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Abstract: G-quadruplexes are four-stranded guanine-rich structures that have been demonstrated to
occur across the genome in humans and other organisms. They provide regulatory functions during
transcription, translation and immunoglobulin gene rearrangement, but there is also a large amount
of evidence that they can present a potent barrier to the DNA replication machinery. This mini-review
will summarize recent advances in understanding the many strategies nature has evolved to overcome
G-quadruplex-mediated replication blockage, including removal of the structure by helicases or
nucleases, or circumventing the deleterious effects on the genome through homologous recombination,
alternative end-joining or synthesis re-priming. Paradoxically, G-quadruplexes have also recently been
demonstrated to provide a positive role in stimulating the initiation of DNA replication. These recent
studies have not only illuminated the many roles and consequences of G-quadruplexes, but have also
provided fundamental insights into the general mechanisms of DNA replication and its links with
genetic and epigenetic stability.
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1. Introduction

Guanine-rich DNA has a well-characterized ability to form into four-stranded structures known as
G-quadruplexes (G4s), stabilized by hydrogen bonding between a planar association of four guanines [1].
Once thought to be an in vitro curiosity, G-quadruplexes are now known to form throughout genomes
in vivo, where they perform positive regulatory roles in addition to potentially having deleterious
effects on genome stability. Computational algorithms predict that somewhere between 300,000 and
1.5 million sequences in the human genome are capable of forming into a G-quadruplex [2–4], and about
700,000 of these were detected using a sequencing-based method [5]. Sequences with G4-forming
potential are enriched in regulatory regions of the genome including promoters and 5′ untranslated
regions, and in G-rich repetitive regions such as telomeres [6–9]. However, an increasing number of
proteins have been demonstrated to resolve G4 structures in vitro and in vivo [10,11], so the actual
number of G-quadruplexes present at any time is likely to be a much smaller number; chromatin
immunoprecipitation with a G4-specific antibody recovered ~10,000 G-quadruplexes from the genome
of a human cell line, and confirmed their predicted enrichment in regulatory regions of the genome [12].

G-quadruplexes have many beneficial functions in the genome: they protect telomeres,
form binding sites for transcription factors, regulate translation and promote immunoglobulin gene
recombination. These roles of G-quadruplexes have been the subject of several reviews [13–15]; here we
will instead focus on the consequences of G-quadruplex formation for DNA replication. There is
a large amount of direct and indirect evidence that G-quadruplexes form an impediment for the
DNA replication machinery. The first line of defence for a cell is to deploy one or more helicases or
nucleases to remove the G-quadruplex (Figure 1A). If this fails, one of several recovery pathways can
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minimize the damage: alternative end-joining (mediated by polymerase θ; Figure 1B) [16], homologous
recombination (mediated by BRCA1 and BRCA2; Figure 1C) [17,18], or re-priming of synthesis on
the other side of the structure (mediated by PrimPol) [19]. Without these back-up mechanisms,
the ensuing deletions, recombination and genetic instability can be lethal to the cell. On the other
hand, recent data point to a positive role for G-quadruplexes in the initiation step of DNA replication.
This mini-review will describe these exciting recent advances in understanding the interplay between
G-quadruplexes and DNA replication. These studies have not only revealed the biological effects of
these fascinating structures, but have also provided fundamental insights into the mechanisms by
which DNA replication is coupled to epigenetic gene regulation and genome stability.
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Figure 1. Cellular strategies to minimize genomic damage arising from G-quadruplex (G4)-mediated
replication stalling. (A) A large number of helicases and nucleases exist to remove G-quadruplexes;
it is not yet clear why so many proteins with this function are needed. (B) In the absence of FANCJ,
deletions occur in the region surrounding G-quadruplexes. The size of these deletions is kept in check
by the end-joining and gap-filling activity of polymerase θ [16]. (C) In the absence of Pif1, homologous
recombination mediated by RAD51, BRCA1, and BRCA2 can lead to genomic rearrangements [20].
Figure created with BioRender.com.

