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Abstract

DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle
regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific
time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive
measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we
propose the use of one of such techniques –an unsupervised artificial neural network called a Self-Organizing Map (SOM)–
which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting
in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for
the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes,
we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell
cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used
in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar
behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically
related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs
against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein
interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of
proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological
processes in different organisms.
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Introduction

A number of methods have been applied over the years in an

attempt to uncover the relationships among genes. One of these

methods involves the modeling of gene relationships as Boolean

networks, in which the state of a gene is represented as being ‘‘off’’

or ‘‘on’’ [1]. Even though these models are easy to interpret, it is

usually difficult to determine the best way to convert gene

expression levels into discrete values; moreover, there can be loss

of information during the discretization process, which may affect

the inference outcome. Static and dynamic Bayesian methods have

also been applied by inferring the causal relationship between two

network nodes based on conditional probability distributions [2,3].

Differential equations [4,5] and computational intelligence

approaches, such as genetic algorithms [6], genetic programming

[7], neural networks [8], and fuzzy logic [9] have also been

applied. Reverse engineering of regulatory networks has also been

explored [10,11,12]. However, the genetic regulatory network

models obtained with different approaches tend to differ, without

being able to reach a consensus on which of them is the most

accurate; moreover, central assumptions of some models are not

supported by experimental evidence [12,13].

The pattern recognition technique known as Self-Organizing

Map (SOM) is a type of unsupervised artificial neural network

developed by Teuvo Kohonen [14]. The SOM algorithm

performs mathematical cluster analysis useful for recognition and

classification of features in complex, multidimensional data

without using prior knowledge. It has been applied by Tamayo

et al. [15] to extract genes involved in cell-cycle regulation from

one database provided by Cho et al. [16], achieving similar results

to those obtained by the latter. In the present work we propose the

use of SOM for the study of gene interactions using DNA

microarray data as input.

We applied the SOM technique to five of the most cited

Saccharomyces cerevisiae cell cycle databases in order to predict the

possible relationships among the genes involved in the cell cycle

process. For over fifteen years, numerous researchers have directed

their efforts at elucidating the way gene interactions in S. cerevisiae

control its cell cycle in order to obtain knowledge about structural,

biochemical, physiological and behavioral characteristics of this

organism.
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One of the biggest obstacles for performing mathematical

inferences of the gene regulatory networks involved in the cell

cycle regulation of S. cerevisiae is the small quantity of samples

contained in the existing databases. D’haesseler et al. proposed the

use of interpolation of time points between the existing samples to

increase the quantity of measurements [17], but there is no

certainty that the interpolated points represent the real behavior of

genes between the known time points. Other proposals suggested

the merging of several time series microarray databases to perform

an analysis of cell cycle periodicity of gene expression [18,19];

however, most databases have different sampling intervals of time,

which makes it difficult to combine the expression levels contained

in them. Furthermore, the conditions for the experiments or the

strains of S. cerevisiae used in them are also different. It is assumed

that the basic physiology of such strains will be the same, and

therefore the results obtained with one strain will be applicable to

others; however, Gaisne et al. remark that different S. cerevisiae

strains present polymorphisms in restriction sites and chromosome

size, and that the modification or inactivation of a regulatory

factor probably affects the pathways in which it is involved [20],

which could be one of the reasons why even when the same

inference method is applied to the same set of genes in different

databases, the regulatory networks obtained are very dissimilar.

Instead of combining the gene expression levels from the different

datasets to perform the analysis of the behavior of genes during the

cell cycle process, we propose to find possible regulatory

relationships based on the consistency of gene co-expression

patterns in the five time series microarray databases, since genes

that are co-expressed throughout a variety of conditions may be

controlled by a common regulatory system [21].

Using the SOM algorithm, it was possible to detect genes whose

products have possible biological and regulatory relationships

among some of them, either directly or indirectly, through the

consistency of the artificial neuron distances between genes in all

five of the databases. These results were compared with a

regulatory network provided by Alberghina et al. [22] –which has

been determined mainly through biological methods– in order to

validate the proposed methodology. Some examples of gene

clusters consistently found in the five microarray databases are

presented in the Results and Discussion Section. This section also

discusses the usefulness of the color maps produced by SOM –

which represent the intensity of gene expression during each cell

cycle phase– in the determination of possible gene function and

their importance in the cell cycle phase in which they show the

highest expression level.

