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INTRODUCTION

Sepsis, a systemic inflammatory response syndrome resulting 
from bacterial, fungal, or viral infections, can result in organ 
dysfunction, shock, and even death,1 and has become a lead-
ing cause of death in intensive care units.2 Acute kidney injury 
(AKI), a common and severe complication of sepsis, is charac-

terized by sudden or chronic renal dysfunction,3 and severe 
sepsis accounts for about 50% of all AKI cases.4,5 

Long non-coding RNAs (lncRNAs), a subgroup of non-cod-
ing RNAs (ncRNAs) of more than 200 nucleotides in length, 
are unable to encode proteins.6 Increasing research has indi-
cated that lncRNAs exert crucial effects on biological processes, 
including cell proliferation, differentiation, apoptosis, inflam-
mation, and fibrosis.7 Some lncRNAs, including NEAT1, TUG1, 
and HOTAIR, have been identified as biomarkers for sepsis-in-
duced AKI.8,9 Recently, the lncRNA RNA component of mito-
chondrial RNAase P (RMRP) has been found to participate in 
various diseases, such as acute leukemias, acute myocardial in-
farction, and rheumatoid arthritis.10-12 Interestingly, RMRP has 
been reported to modulate cardiomyocyte apoptosis in lipo-
polysaccharide (LPS)-induced septic mice.13 However, the role 
of RMRP in sepsis-induced AKI has not been investigated.

LncRNAs have been revealed to serve as competitive endog-
enous RNAs (ceRNAs) in many diseases. The ceRNA network 
refers to the competitive binding of lncRNAs with microRNAs 
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(miRNAs) to suppress the silencing effect of miRNAs on target 
messenger RNAs (mRNAs).14 MiRNAs, another class of ncRNAs 
with a length of 19–25 nucleotides, are encoded by the genome 
of higher eukaryotes.15 MiRNAs have been widely reported to 
be involved in sepsis-induced AKI: for instance, miR-21-3p af-
fects the metabolism of renal tubular epithelial cells via the 
AKT/CDK2-FOXO1 pathway in sepsis-induced AKI.16 MiR-107 
aggravates tubular cell injury by promoting secretion of tumor 
necrosis factor-α (TNF-α) in endothelial cells in patients with 
septic AKI.17 Increased levels of microRNA 206 (miR-206) have 
been revealed to be associated with enhanced regeneration 
and decreased fibrosis of dystrophic muscles.18 MiR-206 tar-
gets the 3'-untranlated regions of SOD1 to increase reactive ox-
ygen species levels and aggravate pulmonary inflammatory re-
sponses in asthmatic mice.19 MiR-206 attenuates neuropathic 
pain in rats via the MEK/ERK pathway by targeting BDNF.20 

However, the role of miR-206 in sepsis-induced AKI remains 
uninvestigated.

DEAD-box helicase 5 (DDX5) protein, also known as p68, is 
a member of superfamily 2 helicases and has been reported 
to regulate inflammation and apoptosis.21,22 As an example, 
knockdown of DDX5 has been shown to selectively inhibit the 
phosphorylation of NF-kB (Ser 311) subunit and to reduce pro-
tein levels of anti-apoptotic factor Bcl-2.23 However, the role of 
DDX5 remains unclear in sepsis-induced AKI. In our study, we 
aimed to investigate the role of RMRP in sepsis-induced AKI. 
At first, we analyzed the expression of RMRP in patients with 
sepsis. Then, we investigated the biological functions and reg-
ulatory networks of RMRP during the progression of sepsis-in-
duced AKI. We discovered that RMRP aggravates sepsis-in-
duced AKI by binding with miR-206 to upregulate DDX5 and 
by activating NLRP3 inflammasome.

