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Abstract

Coronary angiography (CAG) is still considered the reference standard for coronary artery

assessment, especially in the treatment of acute coronary syndrome (ACS). Although aging

causes changes in coronary arteries, the age-related imaging features on CAG and their

prognostic relevance have not been fully characterized. We hypothesized that a deep neural

network (DNN) model could be trained to estimate vascular age only using CAG and that

this age prediction from CAG could show significant associations with clinical outcomes of

ACS. A DNN was trained to estimate vascular age using ten separate frames from each of

5,923 CAG videos from 572 patients. It was then tested on 1,437 CAG videos from 144

patients. Subsequently, 298 ACS patients who underwent percutaneous coronary interven-

tion (PCI) were analysed to assess whether predicted age by DNN was associated with clini-

cal outcomes. Age predicted as a continuous variable showed mean absolute error of 4

years with R squared of 0.72 (r = 0.856). Among the ACS patients stratified by predicted age

from CAG images before PCI, major adverse cardiovascular events (MACE) were more fre-

quently observed in the older vascular age group than in the younger vascular age group (p

= 0.017). Furthermore, after controlling for actual age, gender, peak creatine kinase, and

history of heart failure, the older vascular age group independently suffered from more

MACE (hazard ratio 2.14, 95% CI 1.07 to 4.29, p = 0.032). The vascular age estimated

based on CAG imaging by DNN showed high predictive value. The age predicted from CAG

images by DNN could have significant associations with clinical outcomes in patients with

ACS.
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Introduction

Coronary artery angiography (CAG) is still considered the reference standard for definitive

diagnosis of coronary artery disease [1], especially for the treatment of acute coronary syn-

drome (ACS) [2, 3], even though non-invasive testing has become more widespread [4]. How-

ever, CAG is an invasive test with the risk of complications such as bleeding and stroke [5],

and when it is performed, it is therefore desirable to obtain as much useful information as pos-

sible for patient evaluation. To address this issue, we focused on the estimation of vascular age

using CAG imaging in this study. Vascular age is a concept in relation to the hypothesis that

the conversion of chronological age to age derived from vascular imaging features will lead to

more accurate assessment of an individual’s cardiovascular risk. Although coronary artery cal-

cium (CAC) scoring by computed tomography (CT) [6] and carotid intima-media thickness

(CIMT) [7] assessment by B-mode ultrasonography can be used to define vascular age [8], it is

not clearly known whether CAG contains useful age-related imaging features. Recently, deep

neural networks (DNNs) have been utilized to analyse various types of images [1, 9], including

data interpretation that is difficult for humans, such as predicting age and gender from electro-

cardiograms [10]. The purpose of this study was to develop a deep learning neural network to

estimate vascular age based on coronary angiographic imaging and to examine the clinical use-

fulness of this age prediction.

Material and methods

Study design and coronary artery angiography acquisition

The study design was a single-centre retrospective analysis. Consecutive patients aged�18

years who underwent standby diagnostic CAG for any reason between January 2010 and

December 2015 at The University of Tokyo Hospital were reviewed. Patients undergoing PCI

or CABG after index CAG were included in the study. Patients who underwent PCI with diag-

nostic CAG (i.e., ad-hoc PCI) were excluded. CAGs that a highly trained cardiologist judged

as showing insufficient contrast effect were excluded after image processing, and, if a wire or

balloon used for PCI or measurement of fractional flow reserve was captured on the images,

these images were manually excluded, as were contrast images of coronary artery bypass.

There was no other information in the image like the ECG signal or date of birth that could

have also been used by the neural network to estimate age. Only those CAGs evaluated as

“without coronary artery stenosis greater than 75%” were included. All CAG procedures in the

included patients were performed as standard procedures in The University of Tokyo Hospi-

tal. This study was conducted in accordance with the revised Declaration of Helsinki and was

approved by our institutional and local ethics committees (reference number 2650-(13)).

Informed consent was obtained in the form of an opt-out selection on the web-site.