The analysis presented in this paper was useful in discovering

possible relationships among genes using relatively few time points,

based on their consistent behavior over time in the five databases

of the S. cerevisiae cell cycle, without any prior knowledge about

their characteristics, such as biological function or binding sites

contained in them. We also present the analysis of gene pairs that

showed similar behavior in four of the five databases, but that

nevertheless behaved in a different way in the fifth database. The

discovery of these outliers suggests that the different experimental

conditions under which the dissenting database was obtained may

affect the expression levels of these particular genes.

Method

Five databases containing information on expression levels from

Saccharomyces cerevisiae along two cell cycles were analyzed with

the SOM algorithm. We chose these databases as a test bed for the

proposed method, as all of them have been widely used over the

years by different authors. These databases were obtained under

different experimental conditions (see Table 1). Each experiment

starts with cell populations that have been synchronized using

different methods that arrest the cells in M/G1 phase. The alpha

and cdc15 databases were obtained by Spellman et al. using non-

commercial spotted DNA/cDNA microarrays platforms identified

as GPL59 and GPL62 in the NCBI GEO database. These two

databases contain temporal expression levels for 6178 ORFs of S.

cerevisiae. Data from microarrays used for the alpha database

experiment were estimated to be missing ,1% of all elements,

whereas those used for the cdc15 database were estimated to be

missing ,3% of all elements. In the alpha database experiment,

yeasts were first arrested with the a-factor, then the a-factor was

washed out, and cells were released into fresh medium. The alpha

database contains 18 samples taken every 7 minutes, whereas the

cdc15 database contains 24 samples taken every 10 or 20 minutes

[18]. The cdc28 database contains 17 samples taken every 10

minutes and was obtained by Cho et al. [16], who used Affymetrix

cDNA microarrays, containing probes for 6218 genes. This

database does not appear in the NCBI GEO database. The three

databases mentioned above can be obtained at http://genome-

www.stanford.edu/cellcycle/data/rawdata, where they are pro-

vided as a tab-delimited data file. The accession number in the

NCBI GEO database for the raw data of the databases from

Spellman et al. are GSE22 for the alpha database and GSE23 for

the cdc15 database. The alpha30 and alpha38 databases were

obtained by Pramila et al. and are biological replicates, in which

Table 1. Experiment conditions and yeast strains used in the five databases analyzed.

Database name alpha cdc15 cdc28 alpha30 alpha38

S. cerevisiae strain DBY8724 DBY8728 K3445 BY2125 BY2125

Characteristics MATa GAL2 ura3
bar1::URA3

W303a cdc15-2ts

Temperature mutant
cdc28-13 W101
Temperature mutant

W303: MATa
ade2-1 trp1-1 can1-100
leu2-3, 115 his3-11 ura3
ho ssd1-d

W303: MATa ade2-1
trp1-1 can1-100 leu2-3,
115 his3-11 ura3 ho ssd1-d

Culture
temperature

25uC 23uC, 37uC, 23uC 25uC, 37uC, 25uC 30uC 30uC

Cell cycle
synchronization
method

a-factor Temperature variations Temperature variations a-factor a-factor

Number of samples 18 24 17 25 25

Sampling time (min) 7 10 or 20 10 5 5

doi:10.1371/journal.pone.0093233.t001
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cells were arrested in the G1 phase, with 25 samples each taken

every 5 minutes [19] using cDNA microarrays prepared as

described in [23] and containing 6229 ORFs. The accession

number for both microarray datasets in the NCBI GEO database

is GSE4987, whereas the microarray platform is identified in this

database as GPL1914. For the experiments from which the cdc15

and cdc28 databases were obtained, cell growth was synchronized

using temperature mutants, whereas in the rest of the databases

cells were synchronized using the a-factor as mentioned above.

The analysis was performed on 282 genes reported by

Alberghina et al. [22], which have shown an activity during cell

cycle phase changes in experiments conducted at the laboratory.

These genes are part of a regulatory network that was determined

using biological knowledge, such as protein-protein interactions,

gene expression levels, metabolism dynamics, promoter binding,

and modification, regulation and transport of proteins. A list of the

genes from Alberghina et al. is provided as supporting information

both in XLS and CSV format in Files S1 and S2, respectively.

It should be noted that the emphasis of the present paper is on

the application of a pattern recognition method for comparing

gene expression databases obtained under different experimental

conditions, and not on the analysis of the particular S. cerevisiae

genes chosen to validate the methodology. We propose the use of

SOM and the measure of the distance among its output map units

for the analysis of the degree of similarity among genes within each

database. For the application of SOM, the MATLAB SOM

Toolbox provided by Vesanto et al. was used [24], which has a

variety of choices to perform the analysis and to display the results.