MATERIALS AND METHODS

Patients and sample collection
Septic patients (including severe sepsis and septic shock; n=48) 
with AKI and healthy individuals (n=25) from the Affiliated 
Hospital of Nantong University (Nantong, Jiangsu, China) were 
recruited in this study. Septic patients were defined using Amer-
ican College of Chest Physicians/Society of Critical Care Med-
icine criteria.24,25 Patients with urinary tract infection or patients 
who had received anti-sepsis treatment were excluded from 
our study. Venous blood was collected from septic patients and 
healthy people, and preserved by anticoagulation with 1 mL of 
edathamil (EDTA-K2, Solarbio, Beijing, China). Serum was ob-
tained by centrifugation after coagulation by 4 mL of EDTA-K2 
and stored at -20°C. Each patient provided written informed 
consent in advance of the study, and the study was approved by 
the ethics committee of the Affiliated Hospital of Nantong Uni-
versity (Jiangsu) (IRB No. 2018-063).

Establishment of a sepsis model
The septic AKI model was developed as described before.26 

C57BL/6 mice (Vital River Co. Ltd, Beijing, China; male, 20–25 g, 
n=40) were housed independently at 20–25°C in 50% humidi-
ty and were randomly divided into four groups (n=10 in each 
group): sham group, cecal ligation and puncture (CLP) group, 
CLP+AAV-sh-NC group, and CLP+AAV-sh-RMRP group. In the 
CLP group, mice were anesthetized by intraperitoneal injec-
tion of 2% sodium pentobarbital (80 mg/kg). Then, the mice 
were placed on the laboratory bench, and the abdomen was 
then shaved and disinfected with 70% isopropanol. Subse-
quently, an incision (1.5 cm) was made at the midline of the 
mice abdomen to fully expose the cecum. Next, sterile sewing 
silk (no. 4) was used to ligature the cecum (1 cm away from the 
cecum tail). Afterwards, the blind end was perforated by a 
20-gauge needle, and little feces were squeezed. Lastly, we su-
tured the abdominal incision after restoring the cecum to the 
abdominal cavity, and the mice were moved to a thermostatic 
blanket for rewarming. The mice in the sham group under-
went a similar operation without CLP. All experimental proce-
dures were conducted in accordance with the instructions of 
the National Institutes of Health Guidelines for the Care and 
Use of Laboratory Animals.

Adeno-associated virus
Adeno-associated virus (AAV) (serotype 2) containing the se-
quences of short hairpin RNA (sh-RMRP) or short hairpin neg-
ative control (sh-NC) were bought from Vigene Biosciences 
(Shanghai, China) and injected (1012 v.g/mL) into mice via the 
tail vein. The mice were sacrificed 28 days after injection. Fi-
nally, the left kidneys were dissected, and blood was collected 
for biochemical assays.

Cell treatment and transfection
Apoptosis or necrosis of proximal tubule epithelial cells is the 
most common cause of AKI. LPS-induced human proximal 
tubule tubular epithelial cells, HK-2 cells, are widely used in in 
vitro models of septic AKI.27 HK-2 cell lines were bought from 
BeNa Culture Collection (Beijing, China) and cultivated in 
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, Grand 
Island, NY, USA) supplemented with 10% fetal bovine serum 
(FBS; Gibco), 100 U/mL of penicillin, and 100 μg/mL of strep-
tomycin (Sigma, Saint Louis, MO, USA) at 37°C in 5% CO2. For 
cell treatment, HK-2 cells were treated with 100 ng/mL of LPS 
for 24 h, and HK-2 cells in the control group were treated with 
same dose of cell culture medium (Con). For cell transfection, 
sh-RMRP with sh-NC as a control, miR-206 mimics with NC 
mimics as a control, and pcDNA3.1/DDX5 (DDX5) with empty 
pcDNA3.1 as a control were transfected or co-transfected into 
HK-2 cells by Lipofectamine 2000 following the manufactur-
er’s instructions. All plasmids were obtained from GenePhar-
ma (Shanghai, China).
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Renal function measurement
The concentrations of blood urea nitrogen (BUN) and serum 
creatinine in the sera of mice were, respectively, detected by a 
Hitachi 7060 automatic biochemistry analyzer (Hitachi, To-
kyo, Japan) and a creatinine assay kit (BioAssay Systems, Hay-
ward, CA, USA) according to the manufacturer’s instructions. 

