown as a thin dashed black line for reference.
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(and confirmed by DFT) in this study as (near-) superhard, but are not listed (to the best of our knowledge) in 
this context in the literature. Such compounds include: Mg(B6C)2, Sc2CrB6 and Mg2B24C, all of which are known 
compounds that have been synthesized as part of previous investigations62–64. Such compounds might provide an 
interesting starting point for future experimental investigations of superhardness. More details on our screening 
approach, the DFT calculations and the results will be presented in a forthcoming article.

The hardness screening illustrates the power of using SL models to quickly identify potentially interesting 
novel materials with target properties. However, the potential use of such SL models reaches far beyond the 
screening of compounds. In particular, inverse design can be performed in which materials that meet a desired 
requirement are designed computationally by combining a SL model with an optimization routine such as a 
genetic algorithm. Such methods may be applied not only to search for superhard materials, but also novel ther-
moelectrics, auxetic materials, photovoltaics or materials with high elastic stiffness, for example. With regards to 
identifying compounds with high elastic moduli, we note that in the screening process undertaken in this work, 
several classes of compounds with high K, G and K/G are identified using SL and confirmed by DFT. The ratio 
K/G is known as Pugh’s ratio and correlates with intrinsic ductility34. As with the hardness, DFT calculations are 
performed on the compounds with the highest value for the property of interest as predicted by SL. The systems 
that are subsequently investigated by DFT because of promisingly high elastic moduli or K/G ratio are shown in 
Supplementary Table SIII. The top-performing candidates in terms of K, G and K/G are shown in Supplementary 
Tables SIV, SV and SVI, respectively. The elastic moduli predicted by both the SL model and the subsequent DFT 
calculations are tabulated. The calculated K and G for the systems in Supplementary Table SIII are shown graph-
ically in Supplementary Figures S9 and S10, respectively.
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Discussion
Discrepancies between the DFT and GBM moduli may be caused by (i) shortcomings in our K and G predictors 
or (ii) DFT methods-related errors and approximations, which add noise to the underlying physical phenomenon 
that we are trying to learn. More specifically, predictor shortcomings may include having insufficient training 
data in some important regions of the space of descriptors, having overlooked relevant descriptor candidates, 
and any difficulties our GBM-Locfit regressions may have fully capturing the underlying physical behavior. The 
inorganic polycrystalline compounds in our training set include metallic, ionic, and covalent bonds, but 81% 
of the compounds qualify as metallic, based on having a DFT-calculated band gap of 0.2 eV or less. Although 
DFT-calculated band gaps are not entirely reliable, it seems unlikely that a more detailed analysis would result 
in a meaningfully different characterization of our training set. So while our goal is to predict K and G for a wide 
variety of inorganic polycrystalline compounds, regardless of bond details, we acknowledge that our sample is 
skewed towards metallic compounds. Additionally, we have excluded compounds with f-block elements from our 
training set, since less than 60 such compounds with elastic moduli were available from the Materials Project, and 
these were insufficient to capture the additional complexities associated with the bonding in such compounds. So 
although our learned models may be used to predict K and G for any k-nary compound, the reported accuracies 
may not generalize to compounds with f-block elements.

Our GBM prediction errors are larger for G than for K, particularly for compounds with elastically anisotropic 
crystalline structures. For these compounds, the Voigt and Reuss bounds are further apart which leads to more 
uncertainty in the VRH average, so a descriptor of crystal anisotropy would likely improve the model’s predictive 
accuracy. Other cases where the prediction error is often larger include systems with local magnetic moments, 
e.g., transition-metal oxides and intermetallic compounds containing Cr, Fe, Co, Mn and Ni. Calculating K and G 
for such compounds using DFT is a challenge due to the degrees of freedom associated with magnetic ordering65. 
On the other hand, the GBM-Locfit models lack (explicit) descriptors to include magnetism and might therefore 
not be able to capture these features accurately. DFT is known to sometimes yield inaccurate cohesive energies, 
volume per atom and bulk moduli for late transition metals such as Ag and Au but also various metals such as Hg, 
Cd, Ga, Tl, Pb and Bi65. This has been attributed to problems with the description of d-electron correlation66–68, 
dispersion69, relativistic effects70 and spin-orbit coupling in DFT. This is especially a problem in high throughput 
DFT-calculations, where it is impractical to tune all parameters to yield optimum results for each compound.