Self-organizing Maps
Self-Organizing Maps are unsupervised neural networks that

spatially organize high dimensional information into a one-, two-

or three-dimensional output grid, in such a way that similar input

data are mapped to areas that are closer to each other than the

more dissimilar ones [14]. It can be said that the grid that the

SOM technique outputs is both a similarity graph and a clustering

Figure 1. Input and output connections in the neural network of a Self-Organizing Map. An input vector (x
I

) is defined by the expression

levels of the gene to be analyzed. Each input vector is compared iteratively with the weights of the j-th output neuron (w
I

j ), searching for the neuron
with the highest similarity with the gene behavior along the time course, and organizing all the genes on the map according to their degree of
similarity.
doi:10.1371/journal.pone.0093233.g001

Table 2. Number of genes considered per database.

Database name alpha cdc15 cdc28 alpha30 alpha38

Genes from Alberghina et al. that also appear in the microarray database 276 280 280 238 253

Genes with missing data for one time point 48 32 209 0 0

Genes with missing data for two time points 9 5 30 0 0

Genes with missing data for more than two time points (excluded from the analysis) 1 44 2 0 0

Genes taken into account for the analysis 275 236 278 238 253

The total number of genes reported by Alberghina et al. as cell cycle genes is 282.
doi:10.1371/journal.pone.0093233.t002
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diagram. SOM makes complex information abstractions and

shows them in a very simple and visual way [25]. The main

limitation of this algorithm is that there is no theoretical

foundation for determining the parameters, such as the number

of clusters to be used, the number of iterations to be performed, or

the output neuron shape, that yield the best results. It might take a

number of empirical tests until the appropriate parameters can be

determined.

As in supervised neural networks, in SOMs each set of

properties from one sample forms an input vector. Each input

vector is connected to all the units on the output map, but the

neural network used by the SOM has no intermediate layers (see

Figure 1). The units on the output map have a weight, assigned

initially either randomly or through the use of the eigenvectors

corresponding to the two largest principal components of all input

vectors [25]. In the present work, initial weights were assigned

using the latter method.

By using the principal components method to initialize each

unit’s weight, a two-dimensional space is created based on the two

greatest eigenvalues and their eigenvectors, which are calculated

from the input data. If the initial weights are not chosen properly,

the SOM could generate a sub-optimal clustering partition [26].

The principal components initialization method can reduce the

converging time of the SOM algorithm by several orders of

magnitude [25], which can have a noticeable impact shortening

execution times when analyzing large amounts of input data.

The SOM algorithm is performed in three main steps: the

competitive process, the cooperative process, and the synaptic

adaptation process.

Competitive Process
This process is carried out through competitive learning. Only

one output neuron can win: the vector that has the maximum

similarity with the input vector. The winning vector is called the

Figure 2. Output map containing the distributions of genes from the alpha30 database. Genes are mapped according to their similarity in
expression level. Gene clusters with similar expression levels in the time series are mapped to areas that are closer to each other. Arrows point to the
neurons that correspond to the expression level graphs shown. Clusters that are closer on the map have more similar expression levels. Genes with
different behavior are located farther away on the map. Furthermore, genes with opposite behavior tend to be located in opposite neurons on the
map.
doi:10.1371/journal.pone.0093233.g002
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Best Matching Unit (BMU). An input vector contains the

expression levels for all time samples for one gene. Maximum

similarity can be calculated with different functions, such as the

Euclidean distance, the inner product, or the Mahalanobis

distance functions, among others. The Euclidian distance function

was used in the present work, as Kohonen recommends this

function for natural signal patterns corresponding to metric vector

spaces [27]. The Euclidian distance function is defined by.

min DDxI{w
I

j DD, ð1Þ

where x
I

is the input vector and w
I

j is the vector of unit weights for

the j-th neuron on the output map. The input vector correspond-

ing to the time series of expression levels of one gene is compared

against all the neurons in the output map in order to find the

neuron with which it has the maximum similarity.

The BMU weight is adjusted as described below to obtain even

more similarity with the input vector. In this manner, the

possibility of being the winning vector during the competitive

process on the next iteration is increased in order to be the neuron

that represents the compared input vector on the output map.