Reverse transcription quantitative polymerase chain 
reaction (RT-qPCR)
The extraction of total RNA from HK-2 cells and kidney tissue 
samples was performed using TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA). The RevertAid First Strand cDNA Synthe-
sis Kit (K1622, Thermo Scientific, Waltham, MA, USA) and 
TaqMan microRNA assay kit (Applied Biosystems, Waltham, 
MA, USA) were used for reverse transcription. qPCR was car-
ried out with the SYBR-Green PCR Master Mix kit (Applied Bio-
systems) or TaqMan miRNA assay kit (Applied Biosystems). 
The relative expression levels of RNAs were calculated with 
the 2–ΔΔCt method. Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and RNU6 (U6) served as control genes. The 
primer sequences were as follows:

RMRP: 5'-ACT CCA AAG TCC GCC AAG A-3' (forward), 5'-
TGC GTA ACT AGA GGG AGC TGA C-3' (reverse); miR-206: 
5'-CGG GCT TGT GGA ATG GTA AGC-3' (forward), 5'-GCT 
TCG GCA GCA CAT ATA CTA AAA T-3' (reverse); DDX5: 5'-
GGC CTG ATC ACA GAA CCA TT-3' (forward), 5'-ACC ACC 
CTT ATT CCC AAA CC-3' (reverse); U6: 5'-CGC TTC ACG AAT 
TTG CGT GTC AT-3' (forward), 5'-ATG GAA CGC TTC ACG 
A-3' (reverse); and GAPDH: 5'-TAT GAT GAT ATC AAG AGG 
GTA GT-3' (forward), 5'-TGT ATC CAA ACT CAT TGT CAT 
AC-3' (reverse).

Hematoxylin-eosin staining
Tissue samples were isolated and fixed in 10% formalin for 48 h 
and then embedded in paraffin. Sections (4 µm) containing re-
nal tissues were prepared from the wax blocks and were stained 
with hematoxylin and eosin. Pathological changes in mice kid-
neys were analyzed using a light microscope as described pre-
viously.28

Enzyme-linked immunosorbent assay
Protein levels of TNF-α, interleukin-6 (IL-6), and interleukin-
1β (IL-1β) in the supernatants of HK-2 cells or kidney tissues 
of mice in each group were measured with enzyme-linked 
immunosorbent assay (ELISA) kits according to the manufac-
turer’s instructions.

Apoptosis assay
After transfection for 48 h, cells were collected in a flow tube 
and centrifuged at 1000 r/min for 5 min, after which the su-
pernatant was removed. In accordance with the instructions of 
the Annexin-V fluorescein isothiocyanate (FITC) cell apopto-
sis detection kit (Sigma), cells in each flow tube were added 

with 150 µL of binding buffer and 5 µL of Annexin-V-FITC and 
mixed. Then, the cells were cultured at room temperature for 
15 min in the dark. Next, 100 µL of binding buffer and 5 µL of 
propidium iodide (PI; Sigma) were added to the cells and 
mixed. Cell apoptosis was detected by flow cytometry (FACS-
Canto II, BD Biosciences, Hercules, CA, USA).

Western blot analysis
Cells or kidney tissue samples were lysed with lysis buffer 
containing protease inhibitors. Equal amounts of protein 
were dissolved on sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis gels and transferred to polyvinylidene fluo-
ride membranes. After being blocked with 5% nonfat milk, the 
membranes were immunoblotted with primary antibodies 
against B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-Associ-
ated X (Bax), cleaved cysteinyl aspartate specific proteinase 
(caspase)-1, Apoptosis associated speck-like protein contain-
ing caspase recruitment domain (ASC), Recombinant Human 
NACHT, LRR and PYD domains-containing protein 3 (NLRP3), 
DDX5, and GAPDH at a dilution of 1:1000 overnight at 4°C. 
Following washing, the membranes were exposed to horse-
radish peroxidase-conjugated goat anti-rabbit (1:5000, Abcam, 
Cambridge, UK) secondary antibodies, and signals were de-
tected with the enhanced chemiluminescence detection sys-
tem. All antibodies mentioned above were purchased from Ab-
cam (Cambridge).

