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Abstract: Bacteria encode carbonic anhydrases (CAs, EC 4.2.1.1) belonging to three different genetic
families, the α-, β-, and γ-classes. By equilibrating CO2 and bicarbonate, these metalloenzymes
interfere with pH regulation and other crucial physiological processes of these organisms. The
detailed investigations of many such enzymes from pathogenic and non-pathogenic bacteria afford
the opportunity to design both novel therapeutic agents, as well as biomimetic processes, for example,
for CO2 capture. Investigation of bacterial CA inhibitors and activators may be relevant for finding
antibiotics with a new mechanism of action.
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1. Introduction

In the time of emerging antibiotic resistance, the improvement of pharmacological arsenal against
bacterial pathogens is of pivotal importance [1,2]. Among the strategies adopted for fighting antibiotic
resistance, the effectiveness is a structural upgrade of the current clinical drugs for generating novel
antibiotics [1,2]. The limit of this strategy is that the newly generated drugs could have a limited
lifespan due to the possible resistance that they will develop sooner or later. Fortunately, in the
last years, the DNA sequencing approach applied to the bacterial genome allowed the discovery of
numerous genes encoding for enzymes which catalyze metabolic pathways essential for the life cycle
and/or the virulence of these microbes [3]. Thus, scientists possess in vitro essential bacterial targets
for finding and designing new antiinfectives able to disarm pathogens through their inhibition, as well
as to bypass their resistance to conventional antimicrobials. In fact, the inhibition of the new bacterial
targets takes place through mechanisms different from those usually represented by the block of
DNA gyrase, the inhibition of the ribosomal function, and the shut down of the cell-wall biosynthesis,
as most clinically used antibiotics act [3]. Moreover, this strategy will result in the development of
new antiinfectives, which can replace those already used in clinics with increasing bacterial resistance.
In this context, the superfamily of carbonic anhydrases (CAs, EC 4.2.1.1) represents a valuable member
of such new macromolecules affecting the growth of microorganisms or making them vulnerable to the
host defense mechanisms [4–8]. These metalloenzymes catalyze the simple but physiologically crucial
reaction of carbon dioxide hydration to bicarbonate and protons: CO2 + H2O 
 HCO3

− + H+ [4,8–14],
and they are involved in the transport and supply of CO2 or HCO3

− in pH homeostasis, the secretion
of electrolytes, biosynthetic processes, and photosynthesis [15,16]. Moreover, CAs are target molecules
of some antibacterial drugs, such as sulfanilamide.

Since CAs are very effective catalysts for the conversion of CO2 to bicarbonate, the CA superfamily
might be involved in the capture/sequestration of CO2 from combustion gases with the goal of
alleviating the global warming effects through a reduction of CO2 emissions in the atmosphere [17]. The
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production of CO2 is linked to the industrial development that must necessarily reduce its production.
To decrease the amount of CO2 in the atmosphere, a number of CO2 sequestration methods have
been proposed [17]. Most of them require that the CO2 captured from the flue gases is compressed,
transported to the sequestration site, and injected into specific areas for long-term storage [17]. All these
procedures lead to an increase in the costs of the capture and storage processes [17]. For this reason,
the biomimetic approach represents a valid strategy for CO2 capture. It allows the CO2 conversion to
water-soluble ions and offers many advantages over other methods, such as its eco-compatibility and
the possibility to use the reaction products for multiple applications, with no added costs. Furthermore,
thermophilic CAs are still active at high temperatures compared to their mesophilic counterparts, and
their use is preferred in environments characterized by hard conditions, such as those of the carbon
capture process (high temperature, high salinity, extreme pH) [18–21].