Cooperative Process
The purpose of this process is to calculate which of the non-

winning units are within the BMU’s neighborhood. The weights of

these units are also adjusted, but in proportion to their proximity

to the BMU, whereas the weight of the units outside the

neighborhood is left intact. In order to find the neighbor units,

it is necessary to set an initial neighborhood radius, which will be

monotonically shrinking throughout the iterations. Some neigh-

borhood functions that can be used to calculate the neighborhood

radius are the Mexican hat, the rectangular, and the Gaussian

functions. In the present work the Gaussian function was used, as

Figure 3. Location of genes with similar known biological functions on the output maps. Most histone encoding genes were clustered in
neurons whose location was very close to each other, except in the case of the cdc28 database. Most genes involved in chromosomal DNA replication
were located in roughly the same neighborhood of each map, except in the case of the cdc15 database.
doi:10.1371/journal.pone.0093233.g003
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Figure 4. Neuron positions and distances between units on the output map. A: The 400 units on the output maps are labeled as shown.
Histone encoding genes from the alpha30 database are located in neurons 200, 220, 237, 240, and 260 (blue rectangles), meaning that they have a
similar expression level behavior along the two cell cycles. B: Distance between the centroids of the units shown within the red circle in A.
doi:10.1371/journal.pone.0093233.g004
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it is the most commonly used neighborhood function in SOMs.

The Gaussian function is given by.

hj,i~ exp {
d2

j,i

2s2

 !
, ð2Þ

where hj,i is the topological neighborhood value of unit j centered

around the winning unit i, dj,i is the lateral distance between the

winning unit i and the neighbor unit j, and s is the decreasing

neighborhood radius value.

Synaptic Adaptation Process
In order to keep the neural network from overfitting, a

forgetting term of what has already been learned is introduced.

This term is based on the Hebbian hypothesis and is called the

learning rate (g). This term also decreases throughout the

iterations.

Unit Weight Adjustment
Every unit on the output map adjusts its weight using the

function.

w
I

j nz1ð Þ~w
I

j nð Þzg nð Þhj,i nð Þ x
I

{w
I

j

� �
, ð3Þ

where n is the iteration number, and the rest of the terms are as

previously described. The greater the proximity of neuron j with

the winning neuron i, the higher the value of the neighborhood

function hj,i(n), which results in a better adjustment on the weight

of the neuron, as opposed to those that are farther away from the

winning neuron. When the neuron is the BMU (j = i), the

neighborhood function hj,i(n) value is equal to 1, so that the

difference between the input vector and the weight of the BMU

multiplied by the learning rate g (n) is added to its current weight.

In this manner, the BMU becomes increasingly similar to the

input vector that is being compared. The desired behavior is that

neuron values on the output map are similar to the input data, and

additionally that the input vectors are placed on the output map

according to their similarity.

After calculating the unit weight for all the input vectors, the

learning rate g(n) and the neighborhood radius (s) are decreased

and the iteration number is increased. The output map weights are

gradually adjusted to resemble the input data and reflect its

properties as closely as possible [28].

Figure 5. Color-coded output maps representing the final weight of neurons from the samples of the alpha30 database. Maps are
labeled with the sampling time and the cell cycle phase. The cluster centroid value is coded with a range of colors from blue for the lowest expression
level value, to red for the highest value. Green rectangles enclose the region where the chromosomal DNA replication genes are located on the maps;
these genes have their highest expression level during late G1 phase and early S phase. Yellow rectangles correspond to neurons with the genes
coding for histones; these genes have their highest expression level during the S phase.
doi:10.1371/journal.pone.0093233.g005
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As for the parameters used in the SOM runs, the shape of the

output map was defined as a sheet with a hexagonal lattice of 20

by 20 units, the neighborhood function was Gaussian with an

initial radius of 3, and a decreasing learning rate type ‘inv’ was

used as implemented in the MATLAB SOM Toolbox. The total

number of iterations in the algorithm was defined as 10 multiplied

by the number of neurons on the map divided by the number of

genes to be analyzed.

Data Preprocessing
Due to the lack of standardization in the labeling of gene names

within the different microarrays (some of them use the standard

name, some use the systematic name, and some use the gene alias),

it was necessary to match the gene names in all the databases. We

used the alias names contained in the databases from Spellman for

the name standardization of the databases. Genes with missing

data in more than two time points within each database were

excluded from the present study (see Table 2). Missing data were

calculated using an iterative algorithm called Expectation Max-

imization, which estimates the parameters pertaining to the data

distribution, taking into account the mean and the variance. After

this step, the missing data that best fitted that distribution was

calculated. All the databases selected were already normalized, but

due to the fact that some of the databases were in log2 and others in

log10, values were transformed into expression level fractions in

order to make them comparable. This transformation preserves

the original relationship between variables and produces no

change in their probability density function. The five databases

Figure 6. Genes clusters consistently located close to each other on the maps from the five databases. Some of these genes regulate
each other either directly or indirectly according to the regulatory network reported by Alberghina et al. Other genes that are not reported to have a
regulatory relationship in the mentioned network are consistently clustered in proximity, suggesting a yet undisclosed regulatory relationship.
doi:10.1371/journal.pone.0093233.g006
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scaled to the range [0,1] are provided as supporting information

(see Datasets S1, S2, S3, S4, and S5). A compressed file with the

SOM Toolbox files used for the analyses presented in the present

work is also provided as supporting information (see File S3).