Luciferase reporter assay
Wild-type (Wt) or mutant (Mut) binding sequences of RMRP 
or DDX5 3'UTR on miR-206 were subcloned into pmirGLO du-
al-luciferase vector to construct RMRP-Wt, RMRP-Mut, DDX5-
Wt, and DDX5-Mut vectors. Then, wild-type or mutant pmir-
GLO-RMRP or pmirGLO-DDX5 was transfected with miR-206 
mimics or NC mimics. After 48 h, luciferase activity was detect-
ed by the dual luciferase reporter assay system (Promega, Mad-
ison, WI, USA). The vectors used in this assay were obtained 
from GenePharma (Shanghai, China).

Statistical analysis
All statistical analyses were conducted utilizing SPSS software 
(version 19.0; IBM, Corp., Armonk, NY, USA). The data are 
presented as means±standard deviations. Unpaired Student’s 
t test was employed to compare differences between groups. 
One-way analysis of variance was conducted for comparisons 
of more than two groups. Only p values less than 0.05 were con-
sidered significant.

RESULTS

Knockdown of RMRP inhibits cell apoptosis and 
inflammation 
RMRP reportedly prevents the apoptosis of cardiomyocytes in 
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LPS-induced septic mice via the miR-1-5p/hsp70 axis.13 To as-
sess the role of RMRP in sepsis-induced AKI, we collected 
sera from septic patients with AKI and from healthy individu-
als, as well as established cell models by treating HK-2 cells 

with LPS. According to the results of RT-qPCR, RMRP expres-
sion was upregulated in the sera of septic patients with AKI, 
compared with that from healthy individuals (Fig. 1A). Simi-
larly, LPS stimulation increased RMRP expression in HK-2 cells 

Fig. 1. Knockdown of RMRP inhibits cell apoptosis and inflammation. (A) RT-qPCR analysis of the expression of RMRP in sera from healthy people 
(n=25) and sepsis patients with AKI (n=48). (B) The expression of RMRP in LPS-induced HK-2 cells was confirmed by RT-qPCR analysis. (C) RT-qPCR analy-
sis was conducted to evaluate the knockdown efficiency of RMRP in LPS-induced HK-2 cells. (D) Flow cytometry analysis was carried out to explore cell 
apoptosis rates. (E) The protein levels of Bax and Bcl-2 were analyzed by Western blotting. (F) ELISA was used to detect the levels of TNF-α, IL-6, and 
IL-1β in HK-2 cells. *p<0.05. RT-qPCR, reverse transcription quantitative polymerase chain reaction; LPS, lipopolysaccharide; RMRP, RNA component of 
mitochondrial RNAase P; DDX5, DEAD-box helicase 5; NLRP3, NACHT, LRR and PYD domains-containing protein 3; Bax, B-cell lymphoma-Associated X; 
Bcl-2, B-cell lymphoma-2; ELISA, enzyme-linked immunosorbent assay; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; IL-1β, interleukin-1β.
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Fig. 2. RMRP promotes inflammation by activating the NLRP3 inflammasome. (A) Western blot analysis revealed the protein levels of NLRP3, ASC, 
and cleaved caspase-1. (B) ELISA was used to detect the levels of TNF-α, IL-6, and IL-1β in HK-2 cells. (C) Western blot analysis determined the pro-
tein levels of Bax and Bcl-2 in HK-2 cells. *p<0.05. NLRP3, NACHT, LRR and PYD domains-containing protein 3; ASC, apoptosis associated speck-like 
protein containing caspase recruitment domain; caspase, cysteinyl aspartate specific proteinase; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; IL-
1β, interleukin-1β; Bax, B-cell lymphoma-Associated X; Bcl-2, B-cell lymphoma-2.