Cohort for neural network training, validation, and testing

A total of 7,360 videos from 937 CAG procedures performed in 716 patients were randomly

divided into a training dataset (4,771 CAG videos from 457 patients [63.8%]), validation data-

set (1,152 CAG videos from 115 patients [16.1%]), and test dataset (1,437 CAG videos from

144 patients [20.1%]). No patients were included in more than one of the three datasets. The

training dataset was used to train the neural network and the hyper parameters were then

tuned using the validation dataset. The prediction accuracy of the final neural network was

tested using the test dataset.
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Coronary artery angiography and chronological age datasets

CAG videos of different time length were acquired as Digital Imaging and Communication in

Medicine (Dicom) files recorded at 15 frames per second. The image size was 512 × 512 pixels

and each pixel contained density information from 0 to 255. Therefore, the structure of a CAG

video was the 3D matrix (Tnk, Yni, Xnj), where nk represents the number of frames in each

CAG video, ni is the pixel position from 0 to 512, and nj is the pixel position from 0 to 512.

Since some CAG videos contained frames with high information and others with low informa-

tion, the frames with high information content were extracted using edge filters [11, 12]. A

total of ten frames were used from each video, with the frames with the largest edge being

selected, and each final video was represented by a matrix of (10, 512, 512).

The patients’ chronological ages, defined as the number of years since birth, were obtained

from the catheterization report.

Development of the neural network for vascular age estimation

First, we defined vascular age as the age estimated based on a patient’s CAG imaging by the neural

network. A two-dimensional convolutional neural network (2D-CNN) to predict age from CAG

was implemented using transfer learning and fine-tuning techniques in Python [13] with 4 sets of

Nvidia Tesla A100 80 GB graphics processing unit (NVIDIA Corporation, Santa Clara, USA).

Briefly, the methods utilized a pre-trained neural network to reduce the training time and the

amount of data required for training. A neural network can learn much faster and with substan-

tially fewer training examples if transfer learning and fine-tuning are employed, rather than train-

ing from scratch [14, 15]. We adopted the EfficientNet [16], a commonly used 2D-CNN

architecture, as the pre-trained neural network. The pre-trained weights on ImageNet for Effi-

cientNet were downloaded from https://github.com/Cadene/pretrained-models.pytorch [17].

A single video represented by a (10, 512, 512) matrix was treated as ten separate frames,

each of which was given a chronological age label and reshaped to (10, 600, 600) for input into

the neural network. The training dataset was used to train the neural network to predict age as

a continuous variable by minimizing the mean squared error (MSE) between predictions and

ground truth age labels. A classification neural network to detect age�65 was also created

using a similar neural network with binary cross-entropy loss [18]. These procedures used an

Adam optimizer [19] with a batch size of 16 for 100 epochs. The learning rate was set to an ini-

tial value of 0.00001, 0.000001, 0.0000001, or 0.0000005 and then gradually reduced, with the

initial learning rate with the lowest MSE or binary cross-entropy loss at the time of inference

being used. The learning rate was reduced by a factor of two if the validation loss plateaued

after three epochs. If the loss did not decrease for five consecutive epochs, the neural network

training was stopped, even if 100 epochs had not been completed, and the neural network

weights at the lowest validation loss were saved.

Performance evaluation

The trained neural network was applied to the CAG images in the test dataset and the pre-

dicted ages were calculated as continuous variables. These test dataset predictions were used to

evaluate the predictive performance of the neural network on a per-CAG procedure basis. The

per-frame assessment depended on the results of a single-frame, the per video assessment was

the average of the ten per-frame assessments, and the per-CAG assessment was the average of

the per-video assessments [20]. The correlation coefficient R, R squared, and mean average

error were used to evaluate the neural network. The outputs of the neural network were also

evaluated as multi-group to determine the accuracy of the predicted age within the age groups

of 18 to 50, 50 to 70, and over 70 years. For classification neural network to detect age�65, the
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accuracy, sensitivity, and specificity with a cut-off value of 0.5, and the area under the receiver

operating characteristics curve, were calculated. Additional subgroup analyses were performed

for target coronary artery (right or left) and gender (male or female). The gradient-weighted

class activation mapping (Grad-CAM) method was used to visualize the regions affecting the

interpretations of the developed neural network [21].