2. Classification and Structure

2.1. CA-Classes

The CAs make up a widely distributed class of metalloenzymes with the catalytically active
species represented by a metal hydroxide derivative [4–8]. CAs are grouped into seven genetically
distinct families, named α-, β-, γ-, δ-, ζ-, η-, and θ-CAs, with different folds and structures but common
CO2 hydratase activity, coupled to low sequence similarity. Bacteria encode for enzymes belonging to
α-, β-, and γ-CA classes [8,22–27]. Bacteria have a very intricate CA distribution pattern because some
of them encode CAs belonging to only one family, whilst others encode those from two or even three
different genetic families. The α- and β-CAs are metalloenzymes, which use the Zn(II) ion as a catalytic
metal; γ-CAs are Fe(II) enzymes, but they are also active with bound Zn(II) or Co(II) ions [28–35]. The
metal ion from the CA active site is coordinated by three His residues in the α- and γ-classes (Figures 1
and 2), and by one His and two Cys residues in the β-class (Figure 3). The fourth ligand is a water
molecule/hydroxide ion acting as a nucleophile in the catalytic cycle of the enzyme [8,24,25,36–39]. The
rate-determining step of the entire catalytic process is the formation of the metal hydroxide species of
the enzyme by the transfer of a proton from the metal-coordinated water molecule to the surrounding
solvent, possibly via proton-shuttling residues [5,8,22,24,25].

2.2. α-CA Structure

Bacterial α-CAs have only been poorly characterized with respect to the mammalian α-CAs.
In fact, the CAs from Neisseria gonorrhoeae, Sulfurihydrogenibium yellowstonense, Sulfurihydrogenibium
azorense, and Thermovibrio ammonificans are the only bacterial α-CAs with a known three-dimensional
structure [30,33,40,41]. An example of the typical structural organization of a bacterial α-CA is offered
by the X-ray crystal structure of the CA identified in the thermophilic bacterium Sulfurihydrogenibium
yellowstonense YO3AOP1 (Figure 4) [30,33]. This three-dimensional structure generally resembles
those of human α-CAs and it was obtained in the presence of the classical inhibitor of CAs, the
sulfonamide acetazolamide (AAZ). In particular, it shows a homodimeric arrangement stabilized by
a large number of hydrogen bonds and several hydrophobic interactions. The crystallized α-CAs
are active as monomers and dimers (Figure 4). The active site is located in a deep cavity, which
extends from the protein surface to the center of the molecule, and is characterized by hydrophilic and
hydrophobic regions. The hydrophilic part assists in the transfer of the proton from the Zn-bound
water to the solvent, while the hydrophobic district is involved in CO2 binding and ligand recognition.
The catalytic zinc ion is located at the bottom of this cavity and is tetrahedrally coordinated by three
histidine residues and by the N atom of the sulfonamide moiety of the inhibitor (or probably by the
water molecule in the uninhibited enzyme). Intriguingly, the bacterial α-CAs show a more compact
structure with respect to the mammalian counterpart, which is characterized by the presence of three
insertions (Figure 1) [30,33]. Due to the absence of these inserts, an active site larger than that of human
enzymes characterizes the bacterial CAs. Moreover, the structure of the thermostable CAs, such as
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SspCA (from Sulfurihydrogenibium yellowstonense) and SazCA (from Sulfurihydrogenibium azorense)
identified in thermophilic bacteria, are characterized by a higher content of secondary-structural
elements and an increased number of charged residues, which are all elements responsible for protein
thermostability [30,33]. It is interesting to note that the crystal structure of TaCA from Thermovibrio
ammonificans is tetrameric, with a central core stabilized by two intersubunit disulfides and a single
lysine residue from each monomer, which is involved in intersubunit ionic interactions [40].
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Figure 1. Multi-alignment of the amino acid sequences of two human α-CAs (hCAI and hCAII) and of
five bacterial α-CAs (SspCA, SazCA, NgoCA, VchCA, and HypyCA) was performed with the ClustalW
program, version 2.1. The hCA I numbering system was used. Black bold indicates the amino acid
residues of the catalytic triad; blue bold represents the “gate-keeper” residues; and red bold shows
the “proton shuttle residue”. Box indicates the signal peptide. The asterisk (*) indicates identity
at a position; the symbol (:) designates conserved substitutions, while (.) indicates semi-conserved
substitutions. Multi-alignment was performed with the program Clustal W, version 2.1. Legend: hCAI,
α-CA isoform I from Homo sapiens; hCAII, α-CA isoform II from Homo sapiens; SspCA, α-CA from
Sulfurihydrogenibium yellowstonense; SazCA, α-CA from Sulfurihydrogenibium azorense; NgonCA, α-CA
from Neisseria gonorrhea; VchCA, α-CA from Vibrio cholerae; HpyCA, α-CA from Helicobacter pylori.
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Figure 2. Alignment of the amino acid sequences of bacterial β-CAs from different species. Zinc ligands
are indicated in black bold; amino acids involved in the enzyme catalytic cycle are indicated in blue
bold. Box indicates the signal peptide. The asterisk (*) indicates identity at a position; the symbol (:)
designates conserved substitutions, while (.) indicates semi-conserved substitutions. Multi-alignment
was performed with the program Clustal W, version 2.1. Pisum sativum numbering system was used.
Legend: EcoCA, β-CA from Escherichia coli; VchCA, β-CA from Vibrio cholerae; bSuCA, β-CA from
Brucella suis; HpyCA, β-CA from Helicobacter pylori; PgiCA, β-CA from Porphyromonas gingivalis.
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Figure 3. Amino acid sequence alignment of the γ-CAs from different bacterial sources, such as Vibrio
cholerae, Sulfurihydrogenibium yellowstonense, Porphyromonas gingivalis, and Methanosarcina thermophila.
The metal ion ligands (His81, His117, and His122) are indicated in black bold; the catalytically relevant
residues of CAM, such as Asn73, Gln75, and Asn202, which participate in a network of hydrogen bonds
with the catalytic water molecule, are indicated in red bold; the acidic loop residues containing the
proton shuttle residues (Glu89) are colored in blue bold, but are missing in PgiCA. The CAM numbering
system was used. Box indicates the signal peptide. Legend: VchCA (γ-CA from Vibrio cholerae), SspCA
(γ-CA from Sulfurihydrogenibium yellowstonense), PgiCA (γ-CA from Porphyromonas gingivalis), and
CAM (γ-CA from Methanosarcina thermophila). The asterisk (*) indicates identity at all aligned positions;
the symbol (:) relates to conserved substitutions, while (.) means that semi-conserved substitutions are
observed. The multi-alignment was performed with the program Clustal W.
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2.3. β-CA Structure