(Fig. 1B). Transfection of sh-RMRP significantly reduced RMRP 
levels in LPS-induced HK-2 cells (Fig. 1C). Functionally, flow 
cytometry assay demonstrated that cell apoptosis rates in-
creased upon treatment with LPS, and knockdown of RMRP re-
versed the effect induced by LPS on cell apoptosis (Fig. 1D). 
The results of Western blot showed that LPS-induced increas-
es in Bax expression and decreases in Bcl-2 expression were 
counteracted by knockdown of RMRP in HK-2 cells (Fig. 1E). 
Finally, ELISA suggested that LPS stimulation increased the 
levels of TNF-α, IL-6, and IL-1β, and these results were re-
stored by knockdown of RMRP (Fig. 1F). These findings dem-
onstrated that knockdown of RMRP inhibits cell apoptosis and 
the production of inflammatory factors in in vitro models of 

sepsis-induced AKI.

RMRP promotes inflammation by activating NLRP3 
inflammasome
Considering that NLRP3 inflammasome is closely associated 
with the production of inflammatory factors, we then probed 
the relationship between RMRP and NLRP3 inflammasome. 
The protein levels of NLRP3 inflammasome components, in-
cluding NLRP3, ASC, and cleaved caspase-1, in LPS-induced 
HK-2 cells were detected. The result showed that knockdown 
of RMRP decreased protein levels of NLRP3, ASC, and cleaved 
caspase-1, and such effects were counteracted by NLRP3 over-
expression (Fig. 2A). Moreover, results from ELISA also demon-
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strated that knockdown of RMRP elicited decreases in TNF-α, 
IL-6, and IL-1β, which were rescued by overexpression of 
NLRP3 (Fig. 2B). Finally, the sh-RMRP-induced decreases in 
Bax and increases in Bcl-2 were counteracted by overexpres-
sion of NLRP3 (Fig. 2C). These findings revealed that RMRP 
promotes inflammation by activating NLRP3 inflammasome 
in an in vitro model of sepsis-induced AKI.

Knockdown of RMRP alleviates AKI in CLP mice
To clarify the effects of RMRP on AKI in vivo, we established 
septic mouse models by CLP operation. As shown in Fig. 3A, 
the levels of RMRP were significantly reduced by injection of 
AAV-sh-RMRP into the kidney tissues of mice. Light micros-
copy revealed that knockdown of RMRP alleviated tubular cell 
swelling and inflammatory cell infiltration in the kidney tis-
sues of CLP mice (Fig. 3B). Assessment of renal function in the 
mice revealed that knockdown of RMRP decreased BUN and 
serum creatinine levels in the sera of CLP mice (Fig. 3C, D). 
Moreover, knockdown of RMRP triggered increases in Bax pro-
tein levels and decreases in Bcl-2 protein levels in the kidney 
tissues of CLP mice (Fig. 3E). Furthermore, we found that the 
protein levels of NLRP3, ASC, and cleaved caspase-1 were re-
duced by inhibition of RMRP in kidney tissues of CLP mice, 
suggesting that NLRP3 inflammasome was inactivated by 
knockdown of RMRP (Fig. 3F). Lastly, ELISA indicated that 
the levels of TNF-α, IL-6, and IL-1β in kidney tissues of CLP 
mice decreased by knockdown of RMRP (Fig. 3G-I). All of 
these data suggested that knockdown of RMRP alleviates AKI 
in a CLP mouse model. 