Associations between estimated vascular age and clinical outcome in

patients with ACS

Associations between predicted age and clinical outcomes in patients with ACS were exam-

ined. This analysis included 298 ACS patients who underwent PCI at our institution between

2010 and 2015 and whose video acquisitions were available. ACS was defined according to the

universal definition [3]. The exclusion criteria were: (1) the second or more than second PCI

performed during the study period, (2) patients with a history of coronary artery bypass graft-

ing, (3) patients without follow-up information. Finally, 298 ACS patients were used to evalu-

ate the associations between predicted age and clinical outcomes in patients with ACS. All

individual CAG images were evaluated using a network pre-trained to estimate vascular age.

The predicted age was obtained from each pre-PCI image as a continuous variable, and ACS

patients were divided into two groups: a younger vascular age group (predicted age <65) and

an older vascular age group (predicted age≧65) [22]. The major adverse cardiovascular events

(MACE) were compared between a younger vascular age group and an older vascular age

group. MACE were defined as cardiac death, ACS, non-fatal cerebral infarction, and admis-

sion for heart failure. The index date was the date when the PCI was performed.

Hypertension was defined as a systolic blood pressure>140 mmHg, diastolic blood pressure

>90 mmHg, or medical treatment for hypertension [23]. Diabetes mellitus was defined as hae-

moglobin A1c>6.5% or treatment for diabetes mellitus [24]. Dyslipidaemia was defined as

total cholesterol>220 mg/dl, low-density lipoprotein cholesterol>140 mg/dl, or treatment for

hyperlipidaemia. Shock was defined as systolic blood pressure <90 mmHg, use of vasopressors

to maintain blood pressure, or attempted cardiopulmonary resuscitation [24]. Cerebral infarc-

tion was defined as an acute episode of focal or global neurological dysfunction caused by brain,

spinal cord, or retinal vascular injury resulting from haemorrhage or infarction [25].

Statistical analysis

Data are expressed as mean ± standard deviation or number (percentage). Categorical variables

were compared using the chi squared test (or Fisher’s exact test for small samples). Normally

distributed continuous variables were compared using Student’s t test and abnormally distrib-

uted continuous variables were compared using the Mann–Whitney U test. Event free survival

curves were constructed using the Kaplan–Meier method, and statistical differences between

curves were assessed using the log-lank test. P values< 0.05 were considered statistically signifi-

cant. A multivariate Cox regression analysis was performed to investigate associations between

in-hospital complications and MACE after controlling for known clinical confounders. Hazard

ratios (HRs) and 95% confidence intervals (CI) were calculated. All statistical analyses were per-

formed using R (R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient selection

A total of 7,360 CAG videos from 937 CAG procedures performed on 716 patients between

January 2010 and December 2015 were included. In total, 106 patients underwent multiple
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CAG procedures. The characteristics of the patients included in this study are shown in

Table 1. The mean age of the study population was 57.3 ± 17.4 years (minimum 18 years, maxi-

mum 90 years). There were 602 CAG procedures with 4,738 videos from men and 335 CAG

procedures with 2,622 videos from women. We enrolled 4,849 left coronary artery (LCA) vid-

eos and 2,511 right coronary artery (RCA) videos in this study. The training, validation, and

test datasets included 4,771 CAG videos from 457 patients (63.8%), 1,152 CAG videos from

115 patients (16.1%), and 1,437 CAG videos from 144 patients (20.1%), respectively (Fig 1,

Table 1).

Performance in the age prediction

As the output of the neural network was a continuous variable, the statistic of absolute error

was calculated together with the overall correlation and the explained variance (R squared).

For the test dataset, the mean absolute error was 4 years and R squared was 0.72 (r = 0.856). A

scatter plot of chronological age versus predicted age is presented in Fig 2A. For the multi-

group classification into age groups of 18 to 50, 50 to 70, and 70 years and above, the overall

accuracy was 68% (Fig 2B). For detection of age�65, the AUC was 0.839 with a sensitivity of

74%, specificity of 76%, and accuracy of 75% (S1 Fig). Subgroup analysis according to target

vessel showed R squared of 0.69 (r = 0.830) in the RCA group and 0.73 (r = 0.846) in the LCA

group (Fig 3A and 3B). Gender analysis showed R squared of 0.68 (r = 0.826) in the male

group and 0.83 (r = 0.910) in the female group (Fig 3C and 3D).

Visualization of neural network decision making

Grad-CAM analysis demonstrated that the neural network focused on the entire coronary

artery limbus to predict age from CAG (Fig 4).