X-ray crystal structures are available for several of β-CAs, such as those from Escherichia coli,
Haemophilus influenzae, Mycobacterium tuberculosis, Salmonella enterica, and Vibrio cholerae [29,42–45]. The
3-D folds of these enzymes are rather conserved, although some of them are dimers whereas others are
tetramers. All bacterial β-CAs crystallized so far are active as dimers or tetramers, with two or four
identical active sites. Their shape is that of a rather long channel at the bottom of which the catalytic
zinc ion is found, tetrahedrally coordinated by two cysteines, one-histidine and one-aspartic amino
acid residue (the so called “closed active site”). Interesting, the enzyme structure from Vibrio cholerae
(VchCAβ) was determined in its closed active site form at pH values <8.3 (Figure 5) [29]. The “closed
active site” is named in this way as these enzymes are not catalytically active (at pH values <8.3).
Interesting, in its inactive form, the bicarbonate is bound in a pocket close to the zinc ion [29]. However,
at pH values >8.3, the “closed active site” is converted to the “open active site” (with gain of catalytic
activity), which is associated with a movement of the Asp residue from the catalytic Zn(II) ion, with
the concomitant coordination of an incoming water molecule approaching the metal ion [29]. This
water molecule (as hydroxide ion) is, in fact, responsible for the catalytic activity, as shown above for
the α-CAs.
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2.4. γ-CA Structure