MiR-206 directly binds with RMRP
Increasing research has indicated that lncRNA can compete 
with mRNA for miRNA.14 Additionally, lncRNA RMRP has been 
identified to act as a ceRNA.11 Hence, we hypothesized that 
RMRP may also act in the same manner in sepsis-induced AKI. 
Searching the starBase website, we found that seven miRNAs 
(miR-206, miR-766-5p, miR-1-3p, miR-613, miR-580-3p, miR-
3142, and miR-1245b-5p) harbored binding sites on RMRP. 
Subsequent RT-qPCR analysis showed that only miR-206 was 
downregulated in response to LPS stimulation in HK-2 cells 
(Fig. 4A). Therefore, we chose miR-206 for the following ex-
periment. As shown in Fig. 4B, miR-206 levels were signifi-
cantly overexpressed by transfection of miR-206 mimics in 
HK-2 cells. We constructed wild-type and mutant pmirGLO-
RMRP plasmids that were co-transfected with miR-206 mim-
ics or NC mimics into HK-2 cells. We discovered that lucifer-
ase activity of pmirGLO-RMRP-Wt was significantly decreased 
by miR-206 mimics, while no significant change was observed 
in pmirGLO-RMRP-Mut groups (Fig. 4C), indicating that miR-
206 can bind with RMRP at the predicted sites. Furthermore, 
RT-qPCR analysis revealed that miR-206 expression was down-
regulated in sera from septic patients with AKI, compared to 
that from healthy individuals (Fig. 4D). Compared to sham 

mice, CLP mice exhibited downregulated miR-206 expression 
in kidney tissues (Fig. 4E).

DDX5 is a target of miR-206
Next, we sought to identify the target mRNA of miR-206. With 
the assistance of bioinformatics tools, eight potential mRNAs 
were screened (Fig. 5A). Among eight candidate targets, only 
DDX5 was upregulated after LPS stimulation in HK-2 cells 
(Fig. 5B). Moreover, luciferase reporter assay showed that miR-
206 mimics weakened the luciferase activity of pmirGLO-
RMRP-Wt vector, and the luciferase activity of pmirGLO-RM-
RP-Mut vector showed no significant change in response to 
miR-206 mimics (Fig. 5C). We also found that miR-206 overex-
pression reduced DDX5 protein levels in HK-2 cells (Fig. 5D). 
RT-qPCR analysis revealed higher levels of DDX5 mRNA in 
septic patients with AKI, compared to that in health individu-
als (Fig. 5E). Furthermore, Western blot analysis confirmed 
that DDX5 was upregulated in renal tissues of CLP mice (Fig. 
5F). Altogether, the results demonstrated that DDX5 acts as a 
target of miR-206. 

RMRP facilitates cell apoptosis and inflammation by 
upregulating DDX5 
To investigate whether RMRP affects inflammation and cell 
apoptosis by regulating DDX5 in LPS-induced HK-2 cells, res-
cue assays were performed. At first, the transfection of pcD-
NA3.1/DDX5 significantly increased the protein levels of 
DDX5 (Fig. 6A) in RMRP-silenced HK-2 cells after stimulation 
of LPS. Furthermore, we detected cell apoptosis by flow cytom-
etry analysis. The results revealed that knockdown of RMRP in-
hibited cell apoptosis, and overexpression of DDX5 reversed 
this effect (Fig. 6B). Western blot analysis disclosed that sh-
RMRP-mediated deceases in Bax and increases in Bcl-2 were 
neutralized by overexpression of DDX5 (Fig. 6C). Subsequently, 
the suppressive effects of sh-RMRP on concentrations of TNF-α, 
IL-6, and IL-1β were rescued by transfection of pcDNA3.1/
DDX5 (Fig. 6D-F). Altogether, our findings indicate that RMRP 
facilitates apoptosis and inflammation of LPS-induced HK-2 
cells by upregulation of DDX5 and by activation of NLRP3 in-
flammasome (Supplementary Fig. 1, only online).