Results and Discussion

After the databases were transformed to make them compara-

ble, they were individually analyzed using the SOM Toolbox [24],

taking the genes as individuals (rows) and the expression levels at

the time points as their properties (columns). An output map of

400 units (20620) was created for each database in order to

observe the way genes clustered according to their expression

levels along all the time sequence. It should be noted that the total

number of units determines the degree of separation or clustering

of genes on the map. The fewer the number of units, the tighter

the clusters are on the map, but with the risk of grouping together

genes that could have no real relationship among them.

Conversely, the higher the number of units, the more dispersed

the clusters are on the map, with the risk of separating genes that

could be related. For the present work, the quantity of units or

clusters was determined empirically conducting several tests based

on the alpha database, which contained a greater quantity of genes

and had a smaller amount of missing data than the other databases

(see Table 2). The determination of the number of units was based

on the maximum similarity in the expression patterns of clustered

genes. This number of units was applied to the other databases

because we were interested in comparing the distances between

neurons in which similar genes were located within the different

databases. In order to improve the display quality of the output

map, a hexagonal units grid was used, as suggested by Kohonen

[25]. Clusters were visually inspected on the maps to detect

patterns; we looked for clusters where the gene expressions

included in all five databases were similar.

As an illustration, Figure 2 presents the output map for genes

from the alpha30 database. Genes with very similar expression

levels along all time point tended to be assigned to the same

neuron; moreover, the closer neurons were, the more similar the

expression levels were in the gene clusters assigned to them.

Conversely, gene clusters with different behavior were located

farther away on the map; furthermore, genes with opposite

behavior tended to be placed on opposite sides of the map. In

Figure 2 many units are empty because the 238 genes selected to

be analyzed from the alpha30 database had to be distributed within

some of the 400 units on the map, and thus it was inevitable that

some of the units remained empty. If fewer units were used, the

expression patterns of possibly unrelated genes could be grouped

within the same cluster, leading to an incorrect classification of

genes.

In order to determine whether genes with known similar

biological function were located in closer areas on the maps from

all five databases, we looked for the histone and chromosomal

DNA replication encoding genes mentioned in [18]. The histone

genes were hht1, hht2, hhf1, hhf2, hta1, hta2, htb1, hho1, and htb2,

whereas the genes involved in chromosomal DNA replication were

cdc9, ctf4, dbp2, est1, pri2, rfa2, rfa3, rfc4, rfc5, tof1, pol1, pol2, cdc2,

Figure 7. Examples of genes that are consistently located far from each other. Expression level graphs for all samples for genes from the
alpha30 and alpha38 databases. The abscissa coordinate labels contain the sampling time and the cell cycle phase. A: The ymr032w gene has an
approximate opposite behavior to the other genes shown from the alpha30 database, which have a similar expression level behavior among them. B:
The cdc20 gene shows a roughly opposite behavior to the other genes shown from the alpha30 database. C: Same as in A, but with genes from the
alpha38 database. D: Same as in B, but with genes from the alpha38 database.
doi:10.1371/journal.pone.0093233.g007
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pol12, pol30, pol31, hys2, and pol32. Genes ctf18, rfa1, tel2, top3 and

ynk1 were not included in the present comparison because they are

not included in the cell cycle genes described in [22]. As shown in

Figure 3, on the maps from all the databases –with the exception

of cdc28–, most histones were clustered in neurons that were very

close together, indicating that in four of the five databases the

expression patterns of histones were similar, whereas in the cdc28

database, histones appeared to have different expression patterns

along the two cell cycles. This same dissimilarity among the

expression patterns in the cdc28 database with respect to the cdc15

and alpha databases is found in [18]. Most genes involved in

chromosomal DNA replication were located in the same general

region of each map –except in the case of cdc15. An explanation of

these differences among expression patterns would most likely

require wet-lab experiments to be carried out by biologists.

Neuron positions on all output maps produced by SOM were

numbered as shown in Figure 4A. This figure also shows in blue

rectangles the neuron positions where the histone encoding genes

from the alpha30 database were placed on the map (neurons 200,

220, 237, 240, and 260). The assignment of genes to these adjacent

neurons on the map means that they have a very similar

expression level behavior along the two cell cycles. An illustration

of the measured distances among the neurons shown within the

red circle in Figure 4A is presented in Figure 4B. It should be

noted that unit labels have no relation to the distance between

units; e.g. the distance from unit 2 to unit 22 is only 1.