Summary and Conclusions
We have demonstrated our novel GBM-Locfit SL technique and descriptor candidates constructed as Hölder 
means by predicting the elastic bulk and shear moduli (K and G, respectively) of k-nary inorganic polycrystalline 
compounds. Our SL framework combines GBM-Locfit (multivariate local regression within a gradient boosting 
framework), 10-fold cross-validation with a conservative risk criterion, and a diverse set of composition and 
structural descriptors, which generalize over k-nary compounds. Thus, following a single DFT run to determine 
log(V) and Ec , predictions for K and G may be made for any inorganic polycrystalline k-nary compound. In fact, 
the K and G predictors described here, are already available on the Materials Project website, for all materials for 
which the full elastic tensors have not yet been calculated via the DFT elastic constants workflow12. Additionally, 
the Materials Project continues to run the DFT workflow on more compounds, so as the available training set 
grows, the predictive accuracy of subsequent SL models should improve and the reliable identification of addi-
tional predictive descriptors may be possible.

More generally, our SL framework dovetails with the extensive materials properties databases made possible 
by high-throughput computing techniques. Such databases provide training data for new SL models, which facil-
itate efficient screening of broader design spaces, which then help focus subsequent high-throughput runs on the 
most promising candidates.

We believe that our GBM-Locfit approach will be advantageous for many materials science problems, when 
functions mapping descriptors to outcomes are smooth, as is common in problems governed by energy minimi-
zation. Although we have introduced descriptors constructed as Hölder means and GBM-Locfit together, they are 
independent advancements; descriptors constructed as Hölder means may be used with any SL technique. Hölder 
means provide an ordered approach to constructing a set of descriptor candidates from variable length numeric 
lists, and should prove useful for a variety of SL problems.

References
1. Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nature Reviews 

Materials 1, 15004 (2016).
2. Morgan, D., Ceder, G. & Curtarolo, S. High-throughput and data mining with ab initio methods. Measurement Science and 

Technology 16, 296 (2004).
3. Curtarolo, S. et al. Aflow: an automatic framework for high-throughput materials discovery. Computational Materials Science 58, 

218–226 (2012).
4. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Materials 12, 191–201 (2013).
5. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-heusler 

semiconductors via high-throughput materials modeling. Physical Review X 4, 011019 (2014).
6. Curtarolo, S. et al. Aflowlib. org: A distributed materials properties repository from high-throughput ab initio calculations. 

Computational Materials Science 58, 227–235 (2012).
7. Jain, A. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. Apl Materials 

1, 011002 (2013).
8. Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. 

Scientific Data 1 (2014).
9. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density 

functional theory: the open quantum materials database (oqmd). Jom 65, 1501–1509 (2013).
10. de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. 

Scientific Data 2 (2015).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:34256 | DOI: 10.1038/srep34256

11. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. Aiida: automated interactive infrastructure and database for 
computational science. Computational Materials Science 111, 218–230 (2016).

12. de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data 2 (2015).
13. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J. & Ceder, G. Predicting crystal structures with data mining of quantum 

calculations. Physical Review Letters 91, 135503 (2003).
14. Mueller, T., Kusne, A. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. 

Comput. Chem (2015).
15. Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. 

Nature Materials 5, 641–646 (2006).
16. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with 

machine learning. Physical Review Letters 108, 058301 (2012).
17. Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Physical Review 

Letters 108, 253002 (2012).
18. Hansen, K. et al. Assessment and validation of machine learning methods for predicting molecular atomization energies. Journal of 

Chemical Theory and Computation 9, 3404–3419 (2013).
19. Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Physical 

Review B 89, 094104 (2014).
20. Meredig, B. & Wolverton, C. Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends. Chemistry of 

Materials 26, 1985–1991 (2014).
21. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of 

formation energies. International Journal of Quantum Chemistry (2015).
22. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of materials science: Critical role of the descriptor. 

Physical Review Letters 114, 105503 (2015).
23. Seko, A. et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations 

and Bayesian optimization. Physical Review Letters 115, 205901 (2015).
24. Calfa, B. A. & Kitchin, J. R. Property prediction of crystalline solids from composition and crystal structure. AIChE Journal (2016).
25. Isayev, O. et al. Materials cartography: Representing and mining materials space using structural and electronic fingerprints. 

Chemistry of Materials 27, 735–743 (2015).
26. Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Physical 

Review Letters 114, 096405 (2015).
27. Balachandran, P. V., Xue, D., Theiler, J., Hogden, J. & Lookman, T. Adaptive strategies for materials design using uncertainties. 