DISCUSSION

AKI is a complex clinical kidney disorder with complicated 
pathogenesis that can be life-threatening.1 Known factors, such 
as necrotic tubular obstruction of renal tubules, glomerular 
vascular thrombosis, inflammatory cell infiltration, endotheli-
al dysfunction, and intrarenal hemodynamic changes, are as-
sociated with sepsis-mediated AKI.29 Previous studies claimed 
that sepsis-mediated AKI displays obvious inflammatory re-
sponse-mediated injury, generally accompanied with cellular 
apoptosis.30 Additionally, inflammatory, anti-inflammatory, 
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Fig. 3. Knockdown of RMRP alleviates AKI in CLP mice. (A) RT-qPCR analysis was carried out to evaluate the knockdown efficiency of sh-RMRP in re-
nal tissues of CLP mice. (B) H&E staining was conducted to assess degrees of kidney injury in mice (the black arrow indicates inflammatory cell infiltra-
tion, and the blue arrow indicates tubular cell swelling). (C and D) Statistical analysis of levels of BUN and serum creatinine in the sera of sham mice and 
CLP mice. (E and F) Western blot was conducted to examine protein levels of Bax, Bcl-2, NLRP3, ASC, and cleaved caspase-1 in renal tissues of sham 
mice and CLP mice. (G-I) Levels of TNF-α, IL-6, and IL-1β in kidney tissues of sham mice and CLP mice were determined by ELISA. *p<0.05, **p<0.01, 
***p<0.001. RT-qPCR, reverse transcription quantitative polymerase chain reaction; RMRP, RNA component of mitochondrial RNAase P; AKI, acute kid-
ney injury; BUN, blood urea nitrogen; CLP, cecal ligation and puncture; H&E, hematoxylin-eosin; RT-qPCR, reverse transcription quantitative polymerase 
chain reaction; RMRP, RNA component of mitochondrial RNAase P; NLRP3, NACHT, LRR and PYD domains-containing protein 3; Bax, B-cell lymphoma-
Associated X; Bcl-2, B-cell lymphoma-2; ASC, apoptosis associated speck-like protein containing caspase recruitment domain; caspase, cysteinyl as-
partate specific proteinase; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; IL-1β, interleukin-1β; ELISA, enzyme-linked immunosorbent assay.
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and immune responses induced by inflammation are involved 
in the progression of sepsis-induced AKI. The concentrations 
of pro-inflammatory cytokines, including IL-6, TNF-α, and IL-
1β, have been indicated as being related to the severity of sep-
sis-induced AKI.31 

Increasing evidence suggests that lncRNAs play a signifi-
cant role in inflammatory responses by regulating inflamma-
tory factors. As an example, upregulation of NEAT1 is related 
to high risk, poor prognosis, and increased levels of proinflam-

matory cytokines in patients with sepsis.32 In addition, HO-
TAIR promotes the production of TNF-α by activation of the 
NF-κB pathway in LPS-induced cardiomyocytes.33 Similarly, 
in this study, RMRP levels were upregulated in the sera of sep-
tic patients with AKI, and knockdown of RMRP inhibited the 
production of pro-inflammatory cytokines and reduced cell 
apoptosis in LPS-induced HK-2 cells. 

The NLRP3 inflammasome is a cytosolic multiprotein cas-
pase-activated complex platform in innate immunity and is 