Table 1. Patient and vessel characteristics at the time of coronary artery angiography.

Variables Training dataset Validation dataset Test dataset P value

Cases of CAG (n = 937) n = 603 n = 152 n = 182

Age, (years) 57.8 ± 17.3 55.5 ± 17.9 57.3 ± 17.2 0.363

Age, (groups)

< 40 112 (18.6%) 28 (18.4%) 33 (18.1%) 0.541

40–49 80 (13.3%) 30 (19.7%) 21 (11.5%)

50–59 83 (13.8%) 24 (15.8%) 31 (17.0%)

60–69 143 (23.7%) 27 (17.8%) 46 (25.3%)

70–79 146 (24.2%) 35 (23.0%) 39 (21.4%)

80+ 39 (6.5%) 8 (5.3%) 12 (6.6%)

Sex

female, n (%) 233 (38.6%) 49 (32.2%) 53 (29.1%) 0.039

male, n (%) 370 (61.4%) 103 (67.8%) 129 (70.9%)

Body height, (cm) 162.2 ± 12.0 161.9 ± 15.5 163.9 ± 9.13 0.239

Body weight, (kg) 60.2 ± 14.4 60.2 ± 13.9 61.5 ± 13.5 0.531

Vessel (n = 7360 videos) n = 4,771 videos n = 1,152 videos n = 1,437 videos

RCA 1628 (34.1%) 387 (33.6%) 496 (34.5%) 0.886

LCA 3143 (65.9%) 765 (66.4%) 941 (65.5%)

Data are expressed as mean ± standard deviation or number (percentage).

Pearson’s chi-square test was used for categorical variables, Student’s t-test was used for normally distributed continuous variables, and the Mann–Whitney U test was

used for non-normally distributed continuous variables. RCA, right coronary artery; LCA, left coronary artery

https://doi.org/10.1371/journal.pone.0276928.t001
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Associations between predicted age and clinical outcomes in patients with

ACS

The clinical characteristics of the younger vascular age group and older vascular age group are

shown in Table 2 for the 298 ACS patients used to determine associations between predicted

age obtained from pre-PCI CAG images and clinical outcomes. The mean absolute error

between predicted age and chronological age was 3 years with an R squared of 0.38 (r = 0.615).

ST-elevated myocardial infarction, male sex, and peak-CK were higher in the younger vascular

age group than in the older vascular age group, and the percentage of chronological age≧65

years was 37.7% in the younger vascular age group and 75.5% in the older vascular age group

(Table 2). The clinical outcomes of the two groups are shown in Table 3. MACE were more

frequently observed in the older vascular age group (41 of 184, 22.3%) than in the younger

Fig 1. Patient selection. From a total of 7,360 coronary artery angiography (CAG) videos in 716 patients, 572 patients (5923 videos) were randomly allocated

to the development dataset. This dataset was further split into 457 patients (4,771 videos) for training and 115 patients (1,152 videos) for validation. The

remaining 144 patients (1437 videos) were allocated to the test dataset. The model was trained solely on CAG videos from the training dataset. Hyper

parameter tuning and selection of the best model within 10 epochs was performed using the validation dataset. The test dataset was used solely for testing the

performance of the final model. There were no overlaps in patients between the three datasets.

https://doi.org/10.1371/journal.pone.0276928.g001

Fig 2. Predicted age based on CAG imaging versus chronological age. A Estimated vascular age versus reported

chronological age (in years; red, regression line). R squared for the model was 0.72 with a Pearson correlation of

r = 0.856. B Patients were classified by age (in years) into groups of 18 to 50, 50 to 70, and over 70 years, and the

number of patients of a given actual age (y axis) classified into each estimated vascular age (x axis) was shown to

confirm accuracy. The overall accuracy was 68%.

https://doi.org/10.1371/journal.pone.0276928.g002
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vascular age group (14 of 114, 12.3%)(p = 0.031). Fig 5 shows Kaplan-Meier curves for MACE in

the two groups. The median follow-up duration was 1893 days. The MACE were more frequently

observed in the older vascular age group than in younger vascular age group (P = 0.017).