Output maps from SOM can also be colored to allow for a

visual analysis of patterns. Figure 5 shows a series of maps with the

final color-coded weight of neurons corresponding to the 25

samples from the alpha30 database. The cluster centroid value is

represented with colors from blue for the lowest expression level

value to red for the highest value. Output maps are labeled in the

figure with the time when the sample was taken and the cell cycle

phase as reported by Pramila et al. [19]. In order to visually follow

the evolution of expression levels of specific genes in time, it

suffices to track the neurons where they are located along the series

of colored maps. For instance, the green rectangle on the maps

from Figure 5 encloses the neurons where chromosomal DNA

replication genes are located, whereas the yellow rectangle

surrounds the neurons corresponding to histone encoding genes.

Figure 8. Examples of analyses of distance between pairs of genes. Genes in A are consistently close in all the databases, meaning that their
behavior is similar in all of them, whereas distances between genes in B are very different in all the databases. The pairs of genes in C and D have
different behavior in one of the five databases, suggesting that they may have been affected by the experimental conditions for obtaining that
particular database.
doi:10.1371/journal.pone.0093233.g008

Table 3. Number of outlier gene pairs per database.

Database name alpha cdc15 cdc28 alpha30 alpha38

Number of outlier gene pairs 326 319 375 217 289

Only genes with data for all five databases were analyzed. The total number of gene pairs analyzed was 17755 for all databases.
doi:10.1371/journal.pone.0093233.t003
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In this series of maps, it can be seen that histones, which are

essential basic proteins that package the genomic DNA of all

eukaryotes into nucleosomes to form chromatin [29], have their

maximum expression during the S phase, in which DNA

replication takes place. On the other hand, the maps from

Figure 5 show that genes involved in chromosomal DNA

replication have their maximum expression during late G1 phase

and early S phase. As can be seen, color-coded output maps from

SOM can be useful in the discovery of the biological function of

genes by simply looking at the position of the cluster in which the

genes are located and analyzing its behavior along the time series.

Through the use of SOM, it was also possible to detect the

irregular behavior of genes under certain conditions. For instance,

it was detected that in the alpha30 database some genes that are

reported as responsible for cell cycle regulation, such as fkh2 and

clb3 located in unit 400 on the maps in Figure 5, do not present a

cyclic behavior.

Other genes whose corresponding neurons are consistently

located close to each other on the maps were found, such as

ace2, clb1, clb2, mob1, and swi5, as well as another group formed

by cln1, cln2, swe1, and yox1 (see Figure 6). According to the

gene regulatory network published by Alberghina et al. [22],

some of these genes regulate each other directly; for instance,

clb1 regulates clb2, ace2 regulates both swi5 and clb2, and swe1

regulates yox1. Other genes have a reported indirect regulatory

relationship; for example ace2 regulates mob1 through clb3, and

cln1 and swe1 are regulated by cdc28 [22]. We also found other

pairs of genes that are consistently clustered very closely on the

maps and which do not have an evident regulatory relationship

in the reported network, such as mcd1 and pol30, cdc5 and myo1,

and pcl9 and sic1 –except in the case of the cdc15 database,

which has no data for pcl9. The consistent proximity of the

neurons corresponding to these genes on the maps suggests

that they may have a more direct regulatory relationship not

yet discovered by biological methods.

The analysis of genes for which the relationship among them is

already known, provided us with elements to validate the

usefulness of SOM to discover relationships, and its possible

application to other databases containing genes for which the

relationships among them is not known yet. However, the results

obtained by this method are not conclusive. Wet-lab experiments

would most likely be required to explain the clustering tendencies

described in the present paper. It should also be noted that the

objective of this work is not finding relationships solely among

genes in the yeast, but to show the usefulness of SOM in the

analysis of biological databases, such as those derived from

expression microarrays, in order to find relationships among

genes.

Genes consistently located far from each other were also

identified, suggesting a behavior that could correspond to a

negative regulatory relationship. Figure 7 shows instances of

this behavior in genes from the alpha30 and alpha38 databases.

Gene ymr032w in Figures 7A (alpha30) and 7C (alpha38) shows

roughly an opposite behavior to the other genes shown;

similarly, gene cdc20 in Figures 7B (alpha30) and 7D (alpha38)

shows an approximate opposite behavior to the other genes

shown. As an illustration, a relationship between cdc20 and hsl1

is reported in the regulatory network from Alberghina et al.