2. Evidence for G4-Mediated Replication Stalling

It is well-established that G-quadruplexes stall DNA polymerases in vitro [21], and the inability to
bypass these obstacles has now been demonstrated for a range of human replicative and trans-lesion
polymerases [22–24]. Some of the earliest evidence for the negative effects of G-quadruplexes on
DNA replication in vivo came from the analysis of the cellular consequences of small molecules that
specifically stabilize these structures. The treatment of immortalized human fibroblasts with the
G4-stabilizing molecule RHPS4 resulted in DNA damage foci (marked by the phosphorylated histone
γH2AX) exclusively in S-phase cells [25]. This compound particularly impacted replication through
telomeres, which are highly prone to G4 formation, resulting in telomere aberrations detected by
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fluorescence in situ hybridization (FISH) as “doublets” [25]; these aberrations have been demonstrated to
result from telomere replication defects, and have become known as a “fragile telomere” phenotype [26].
An unrelated G4-stabilizing compound, 360A, also preferentially targets telomeres, and was seen to
cause a fragile telomere phenotype specifically on the lagging strand, which is predicted to be the
G-rich strand at telomeres [27]. On the other hand, the molecule pyridostatin causes DNA damage
across the genome of human cells [28]. Approximately half of the γH2AX marks occurred in S phase
and were sensitive to the DNA replication inhibitor aphidicolin, whereas the remainder occurred in
other phases of the cell cycle and were sensitive to the inhibition of transcription [28]. These data
illustrate that while blocking replication is not the only cause of DNA damage in human cells with
over-stabilized G-quadruplexes, it is a major contributor.

Experiments involving the depletion of one of the many helicases known to resolve
G-quadruplexes [10] have also revealed the impact of the inappropriate stabilization of these structures
on DNA replication. BLM-deficient mouse fibroblasts demonstrate an increase in the number of
nuclear foci detected with a G4-specific antibody [29], indicating that the well-documented ability of
the BLM helicase to unwind G-quadruplexes in vitro [30,31] is recapitulated in vivo. BLM deficiency
in mouse cells leads to an increase in fragile telomeres [26,32,33]; these predominantly occur on the
lagging strand, providing indirect evidence that it is the ability of BLM to unwind G-quadruplexes
that prevents replication defects. Similarly, depletion of the related helicase WRN caused replication
defects specifically on the lagging strand of human telomeres [34,35]. Deletion of the helicase RTel or
the nuclease DNA2, both of which have been demonstrated to remove G-quadruplexes in vitro [36,37],
also caused an increase in fragile telomeres in mouse cells, which was greatly exacerbated in the
presence of G4-stabilizing compounds [33,38,39].

Direct evidence for the impact of G-quadruplexes on replication in vivo has come from experiments
using single-molecule analysis of replicating DNA, in which DNA molecules are stretched on microscope
slides and the patterns of nucleotide incorporation are detected using FISH [40]. This technique
demonstrated that the speed of the replication fork travelling through telomeres was reduced in
BLM-deficient mouse cells relative to controls, and this was exacerbated in the presence of the
G4-stabilizing compound PhenDC3, providing evidence that BLM affects replication through its ability
to unwind G-quadruplexes [29]. Similar results have been obtained for chicken cells lacking the
helicase FANCJ [41].

A surprising recent addition to the family of proteins that can remove telomeric G-quadruplexes
is the human CST (CTC1–STN1–TEN1) complex, an RPA-like complex that binds single-stranded
DNA. Mammalian CST has wide-ranging roles in DNA replication at telomeres and across the
genome; it facilitates replication restart after fork stalling, recruits polymerase α to mediate
fill-in synthesis of the telomeric C-strand, and regulates the addition of telomere repeats by the
ribonucleoprotein telomerase [42]. It has recently been demonstrated that human CST can bind and
unwind G-quadruplexes, both in vitro and in vivo [43,44]. The depletion of CST resulted in fragile
telomeres and the loss of the C-strand of telomeres, in a manner that was synergistic with treatment
with a G-quadruplex stabilizer [43]. The role of CST in overcoming G4-mediated blocks to replication
may involve its recruitment of polymerase α [43] or its previously documented ability to recruit RAD51
to sites of replication stress [45], in addition to a direct role in resolving G-quadruplexes.