Fig. 4. MiR-206 can directly bind with RMRP. (A) RT-qPCR analysis was conducted to detect the expression of seven candidate miRNAs. (B) RT-qPCR 
analysis was conducted to evaluate the overexpression efficiency of miR-206 mimics. (C) The binding sequences were predicted by starBase, and 
the relationship between miR-206 and RMRP was confirmed by luciferase reporter assay. (D and E) RT-qPCR was performed to detect miR-206 levels 
in the sera of sepsis patients with AKI (compared to healthy individuals) and in kidney tissues of CLP mice (compared to sham mice). *p<0.05. RMRP, 
RNA component of mitochondrial RNAase P; RT-qPCR, reverse transcription quantitative polymerase chain reaction; AKI, acute kidney injury; CLP, 
cecal ligation and puncture.
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Fig. 5. DDX5 is a target of miR-206. (A) Venn diagram depicts the number of candidate target genes of miR-206. (B) Expression of candidate mRNAs in 
LPS-induced HK-2 cells was detected by RT-qPCR. (C) Binding sequences were predicted by TargetScan, and the combination between miR-206 and 
DDX5 3’UTR was confirmed by luciferase reporter assay. (D) Western blot analysis was conducted to measure DDX5 protein levels in the condition of 
miR-206 overexpression. (E) RT-qPCR to detect the mRNA levels of DDX5 in sera from septic patients with AKI (compared to healthy individuals). (F) 
Western blot analysis was conducted to detect protein expression of DDX5 in kidney tissues in CLP mice (compared to sham mice). *p<0.05. DDX5, 
DEAD-box helicase 5; RT-qPCR, reverse transcription quantitative polymerase chain reaction; LPS, lipopolysaccharide; UTR, untranslated region; AKI, 
acute kidney injury; CLP, cecal ligation and puncture.

required for the maturation and release of IL-1β and IL-18.34 
IL-1β and IL-18 activate their respective receptors present on 
cells inside and outside kidneys, resulting in the release of 
other proinflammatory cytokines to initiate inflammatory mi-
lieu within the kidney.35 NLRP3 inflammasome is widely impli-
cated in a variety of renal injuries, including acute and chronic 
kidney disease. In the present study, knockdown of RMRP re-
duced protein levels of NLRP3, ASC, and cleaved caspase-1, 
suggesting that NLRP3 inflammasome is inactivated by inhi-

bition of RMRP. Moreover, concentrations of pro-inflammato-
ry cytokines displayed similar alterations in LPS-induced HK-2 
cells upon silencing of RMRP. Further in vivo study indicated 
that knockdown of RMRP alleviates AKI in CLP mice.

Accumulating studies have confirmed that RMRP can act as 
a ceRNA by competitively binding with miRNA to release 
mRNA. For instance, RMRP promotes hypoxia-induced injury 
by targeting the miR-214-5p/p53 axis.11 Knockdown of RMRP 
inhibits hepatocellular carcinoma progression via regulation 
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Fig. 6. RMRP facilitates cell apoptosis and inflammation by upregulation of DDX5. (A) Western blot analysis was conducted to detect the expression of 
DDX5 in different groups. (B) Flow cytometry analysis was conducted to explore cell apoptosis in different groups. (C) Protein levels of Bax and Bcl-2 in 
different groups in LPS-induced HK-2 cells were detected by Western blot analysis. (D-F) Levels of TNF-α, IL-6, and IL-1β in LPS-induced HK-2 cells 
were confirmed by ELISA. *p<0.05. RMRP, RNA component of mitochondrial RNAase P; DDX5, DEAD-box helicase 5; Bax: B-cell lymphoma-Associat-
ed X; Bcl-2, B-cell lymphoma-2; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; IL-1β, interleukin-1β; ELISA, enzyme-linked immunosorbent assay.
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of the miR-206/TACR1 axis.36 RMRP has also been indicated to 
promote cell proliferation of nucleus pulposus by regulating 
miR-206 expression.37 Likewise, in our study, we also found that 

RMRP can directly bind with miR-206. Subsequently, we inno-
vatively identified that DDX5 is a direct target of miR-206 and 
that its expression is inhibited by miR-206. RMRP upregulated 
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DDX5 expression by binding with miR-206 to suppress the in-
hibitory effects of miR-206 on DDX5. Finally, rescue assay re-
vealed that DDX5 upregulation counteracted the effects of 
RMRP inhibition on cell apoptosis and inflammation.

In conclusion, our data implicated the upregulation of RMRP 
in sepsis-induced AKI. The suppression of RMRP appeared to 
alleviate LPS-induced AKI by inactivating NLRP3 inflamma-
some and by downregulating DDX5 via miR-206. This novel 
discovery suggests that RMRP may be a potential diagnostic 
marker or therapeutic target for sepsis-induced AKI.
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