[22]. Furthermore, it has been reported that cdc20 negatively

regulates hsl1 [30], as suggested by the opposite behavior in

their expression levels found by the SOM. These results might

be used as a starting point for the study of the association

among the genes mentioned for which a direct relationship has

not yet been reported.

In order to verify whether there were genes that could have

been affected during the experimental conditions under which

the microarray databases were obtained, the distances between

pairs of the genes clustered in all databases were calculated with

the goal of finding outliers. We used the distance between the

hexagons from the output map to make the outliers computa-

tions, which were based on the quartiles of the data as calculated

using Eq. 4.

Lower Limit~Q1{1:5(Q3{Q1)

Upper Limit~Q3z1:5(Q3{Q1)
ð4Þ

The database that presented the fewest outliers was alpha30,

whereas the database that presented the highest number of

outliers was cdc28 (see Table 3). Figure 8 presents some

examples of the analyzed cases. Figure 8A shows that genes

clb1 and cdc5 were consistently close in all the databases,

meaning that their behavior was similar in all of them, whereas

distances between genes in Figure 8B are very different in all

the databases, indicating that hcm1 and whi5 presented

different expression levels during the two cell cycles analyzed.

Figures 8C and 8D show pairs of genes that have different

behavior in one of the five databases, which suggest that they

may have been affected by the experimental conditions for

obtaining that particular database.

The above analysis shows that the behavior of genes in

experiments performed under different conditions or with

different strains of S. cerevisiae is not similar in all cases. This

could be one reason why after more than fifteen years and

hundreds of research papers on the genetic regulatory network of

S. cerevisiae, it has been difficult to find a consensus among

researchers about the way in which genes interact in this

organism. Additionally, taking into account that the time of

transcription and translation of genes is in the order of minutes or

even seconds [31], a more frequent sampling might be needed to

capture the dynamics of gene regulation [12].

Self-Organizing Maps can be useful in the analysis of gene

expression levels from microarray data, since in addition to

clustering the genes according to their behavior over time, they

organize and display the clustered genes based on their

behavior. For example, Self-Organizing maps place the genes

with the highest similarity in nearby neurons, and the ones

with lower similarity in neurons that are farther away on the

map. Another advantage of this kind of neural network is that

it is an unsupervised method; thus, there is no need of previous

knowledge to perform the analysis. This property of not being

supervised, allows SOMs to avoid certain amount of bias by

the researcher when extracting the possible model from the

data. This is one of the main reasons why SOM, as other

unsupervised techniques, may be a better choice than other

techniques for obtaining more accurate models of biological

processes.

It should finally be mentioned that the computational

complexity of the SOM algorithm is O(K2), where K is the

number of map units. However, it is possible to reduce the

complexity by using parallel versions of SOM [32,33]. The

running time for the analysis of each of the studied databases was

around three seconds in a computer with an Intel Core i5 2.5-

GHz processor, 4 GB of RAM, and a 64-bit Windows 7

operating system.
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Conclusions

In this paper we propose the use of Self-Organizing Maps for

analyzing the similarity of gene expression levels from DNA

microarray databases. We applied the SOM technique to five of

the most studied microarray databases of Saccharomyces cerevisiae.

Through this tool it was possible to discover possible relationships

among genes, based on their behavior over time in all the databases,

without any previous knowledge about their characteristics, such as

biological functions or their binding sites. Furthermore, it was

possible to find genes that behaved in similar ways in all databases

and others that behaved in a different way in just one of the

databases, suggesting that they could be affected by the experimen-

tal conditions or the yeast strain used. We also showed the usefulness

of visualization of expression levels through color-coded maps in

order to analyze the evolution of gene expression levels during the

cell cycle. This type of maps could be useful in the discovery of new

biological functions of genes according to the cell cycle phase in

which their expression level peaks.

The proposed method can also assess the quality of the expression

microarray database analyzed. For instance, we found that of the five

databases that were analyzed, the one with the best characteristics to

study the gene regulatory network of S. cerevisiae seemed to be the

alpha30 database. This database presented the fewest pairs of outlier

genes in our comparative analysis with SOM, which suggests that this

database might be the most representative of the dynamics of gene

regulation of the five databases considered. In this database, as in the

alpha38 database, samples were taken every five minutes, –a sampling

time shorter than in the other databases– and they contained 25

samples –more samples than the others.