CAM (Carbonic Anhydrase Methanosarcina) from Methanosarcina thermophila is the prototype
of the γ-class carbonic anhydrase and the only enzyme from this class that has been crystallized so
far (Figure 6) [46]. This enzyme adopts a left-handed parallel β-helix fold and crystallizes as a trimer
with three zinc-containing active sites, each located at the interface between two monomers. The
metalloenzyme is only active as a trimer (Figure 6) [46]. Interestingly, in this class of enzyme, instead
of a histidine (as in α-CAs), there is a glutamic acid residue acting as a proton shuttle residue (Figure 3).
In fact, the high-resolution crystal of CAM showed that Glu89 has two orientations, similar to those of
His64 in α-CAs (Figure 3) [46].
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3. Catalytic Activity

The spontaneous reversible CO2 hydration reaction in the absence of the catalyst has an effective
first-order rate constant of 0.15 s−1, while the reverse reaction shows a rate constant of 50 s−1 [36,47].
In the living organisms, the CO2 hydration and the HCO3

− dehydration are connected to very fast
processes, such as those related to transport/secretory processes. The main metabolic role of CAs is to
catalyze the carbon dioxide hydration at a very high rate, with a pseudo first order kinetic constant
(kcat) ranging from 104 to 106 s−1 [36,47]. Thus, the CA superfamily significantly accelerates the
hydration reaction to support the metabolic processes involving dissolved inorganic carbon. Until
2012, the most active CA was the human isoform hCA II (kcat = 1.40 × 106 s−1), belonging to the α-class
and abundantly present in the human erythrocytes [36,48]. The hCA II, at the level of the peripheral
tissues, converts the CO2 into carbonic acid, while when the blood reaches the lungs, dehydrates the
HCO3

− to CO2 for it exhalation. In 2012, a new α-CA was identified, and was shown to be a highly
and catalytically effective catalyst for the CO2 hydration reaction (Figure 7) [49]. To our surprise, this
CA (SazCA) was identified in the genome of the thermophilic bacterium Sulfurihydrogenibium azorense
and showed a kcat = 4.40 × 106 s−1, thus being 2.33 times more active than the human isoform hCA II
(Figure 7) [30,49]. In general, the bacterial CAs belonging to the three known classes (α, β, and γ) are
efficient catalysts for the CO2 hydration reaction. Analyzing the three-dimensional structures of the
bacterial CAs, it has been observed that the catalytic pocket is rather small for the γ-CAs, gets bigger
for β-CAs, and becomes quite large in the α-CAs (Figures 4–6) [5,8,25,50]. As a consequence, the
catalytic constant of the γ-CAs is usually low compared to the β-CAs, which is lower when compared
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to many bacterial α-CAs (Figure 7). Sometimes, there are γ-CAs with a catalytic turnover number that
is higher with respect to that shown by the β-class, such as the γ-CAs from Porphyromonas gingivalis
and Vibrio cholerae (Figure 7).
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Figure 7. Kinetic parameters for the CO2 hydration reaction catalyzed by the human cytosolic
isozymes hCA I and II (α-class CAs) and bacterial α-, β-, and γ-CAs, such as SazCA (α-CAs from
Sulfurihydrogenibium azorense), SspCA (α-CAs from Sulfurihydrogenibium yellowstonense), HpyCA (α- and
β-CAs from Helicobacter pylori), VchCA (α-, β-, and γ-CAs from Vibrio cholerae), PgiCA (β- and γ-CAs
from Porphyromonas gingivalis), and CAM (γ-CA from Methanosarcina thermophila). All the measurements
were done at 20 ◦C, pH 7.5 (α-class enzymes), and pH 8.3 (β- and γ-CAs) by a stopped flow CO2

hydratase assay method.

4. CA Inhibitors

Different types of CA inhibitors (CAIs) exist [47,48] and they can be grouped into: (1) the
metal ion binders (anion, sulfonamides, and their bioisosteres, dithiocarbamates, xanthates, etc.);
(2) compounds which anchor to the zinc-coordinated water molecule/hydroxide ion (phenols,
polyamines, thioxocoumarins, sulfocumarins); (3) compounds occluding the active site entrance,
such as coumarins and their isosteres; and (4) compounds binding out of the active site [47]. This
subdivision has been made considering the way that the inhibitors bind the catalytic metal ion, the
metal coordinated-water molecule, and the occlusion of the active site [47]. The most investigated CAIs
are anions and sulfonamides [36,47,51,52]. Sulfonamides were discovered by Domagk in 1935 [53], and
were the first antimicrobial drugs. The first sulfonamide showing effective antibacterial activity was
Prontosil, a sulfanilamide prodrug isosteric/isostructural with p-aminobenzoic acid (PABA) [54]. In the
following years, a range of analogs constituting the so-called sulfa drug class of anti-bacterials entered
into clinical use, and many of these compounds are still widely used. A library of 40 compounds,
39 sulfonamides, and one sulfamate was used to provide CAIs (Figure 8) [6,10,13,14,55–66].
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CA inhibitors.