Results of the multivariate Cox regression analysis are presented in Table 4. The older vas-

cular age group showed a significant association with MACE (hazard ratio 2.14, 95% CI 1.07

Fig 3. Predicted age based on CAG imaging versus chronological age in the subgroup analysis. Shown is the

estimated vascular age versus the reported chronological age in the subgroup analysis (in years; red, regression line). A,

right coronary artery; B, left coronary artery; C, male; D, female.

https://doi.org/10.1371/journal.pone.0276928.g003

Fig 4. Representative Grad-CAM images (Efficientnet-B7, using the test dataset). Green areas represent the areas

upon which the model focused. A, right coronary artery; B, left coronary artery.

https://doi.org/10.1371/journal.pone.0276928.g004
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to 4.29, p = 0.032) after controlling for actual age, gender, peak creatine kinase, and history of

heart failure (versus younger vascular age group).

Discussion

In this study, we developed and validated a deep learning algorithm based on a 2D-CNN for

the age prediction using CAG images. We demonstrated that the predicted age had promising

potential for predicting patient outcomes, and we also showed which coronary artery feature

Table 2. Comparison of clinical characteristics between the younger vascular age group and older vascular age group.

Variables All (n = 298) Younger vascular age group (n = 114) Older vascular age group (n = 184) P value

Chronological Age, (years) 67 ± 12 60 ± 13 71 ± 10 <0.001

Chronological Age, (≧65 years) 182 (61.1%) 43 (37.7%) 139 (75.5%) <0.001

male sex 228 (76.5%) 102 (89.5%) 126 (68.5%) <0.001

Body Mass Index, (kg/m2) 24 ± 3.8 24.5 ± 4.0 23.9 ± 3.6 0.134

ST elevated myocardial infarction 145 (48.7%) 76 (66.7%) 69 (37.5%) <0.001

Hypertension 207 (69.5%) 65 (57.0%) 142 (77.2%) <0.001

Diabetes mellitus 98 (32.9%) 34 (29.8%) 64 (34.8%) 0.376

Dyslipidaemia 183 (61.4%) 73 (64.0%) 110 (59.8%) 0.464

Hyperuricemia 50 (16.8%) 20 (17.5%) 30 (16.3%) 0.780

Chronic kidney disease 59 (19.8%) 18 (15.8%) 41 (22.3%) 0.172

Atrial fibrillation 17 (5.7%) 5 (4.4%) 12 (6.5%) 0.440

Current smoker 203 (68.4%, n = 297) 81 (71.7%, n = 113) 122 (66.3%) 0.333

Haemodialysis on admission 9 (3.0%) 2 (1.8%) 7 (3.8%) 0.315

History of previous myocardial infarction 22 (7.4%) 6 (5.3%) 16 (8.7%) 0.271

History of chronic heart failure 5 (1.7%) 1 (0.9%) 4 (2.2%) 0.397

History of previous PCI 29 (9.7%) 5 (4.4%) 24 (13.0%) 0.014

Killip class

I or II 253 (86.1%, n = 294) 93 (82.3%, n = 113) 160 (88.4%, n = 181) 0.142

III or IV 41 (13.9%, n = 294) 20 (17.7%, n = 113) 21 (11.6%, n = 181)

Shock on admission 27 (9.1%) 16 (14.0%) 11 (6.0%) 0.019

Systolic blood Pressure on admission, (mmHg) 132 ± 25 (n = 293) 133 ± 27 (n = 111) 130 ± 24 (n = 182) 0.430

Diastolic blood Pressure on admission, (mmHg) 75 ± 18 (n = 289) 79 ± 19 (n = 109) 74 ± 17 (n = 180) 0.014

Heart rate on admission, (bpm) 77 ± 19 78 ± 17 78 ± 20 0.998

Peak creatine kinase, (U/L) 1647 ± 2419 2570 ± 2813 1074 ± 1937 <0.001

Target vessel

RCA 90 (30.2%) 40 (35.1%) 50 (27.2%) 0.148

LCA 208 (69.8%) 74 (64.9%) 134 (72.8%)

Left ventricular ejection fraction < 40% 31 (10.8%, n = 288) 17 (15.2%, n = 112) 14(8.0%, n = 176) 0.078

Medication at discharge

Beta blocker 223 (78.0%, n = 286) 99 (90.8%, n = 109) 124 (70.1%, n = 177) <0.001