Scientific Reports 6, 19660 (2016).
28. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: data mining, inference, and prediction 364–370 (Springer, 

2011), second edn.
29. Ku, H.-T., Ku, M.-C. & Zhang, X.-M. Generalized power means and interpolating inequalities. Proceedings of the American 

Mathematical Society 127, 145–154 (1999).
30. Loader, C. Local regression and likelihood, vol. 47 (Springer, New York, 1999).
31. Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189–1232 (2001).
32. Stone, C. J. Consistent nonparametric regression. The Annals of Statistics 595–620 (1977).
33. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 

829–836 (1979).
34. Pugh, S. XcII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, 

and Dublin Philosophical Magazine and Journal of Science 45, 823–843 (1954).
35. Niu, H. et al. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion. Scientific 

Reports 2 (2012).
36. Gschneidner, K. et al. A family of ductile intermetallic compounds. Nature Materials 2, 587–591 (2003).
37. Greaves, G. N., Greer, A., Lakes, R. & Rouxel, T. Poisson’s ratio and modern materials. Nature Materials 10, 823–837 (2011).
38. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Materials 7, 105–114 (2008).
39. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Physical Review B 46, 6131 

(1992).
40. Clarke, D. R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology 

163, 67–74 (2003).
41. Cohen, M. L. Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B 32, 7988 (1985).
42. Cohen, M. L. Theory of bulk moduli of hard solids. Materials Science and Engineering: A 105, 11–18 (1988).
43. Lam, P. K., Cohen, M. L. & Martinez, G. Analytic relation between bulk moduli and lattice constants. Physical Review B 35, 9190 

(1987).
44. Harrison, W. A. Elementary electronic structure (World Scientific Singapore, 2004).
45. Suh, C. & Rajan, K. Virtual screening and qsar formulations for crystal chemistry. QSAR & Combinatorial Science 24, 114–119 

(2005).
46. Xu, B., Wang, Q. & Tian, Y. Bulk modulus for polar covalent crystals. Scientific Reports 3 (2013).
47. Efron, B. et al. Least angle regression. The Annals of Statistics 32, 407–499 (2004).
48. Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Computational 

Materials Science 68, 314–319 (2013).
49. O’Keeffe, M. A proposed rigorous definition of coordination number. Acta Crystallographica Section A: Crystal Physics, Diffraction, 

Theoretical and General Crystallography 35, 772–775 (1979).
50.  Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees 78–80 (CRC press, 1993).
51. Giacobino, C., Sardy, S., Rodriguez, J. D. & Hengartner, N. Quantile universal threshold for model selection. arXiv preprint 

arXiv:1511.05433 (2015).
52. Hill, R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A 65, 349 (1952).
53. Anderson, O. L. & Nafe, J. E. The bulk modulus-volume relationship for oxide compounds and related geophysical problems. Journal 

of Geophysical Research 70, 3951–3963 (1965).
54. Anderson, D. L. & Anderson, O. L. The bulk modulus-volume relationship for oxides. Journal of Geophysical Research 75, 3494–3500 

(1970).
55. Jayaraman, A., Batlogg, B., Maines, R. & Bach, H. Effective ionic charge and bulk modulus scaling in rocksalt-structured rare-earth 

compounds. Physical Review B 26, 3347 (1982).
56. Cohen, M. L. Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B 32, 7988 (1985).
57. Vepřek, S. The search for novel, superhard materials. Journal of Vacuum Science & Technology A 17, 2401–2420 (1999).
58. Chen, X.-Q., Niu, H., Li, D. & Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 

1275–1281 (2011).
59. Chen, X.-Q., Niu, H., Franchini, C., Li, D. & Li, Y. Hardness of t-carbon: Density functional theory calculations. Physical Review B 

84, 121405 (2011).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:34256 | DOI: 10.1038/srep34256

60. Prikhna, T. Innovative superhard materials and sustainable coatings for advanced manufacturing. edited by jay lee, nikolay novikov. 
NATO Science Series. II. Mathematics, Physics and Chemistry 200, 81 (2005).