Derivatives 1–24 and AAZ-HCT are either simple aromatic/heterocyclic sulfonamides widely
used as building blocks for obtaining new families of such pharmacological agents, or they are clinically
used agents, among which acetazolamide (AAZ), methazolamide (MZA), ethoxzolamide (EZA), and
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dichlorophenamide (DCP) are the classical, systemically acting antiglaucoma CAIs. Dorzolamide
(DZA) and brinzolamide (BRZ) are topically acting antiglaucoma agents; benzolamide (BZA) is an
orphan drug belonging to this class of pharmacological agents. Moreover, the zonisamide (ZNS),
sulthiame (SLT), and the sulfamic acid ester topiramate (TPM) are widely used antiepileptic drugs.
Sulpiride (SLP) and indisulam (IND) were also shown by our group to belong to this class of
pharmacological agents, together with the COX2 selective inhibitors celecoxib (CLX) and valdecoxib
(VLX). Saccharin (SAC) and the diuretic hydrochlorothiazide (HCT) are also known to act as CAIs.
Sulfonamides, such as the clinically used derivatives acetazolamide, methazolamide, ethoxzolamide,
dichlorophenamide, dorzolamide, and brinzolamide, bind in a tetrahedral geometry to the Zn(II)
ion in the deprotonated state, with the nitrogen atom of the sulfonamide moiety coordinated to
Zn(II) and an extended network of hydrogen bonds, involving amino acid residues of the enzyme,
also participating in the anchoring of the inhibitor molecule to the metal ion [36,47,48,67]. The
aromatic/heterocyclic part of the inhibitor interacts with the hydrophilic and hydrophobic residues of
the catalytic cavity [36,47,51,52].

Anions, such as inorganic metal-complexing anions or more complicated species such as
carboxylates, are also known to bind to CAs [47,48]. These anions may bind either the tetrahedral
geometry of the metal ion or as trigonal–bipyramidal adducts. Anion inhibitors are important both
for understanding the inhibition/catalytic mechanisms of these enzymes fundamental for many
physiologic processes, and for designing novel types of inhibitors which may have clinical applications
for the management of a variety of disorders in which CAs are involved [47,48].

In the last ten years, numerous results concerning the inhibition profile of the three bacterial
CA classes (α, β, and γ) have been reported using anions and sulfonamides. Most of these
studies were carried out on bacterial CAs from pathogenic bacteria, such as Francisella tularensis,
Burkholderia pseudomallei, Vibrio cholerae, Streptococcus mutans, Porphyromonas gingivalis, Legionella
pneumophila, Clostridium perfringens, and Mycobacterium turberculosis, etc. [6,14,68–70]. The results
indicated that certain CAIs were able to highly inhibit most of the CAs identified in the genome of
the aforementioned bacteria (for details see associate bibliography) [4,62,71–74]. Moreover, certain
CAIs, such as acetazolamide and methazolamide, were shown to effectively inhibit bacterial growth in
cell cultures [75]. The inhibition profile with simple and complex anions, as well as small molecules
inhibiting other CAs, showed that the most efficient inhibitors detected so far are sulfamide, sulfamate,
phenylboronic acid, and phenylarsonic acid [24,62,76]. Generally, halides, cyanide, bicarbonate, nitrite,
selenate, diphosphate, divanadate, tetraborate, peroxodisulfate, hexafluorophosphate, and triflate
exhibit weak inhibitory activity against the bacterial CAs [22,24,25,76,77].