ACE- inhibitor 169 (59.1%, n = 286) 82 (75.2%, n = 109) 87 (49.2%, n = 177) <0.001

ARB 76 (26.6%, n = 286) 14 (12.8%, n = 109) 62 (35.0%, n = 177) <0.001

MRA 31 (10.8%, n = 286) 15 (13.8%, n = 109) 16 (9.0%, n = 177) 0.242

Statin 260 (90.9%, n = 286) 100 (91.7%, n = 109) 160 (90.4%, n = 177) 0.833

Data are expressed as mean ± SD or number (percentage). Pearson’s chi-square test was used for categorical variables, normally distributed continuous variables were

compared using Student’s t-test, and the Mann-Whitney U test was used for abnormally distributed continuous variables.

PCI, percutaneous coronary intervention; RCA, right coronary artery; LCA, left coronary artery; ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor

blocker; MRA, mineralocorticoid receptor antagonist.

https://doi.org/10.1371/journal.pone.0276928.t002
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most influenced the predictions of the neural network in the Grad-CAM analysis. MACE were

more frequently observed in the older vascular age group than in the younger vascular age

group (p = 0.017). Furthermore, the older vascular age group was significantly associated with

MACE (hazard ratio 2.14, 95% CI 1.07 to 4.29, p = 0.032) after controlling for known clinical

risk factors. To the best of our knowledge, this is the first study to develop a neural network for

predicting age based on CAG imaging and to use Grad-CAM to demonstrate the coronary

artery feature that may be essential for the neural network decision-making.

Neural networks have been applied to data from various modalities for the purposes of age

prediction [10, 26]. In the field of cardiology, neural networks for predicting chronological age

from ECGs or chest x-rays have been developed and applied to clinical studies to investigate

the clinical implications of predicted age. In such a study, a model for predicting chronological

age from ECGs showed an R squared value of 0.70 and predicted age was found to be

Table 3. Comparison of clinical outcomes between the younger vascular age group and older vascular age group.

Variables All

(n = 298)

Younger vascular age group

(n = 114)

Older vascular age group

(n = 184)

P value

MACE (cardiac death, ACS, non-fatal cerebral infarction, admission for

heart failure), n (%)

55 (18.5%) 14 (12.3%) 41 (22.3%) 0.031

Cardiac death, n (%) 17 (5.7%) 5 (4.4%) 12 (6.5%) 0.432

ACS, n (%) 14 (4.7%) 5 (4.4%) 9 (4.9%) 0.841

Non-fatal cerebral infarction, n (%) 16 (5.4%) 2 (1.8%) 14 (7.6%) 0.029

Admission for heart failure, n (%) 17 (5.7%) 4 (3.5%) 13 (7.1%) 0.198

Data are expressed as number (percentage). Pearson’s chi-square test was used for categorical variables.

MACE, major adverse cardiac events; ACS, acute coronary syndrome

https://doi.org/10.1371/journal.pone.0276928.t003

Fig 5. Kaplan-Meier curves for major adverse cardiovascular events (MACE) in the younger vascular age group

and older vascular age group.

https://doi.org/10.1371/journal.pone.0276928.g005
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associated with patient comorbidity [10]. Another study created a model for predicting age

from chest x-rays and showed R squared of 0.92 and found that predicted age was associated

with outcomes of patients with heart failure [26]. However, to the best of our knowledge, so

far, there was no study that attempted to predict age from CAG images, which involves a set of

images containing time series information. Our neural network to predict age from CAG

images showed an R squared of 0.72, and we believe that its accuracy is sufficiently high com-

pared with previous studies. Furthermore, while most previous studies used training data with

more than 100,000 samples to create their models, our neural network was trained only using

several thousand videos. This suggests that the method of treating the video on a frame-by-

frame basis and then finally averaging the output of the neural network may have contributed

to efficient extraction of information contained in the CAG video [20]. It also suggests that the

age-related imaging features contained in the CAG imaging are robust.