61. Gupta, K. Engineering materials: research, applications and advances (CRC Press, 2014).
62. Adasch, V., Hess, K.-U., Ludwig, T., Vojteer, N. & Hillebrecht, H. Synthesis, crystal structure, and properties of two modifications of 

mgb12c2. Chemistry–A European Journal 13, 3450–3458 (2007).
63. Mykhalenko, S., Babizhetskyj, V. & Kuzma, Y. New compound in the system sc–cr–b. Journal of Solid State Chemistry 177, 439–443 

(2004).
64. Adasch, V., Hess, K.-U., Ludwig, T., Vojteer, N. & Hillebrecht, H. Synthesis and crystal structure of mg 2 b 24 c, a new boron-rich 

boride related to tetragonal boron i. Journal of Solid State Chemistry 179, 2150–2157 (2006).
65. Lejaeghere, K., Van Speybroeck, V., Van Oost, G. & Cottenier, S. Error estimates for solid-state density-functional theory predictions: 

an overview by means of the ground-state elemental crystals. Critical Reviews in Solid State and Materials Sciences 39, 1–24 (2014).
66. Gaston, N., Andrae, D., Paulus, B., Wedig, U. & Jansen, M. Understanding the hcp anisotropy in cd and zn: the role of electron 

correlation in determining the potential energy surface. Physical Chemistry Chemical Physics 12, 681–687 (2010).
67. Gaston, N., Paulus, B., Rosciszewski, K., Schwerdtfeger, P. & Stoll, H. Lattice structure of mercury: Influence of electronic correlation. 

Physical Review B 74, 094102 (2006).
68. Wedig, U., Jansen, M., Paulus, B., Rosciszewski, K. & Sony, P. Structural and electronic properties of mg, zn, and cd from hartree-

fock and density functional calculations including hybrid functionals. Physical Review B 75, 205123 (2007).
69. Richardson, D. & Mahanty, J. Van der waals contribution to the binding energy of noble metals. Journal of Physics C: Solid State 

Physics 10, 3971 (1977).
70. Philipsen, P. & Baerends, E. Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce 

trends in cohesive properties of solids. Physical Review B 61, 1773 (2000).

Acknowledgements
This work was intellectually led by the Department of Energy Basic Energy Sciences program - the Materials 
Project - under Grant No. EDCBEE. Work at Lawrence Berkeley was supported by the Office of Science of the 
U.S. Department of Energy under Contract No. DEAC02-05CH11231. The authors thank Shyue Ping Ong for 
assistance with pymatgen and his extensive contributions to both pymatgen and the Materials Project.

Author Contributions
M.d.J. proposed this statistical learning project, helped produce the original DFT elastic constant data, performed 
the screening work, and produced some of the tables and figures. W.C. helped produce the original DFT elastic 
constant data and produced some of the tables and figures. R.N. implemented the GBM-Locfit approach, ran 
the models, and produced some of the tables and figures. K.P. was involved in planning and supervising the 
work and its integration into the Materials Project effort. G.C. proposed some descriptor candidates and was 
involved in planning and supervising the work and its integration into the Materials Project effort. A.J. proposed 
several descriptor candidates, provided detailed critiques of several drafts of the manuscript, and was involved 
in planning and supervising the work and its integration into the Materials Project effort. M.A. proposed some 
descriptor candidates, provided detailed critiques of several drafts of the manuscript, and was involved in 
planning and supervising the work and its integration into the Materials Project effort. A.G. proposed the GBM-
Locfit approach and constructing descriptors as Hölder means, and oversaw the statistical learning work. All 
authors contributed to the text of the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: De Jong, M. et al. A Statistical Learning Framework for Materials Science: Application 
to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds. Sci. Rep. 6, 34256; doi: 10.1038/srep34256 
(2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline C ...
	Methods
	Results
	Screening for superhard materials. 

	Discussion
	Summary and Conclusions
	Acknowledgements
	Author Contributions
	Figure 1.  GBM-Locfit implementation consists of two distinct steps.
	Figure 2.  Predictions.
	Figure 3.  Partial dependence plots for K.
	Figure 4.  Partial dependence plots for G.
	Table 1.   Overview of descriptor candidates.
	Table 2.   GBM-Locfit model summaries.
	Table 3.   GBM-Locfit prediction accuracy.



 
    
       
          application/pdf
          
             
                A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34256
            
         
          
             
                Maarten de Jong
                Wei Chen
                Randy Notestine
                Kristin Persson
                Gerbrand Ceder
                Anubhav Jain
                Mark Asta
                Anthony Gamst
            
         
          doi:10.1038/srep34256
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep34256
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep34256
            
         
      
       
          
          
          
             
                doi:10.1038/srep34256
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34256
            
         
          
          
      
       
       
          True
      
   