5. Activators

An interesting feature of the CA superfamily is that they can bind within the middle-exit part of
the active site molecules known as “activators” (CAA). They are biogenic amines (histamine, serotonin,
and catecholamines), amino acids, oligopeptides, or small proteins (Figure 9 shows the small molecule
CAAs mostly investigated) [78–81]. By means of electronic spectroscopy, X-ray crystallography, and
kinetic measurements, it has been demonstrated that CAAs do not influence the binding of CO2

to the CA active site but mediate the rate-determining step of the catalysis hurrying the transfer of
protons from the active site to the environment. The final result is an overall increase of the catalytic
turnover. Thus, the CA activators enhance the kcat of the enzyme, with no effect on KM [78,80,81].
Numerous studies concerning the activation of the mammalian enzymes with amines and amino
acids are reported in the literature [78,80,81]. In fact, CAAs may have pharmacologic applications
in therapy memory, neurodegenerative diseases (Alzheimer’s disease), or the treatment of genetic
CA deficiency syndromes [78,80,81]. On the other hand, the activation of CA classes different from
those belonging to mammals has been poorly investigated. Considering the limited data available at
this moment on the activation of other classes of CAs and using a series of structurally related amino
acids and amines of types 25–43 (Figure 9), Supuran and coworkers have investigated the activation
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profiles of some bacterial CAs [82,83]. More precisely, the activation profile of the γ-CA (BpsCA)
identified in the genome of the pathogenic bacteria Burkholderia pseudomallei has been investigated
for understanding the role of the CAs in the lifecycle and virulence of these bacteria [82]. Moreover,
the activation profile of the thermophilic α-CAs (SspCA, from Sulfurihydrogenibium yellowstonense and
SazCA, from Sulfurihydrogenibium azorense) has also been explored [83]. From Figure 10, it is readily
apparent that the activators L-Tyr for BpsCA and L-Phe for SspCA enhanced the values of the kcat by
one order of magnitude compared to those without activators.
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6. Phylogenetic Analysis

The complex distribution of the various CA classes in Gram-positive and -negative bacteria
allowed us to find a correlation between the evolutionary history of the bacteria and the three CA
classes (α, β, and γ) identified in their genome. Prokaryotes appeared on the Earth 3.5–3.8 billion years
ago, while eukaryotes were dated to 1.8 billion years ago [84]. During the first 2.0–2.5 billion years, the
Earth's atmosphere did not contain oxygen, and the first organisms were thus anaerobic. Eukaryotic
organisms’ almost aerobes developed on the Earth when the atmosphere was characterized by a stable
and relatively high oxygen content [84]. The oldest part of the evolutionary history of the planet and
more than 90% of the phylogenetic diversity of life can be attributed to the microbial world. Moreover,
the fact that the Archaea are distinct from other prokaryotes is demonstrated by the existence of
protein sequences that are present in Archaea, but not in eubacteria [85]. Many phylogenetic methods
support a close correlation of Archaea with Gram-positive bacteria, while Gram-negative bacteria form
a separate clade, indicating their phylogenetic distinction. Gupta et al. believe that the Gram-positive
bacteria occupy an intermediate position between Archaea and Gram-negative bacteria, and that
they evolved precisely from Archaea [25,77]. Phylogenetic analysis of carbonic anhydrases identified
bacteria Gram-positive and negatively showed that the ancestral CA is represented by the γ-class.
In fact, the γ-CA is the only CA class, which has been identified in Archaea [86–89]. This is consistent
with the theory that maintains a close relationship between the Archaea and the Gram-positive bacteria,
considering that Gram-negative arised from the latter. Furthermore, phylogenetic analysis of bacterial
CAs showed that the α-CAs, exclusively present in Gram-negative bacteria, were the most recent CAs.
These results have been corroborated by the enzymatic promiscuity theory, which is the ability of an
enzyme to catalyze a side reaction in addition to the main reaction [90,91]. In fact, as reported in the
literature, the α-CAs can catalyze a secondary reaction, such as the hydrolysis of p-NpA or a thioester,
in addition to the primary reaction consisting of CO2 hydration.