Although several studies have proposed CAC scoring on coronary CT [27, 28] (estimating

the degree of coronary artery calcification) as an indicator of aging, and vascular tortuosity is

known to show age-related change in CAG [29], it had not been clearly established which

CAG imaging features allowed age prediction. In addition, it is particularly important to iden-

tify clinical findings that are potentially modifiable. In this study, we used the Grad-CAM

method to provide the visualization of the CAG image regions that may be essential for age

prediction by the neural network and found that the neural network may focus on the limbus

of the coronary arteries, rather than on local coronary artery features. This result may suggest

that the neural network is correctly extracting information from the coronary artery images by

themselves (depending on the neural network training, the neural network could extract infor-

mation from the ribs, lung fields, and cardiac shadow). It is also possible that the coronary

artery limbus may contain age-related information, which was not previously reported.

In our analysis of ACS patients who underwent PCI at our institution, we showed that

when the patients were stratified according to the vascular age estimated from pre-PCI CAG

images, the stratification showed a significant association with long-term outcomes. This sug-

gests that pre-treated coronary artery status may provide useful information reflecting the

patient prognosis. In general, the training of a neural network requires a large quantity of

labelled data and the cost of labelling sufficient numbers of data entries to create the network

can be enormous. However, the method used in this study to extract imaging features relevant

to age, which has a well-established association with prognosis [30, 31], may have a potential

for creating prognostic models.

The potential clinical implications of the present study should be noted. The age predicted

using CAG imaging by neural network had high predictive value. Our study is particularly rel-

evant because it adds further value to CAG and may lead to the exploration of new clinical

findings that are potentially modifiable. For example, there may be a method for detecting

Table 4. Multivariate Cox hazards analysis to predict MACE.

Independent variables Dependent variable: MACE

Hazard ratios 95% confidence interval P value

Older vascular age group (vs. younger vascular age group) 2.14 1.07–4.29 0.032

Actual age (per one year increase) 1.04 1.01–1.07 0.007

Male sex (vs. female sex) 1.19 0.62–2.30 0.600

Peak creatine kinase (per 1,000 U/L increase) 1.23 1.11–1.35 <0.001

History of heart failure admission 3.74 0.90–15.6 0.071

MACE, major adverse cardiac events.

https://doi.org/10.1371/journal.pone.0276928.t004
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changes in vascular age over time to assist in determining drug therapy, although this could

not be assessed in the present study. Future studies to assess the impact of age-related coronary

artery features on the clinical practice are warranted.

The present study has the following limitations. First, because this was a single-centre retro-

spective study, there may have been a patient selection bias, which makes it difficult to general-

ize our results. Furthermore, as the model was validated with separate internal data, it is

possible that the model performance might be lower with external data. Second, in the present

study, there is a possibility that the neural network model might be trained on biased data

because of the lack of information on comorbidities or the reason for CAG. Since we enrolled

patients undergoing standby diagnostic CAG for any reason to train the model, there might be

no controls, in other words, “healthy” subjects. We also validated the impact of predicted age

on clinical outcomes of ACS patients, whereas the data used to train the neural network did

not focus on ACS. Ideally, an age prediction by the neural network trained on coronary arter-

ies of ACS patients should be developed, which seems to be difficult because of the limited

number of ACS cases. In addition, the cut off age for younger and older vascular age groups

was set at 65 years old, based on the average age of the ACS patients included in this study. It is

difficult to generalize the method used in this study because, as mentioned above, it is the

result of a single-centre retrospective study with a limited number of patients. In fact, the aver-

age age for PCI patients in Japanese clinical practice is known to be higher [32]. In the future,

the usefulness of age predicted from CAG images should be explored using a large amount of

CAG images and clinical data from ACS patients. Finally, although our Grad-CAM analysis

showed that the neural network focused on the limbus of the coronary artery for both the LCA

and RCA, we could not clarify exactly what feature of the coronary arteries is essential for pre-

dicting vascular age from CAG images. Such a problem is inherent to the nature of deep learn-

ing, which is often called the “black box of deep neural network” [33], and technologies that

can explain deep neural network criteria in more detail are required.

Conclusions

We developed a neural network to predict age based on CAG imaging and found that it

showed high predictive value. The age predicted from CAG images by deep neural network

could have significant associations with clinical outcomes in patients with ACS.

Supporting information

S1 Fig. Receiver operating characteristics (ROC) analysis of age classification. Shown is the

ROC curve for age classification (≧ 65 years old) in the test dataset. The overall area under the

curve (AUC) was 0.839.

(TIF)
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