The methodology presented in this paper could be applied to the

study of the relationships among genes in other organisms and

biological processes other than cell cycle regulation, using the

expression levels in time series microarray data as input. It could be

particularly useful in situations where there is little experimental

knowledge about the biological process of interest. The output maps

from SOM could be the starting point for laboratory-based

experiments aimed at discovering how genes interact in complex

regulatory networks.

Supporting Information

Dataset S1 The alpha database. SOM Toolbox data file

corresponding to the alpha database with expression values scaled

to the range [0,1].

(DATA)

Dataset S2 The cdc15 database. SOM Toolbox data file

corresponding to the cdc15 database with expression values scaled

to the range [0,1].

(DATA)

Dataset S3 The cdc28 database. SOM Toolbox data file

corresponding to the cdc28 database with expression values scaled

to the range [0,1].

(DATA)

Dataset S4 The alpha30 database. SOM Toolbox data file

corresponding to the alpha30 database with expression values

scaled to the range [0,1].

(DATA)

Dataset S5 The alpha38 database. SOM Toolbox data file

corresponding to the alpha38 database with expression values

scaled to the range [0,1].

(DATA)

File S1 List of the cell cycles genes from Alberghina
et al. in XLS format.
(XLS)

File S2 List of the cell cycles genes from Alberghina
et al. in CSV format.
(CSV)

File S3 Compressed file with the SOM Toolbox files
used for the analyses.
(ZIP)

Author Contributions

Conceived and designed the experiments: RC-A AC AM-V. Performed the

experiments: RC-A AM-V. Analyzed the data: RC-A AC AM-V.

Contributed reagents/materials/analysis tools: AM-V. Wrote the paper:

RC-A AC AM-V.

References

1. Kim H, Lee JK, Park T (2007) Boolean networks using the chi-square test for

inferring large-scale gene regulatory networks. BMC Bioinformatics 8: 37.

2. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to

analyze expression data. J Comput Biol 7: 601–620.

3. Zou M, Conzen SD (2005) A new dynamic Bayesian network (DBN) approach

for identifying gene regulatory networks from time course microarray data.

Bioinformatics 21: 71–79.

4. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, et al. (2004)

Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:

3841–3862.

5. Hancioglu B, Tyson JJ (2012) A mathematical model of mitotic exit in budding yeast:

the role of Polo kinase. PLoS ONE 7: e30810. doi:10.1371/journal.pone.0030810

6. Repsilber D, Liljenström H, Andersson SG (2002) Reverse engineering of

regulatory networks: simulation studies on a genetic algorithm approach for

ranking hypotheses. Biosystems 66: 31–41.

7. Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, et al. (2005) Inference

of S-system models of genetic networks using a cooperative coevolutionary

algorithm. Bioinformatics 21: 1154–1163.

8. Huang J, Shimizu H, Shioya S (2003) Clustering gene expression pattern and

extracting relationship in gene network based on artificial neural networks.

J Biosci Bioeng 96: 421–428.

9. Sokhansanj B, Fitch JP, Quong J, Quong A (2004) Linear fuzzy gene network

models obtained from microarray data by exhaustive search. BMC Bioinfor-

matics 5: 108.

10. Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, et al. (2007) Reverse

engineering of gene regulatory networks. IET Syst Biol 1: 149–163.

11. Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R (2009) Gene

regulatory network inference: data integration in dynamic models–a review.

Biosystems 96: 86–103.

12. He F, Balling R, Zeng AP (2009) Reverse engineering and verification of gene

networks: principles, assumptions, and limitations of present methods and future

perspectives. J Biotechol 144: 190–203.

13. Alberghina L, Coccetti P, Orlandi I (2009) Systems biology of the cell cycle of

Saccharomyces cerevisiae: From network mining to system-level properties.

Biotechnol Adv 27: 960–978.

14. Kohonen T (1982) Self-organized formation of topologically correct feature

maps. Biol Cybern 43: 59–69.

15. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, et al. (1999) Interpreting

patterns of gene expression with self-organizing maps: methods and application

to hematopoietic differentiation. Proc Natl Acad Sci U S A 96: 2907–2912.

16. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, et al. (1998) A

genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65–73.

17. D’haeseleer P, Wen X, Fuhrman S, Somogyi R (1999) Linear modeling of

mRNA expression levels during CNS development and injury. In: Pac Symp

Biocomput 4: 41–52.

18. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, et al. (1998)

Comprehensive identification of cell cycle–regulated genes of the yeast

Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–3297.

19. Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006) The Forkhead

transcription factor Hcm1 regulates chromosome segregation genes and fills the

S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20:

2266–2278.

Gene Relationship Discovery Using Self-Organizing Maps

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e93233
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