7. Localization and Physiological Role

A common feature of all bacterial α-CAs known to date is the presence of an N-terminal signal
peptide, which suggests a periplasmic or extracellular location (Figure 1). From these findings, we
have speculated that in Gram-negative bacteria, the α-CA are able to convert the CO2 to bicarbonate
diffused in the periplasmic space ensuring the survival and/or satisfying the metabolic needs of
the microorganism [25,77]. In fact, several essential metabolic pathways require either CO2 or
bicarbonate as a substrate, and probably, the spontaneous diffusion of CO2 to the outer membrane
and the conversion to bicarbonate inside the cell are not sufficient for the metabolic needs of the
microorganism. On the contrary, β- or γ-classes have a cytoplasmic localization and are responsible
for CO2 supply for carboxylase enzymes, pH homeostasis, and other intracellular functions [25,77].
Not all the Gram-negative bacteria, however, have α-CAs. Probably, the α-CAs are not required when
the Gram-negative bacteria colonize habitats defined as not metabolic limiting or adverse to their
survival [77]. Recently, we analyzed the amino acid sequence of the β-CAs encoded by the genome
of Gram-negative bacteria with SignalP version 4.1, which is a program designed to discriminate
between signal peptides and transmembrane regions of proteins. The program is available as a web
tool at http://www.cbs.dtu.dk/services/SignalP/ [92]. We noted that the primary structure of some
β-CAs identified in the genome of some pathogenic Gram-negative bacteria, such as such as HpyCA
(from Helicobacter pylori), VchCA (from Vibrio cholerae), NgonCA (from Neisseria gonorrhoeae), and
SsalCA (from Streptococcus salivarius), present a pre-sequence of 18 or more amino acid residues at the
N-terminal part, which resulted in a secretory signal peptide [25,77]. Intriguingly, during the writing
of this review, we saw that the CAM enzyme also contained a short putative signal peptide at its
N-terminus (Figure 3). Since the signal peptide is essential for the translocation across the cytoplasmic
membrane in prokaryotes, it has been suggested that the β- and/or γ-CAs found in Gram-negative
bacteria and characterized by the presence of a signal peptide might exhibit a periplasmic localization
and a role similar to that described previously for the α-CAs [25,77].

http://www.cbs.dtu.dk/services/SignalP/
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In the past ten years, the understanding of the function of the bacterial CAs has increased
significantly [25,77]. We suggested that the activity of CAs is connected with the survival of the
microbes because the metabolic reaction catalyzed by CA is essential for supporting numerous
physiological functions involving dissolved inorganic carbon. For example, in non-pathogenic bacteria
such as Ralstonia eutropha (Gram-negative bacterium found in soil and water) and Escherichia coli
(a facultative Gram-negative bacterium), it has been demonstrated in vivo that the bacterial growth at
an ambient CO2 concentration is dependent on CA activity [93,94]. In fact, the CO2 and bicarbonate
are both produced and consumed by bacterial metabolism. Since CO2 is rapidly lost from the bacterial
cells by passive diffusion, their rate is maintained individually in balance by the CA activity. In fact,
the reversible spontaneous CO2 hydratase reaction is insufficient to restore the amount of dissolved
inorganic carbon. More interesting is the in vivo evidence concerning the involvement of CAs for
the growth of pathogenic bacteria. For example, CAs encoded by the genome of Helicobacter pylori,
a Gram-negative, microaerophilic bacterium colonizing the human stomach, are essential for the
acid acclimatization of the pathogen within the stomach and thus, for bacterial survival in the
host [15,16,95,96]. In the case of the pathogenic bacterium Vibrio cholera (Gram-negative bacterium
responsible of cholera), its CAs are involved in the production of sodium bicarbonate, which induces
cholera toxin expression [15,24,61,95–100]. Probably, V. cholera uses the CAs as a system to colonize the
host [6,12,14,101]. Again, the causative agent of brucellosis Brucella suis, a non-motile Gram-negative
coccobacillus, and the Mycobacterium tuberculosis, an obligate pathogenic bacterium responsible for
tuberculosis, are needed for the growth of functional CAs [66,102–104].

8. Engineered Bacteria with a Thermostable CA for CO2 Capture

Recently, the heterologous expression of the recombinant thermostable SspCA by the high-density
fermentation of Escherichia coli cultures, in order to produce a usable biocatalyst for CO2 capture, has
been described [20]. The enzyme was covalently immobilized onto the surface of magnetic Fe3O4

nanoparticles (MNP) by using the carbodiimide activation reaction [20]. This approach offered two
main advantages: 1) the magnetic nanoparticles-immobilized SspCA via carbodiimide increased
the stability and the long-term storage of the biocatalyst; and 2) the immobilized biocatalyst can be
recovered and reused from the reaction mixture by simply applying a magnet or an electromagnet
field because of the strong ferromagnetic properties of Fe3O4 [20]. The main issues of this method are
the costs connected to biocatalyst purification and the support used for enzyme immobilization. Often,
all these aspects may discourage the utilization of enzymes in industrial applications. In 2017, a system
able to overexpress and immobilize the protein directly on the outer membrane of Escherichia coli for
lowering the costs of the purification of the biocatalyst and immobilization has been proposed [105].
To accomplish this, the Escherichia coli cells have been engineered using the well-described INP
(Ice Nucleation Protein) technique [105]. Briefly, an expression vector composed of a chimeric gene
resulting from the fusion of a signal peptide, the Pseudomonas syringae INP domain (INPN), and
the SspCA gene encoding for the thermostable α-CA, SspCA, has been prepared. During protein
overexpression, the signal peptide makes possible the translocation of the neo-synthetized protein
through the cytoplasmic membrane, while the INPN domain is necessary for guiding and anchoring
the protein to the bacterial outer membrane. The results demonstrated that the anchored SspCA was
efficiently overexpressed and active on the bacterial surface of E. coli [105]. Moreover, the anchored
SspCA was stable and active for 15 h at 70 ◦C and for days at 25 ◦C [105]. This approach with respect
to the covalent immobilization of the enzyme onto the surface of magnetic Fe3O4 nanoparticles (MNP)
clearly has important advantages. It is a one-step procedure for overexpressing and immobilizing the
enzyme simultaneously on the outer membrane, and it drastically reduces the costs needed for enzyme
purification, enzyme immobilization, and the support necessary for biocatalyst immobilization [105].
In addition, the biocatalyst could be recovered by a simple centrifugation step from the reaction
mixture. The strategy of the INPN-SspCA obtained by engineering E. coli could be considered as a
good method for approaching the biomimetic capture of CO2 and other biotechnological applications
in which a highly effective, thermostable catalyst is needed.
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9. Conclusions

Bacterial CAs were rather poorly investigated until recently. However, in the last years the cloning,
purification, and characterization of many representatives, belonging to all three genetic families
present in Bacteria, has led to crucial advances in the field. The role of CAs in many pathogenic as well
as non-pathogenic bacteria is thus beginning to be better understood. Apart from pH regulation and
adaptation to various niches in which bacteria live (e.g., the highly acidic environment in the stomach,
in the case of Helicobacter pylori, the alkaline one in the gut for Vibrio cholerae, etc.), CAs probably
participate in biosynthetic processes in which bicarbonate or CO2 are substrates, as in the case of other
organisms for which these roles are demonstrated. The inhibition and activation of bacterial CAs
may be exploited either from pharmacological or environmental viewpoints. On the one hand, the
inhibitors of such enzymes may lead to antibiotics with a new mechanism of action, devoid of the
drug resistance problems encountered with the various classes of clinically used agents. Moreover,
catalytically highly efficient, thermally stable bacterial CAs may have interesting applications for
biomimetic CO2 capture in the context of global warming due to the accumulation of this gas in the
atmosphere as a consequence of anthropic activities. Furthermore, Ca activators of such enzymes may
represent an even more attractive option for mitigating global warming.
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