There is also recent evidence that the chromatin-remodelling protein ATRX plays a role in
removal of G-quadruplexes to facilitate DNA replication in mammals. ATRX is mutated both in
patients with the X-linked alpha thalassemia mental retardation syndrome (ATR-X syndrome), and in
cancers that use a non-telomerase mechanism for lengthening their telomeres [46]. ATRX appears
to coordinate a multitude of cellular processes, with roles in gene expression, preventing mitotic
spindle defects, regulating nucleosome density and affecting chromatin looping, in addition to its most
well-characterized role in the deposition of histone variant H3.3 at telomeres and heterochromatic
regions [46]. To what extent these functions are linked by a common molecular mechanism is unknown,
but recent evidence suggests that ATRX may have a key role in facilitating DNA replication by
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promoting the unwinding of G-quadruplexes. ATRX binds to telomeres, other tandem repeats, and
CpG-rich regions across the human genome, and ~50% of these sites are predicted to form into
G-quadruplexes [47]. ATRX can bind G-quadruplexes in vitro [47]; it has not yet been shown to directly
resolve them [48], but its depletion leads to an increase in the antibody detection of G-quadruplexes in
human cells [49]. An involvement of ATRX in replication progression was suggested by the increased
susceptibility of ATRX-deficient mouse and human cells to the replication blockers hydroxyurea
and aphidicolin [50–52], and it has also been observed that ATRX depletion causes an increase in
stalled replication forks and fragile telomeres [48,51–53]. ATRX-deficient cells are highly sensitive to
proliferation defects caused by G4-stabilizing ligands [49,50,54], supporting a model in which ATRX
promotes the resolution of G-quadruplexes at replication forks, helping to overcome replication stalling
in regions of the genome that are difficult to replicate [55].

3. Downstream Effects of Stalled Replication: Genome Deletions and Rearrangements

Replication fork blocks are well known to result in a range of deleterious events such as
double-strand breaks (DSBs), deletions and copy number alterations. The molecular events leading to
these outcomes are an active area of investigation [56], and the study of G-quadruplexes has contributed
to discovery of global pathways by which cells respond to replication stress.

One of the first examples of the genome instability caused by G-quadruplexes came from analysis
of the FANCJ helicase and its homologue in the worm Caenorhabditis elegans, DOG1. Worms lacking
DOG1 and cells from human Fanconi anemia patients with mutations in FANCJ carry a large number
of genomic deletions, which are enriched in regions of the genome with G4-forming potential [57–59].
The construction of a selectable marker containing G-quadruplexes in the C. elegans genome enabled a
detailed molecular analysis of the nature of the mutations, and the discovery of an alternative DSB
repair pathway [16]. The deletions had a defined size range (50–300 bp), their 3′ ends lined up with the
predicted boundary of the G-quadruplex, and they often had 1 nt of microhomology at their breakpoint
junctions. Remarkably, deletion of polymerase θ resulted in much larger deletions of >10 kb, indicating
that polymerase θ is needed to mitigate the damage resulting from the lesion. The authors proposed a
model in which polymerase θ mediates the end joining and gap filling of a DSB arising from replication
fork blockage (Figure 1B)—a process they termed theta-mediated end joining (TMEJ) [16]; this process
is also now known as microhomology-mediated end joining (MMEJ) or alternative non-homologous
end-joining (Alt-NHEJ) [60]. Furthermore, analysis of the inheritance of different deletion alleles over
multiple cell divisions in the worm revealed that the persistence of the G-quadruplex structure through
multiple mitotic divisions was responsible for converting the original single-stranded gap opposite the
G4 into a subsequent DSB, to be acted on by TMEJ [61].

Another rescue pathway for mitigating damage from stalled replication forks is homologous
recombination (HR), which can restart forks blocked by a replication barrier [62]. The helicase Pif1 is
essential for facilitating replication through G4-containing sequences; its absence leads to genomic
instability and gross chromosomal rearrangements in the yeast Saccharomyces cerevisiae [63–65]. It has
been directly demonstrated that G4 sequences cause slowing of the replication fork in the absence of
Pif1 or its Schizosaccharomyces pombe homologue Pfh1 [66–68]. Analysis of the mechanism of genomic
rearrangements occurring around a G4-prone minisatellite sequence revealed X-shaped recombination
intermediates, and both these and the genomic rearrangements depended on the presence of HR
proteins RAD51 and RAD52 [20]. These data support a model in which the replication blockage
caused by G-quadruplexes is rescued by HR-mediated fork restart and template switching around
the region of the blockage (Figure 1C). Furthermore, human Pif1 has recently been shown to directly
participate in the HR process at stabilized G-quadruplexes through an interaction with the HR protein
BRCA1 [69]. RAD51 is also necessary for the appearance of fragile telomeres in human cells treated
with G4-stabilizing compound 360A [27], suggesting that the gaps in telomere FISH signal that are
diagnostic of these structures are a result of homologous recombination-mediated repair around the
G-quadruplex obstruction.
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The involvement of HR in recovery from G4-mediated genome damage has recently been
reinforced by studies in which G4-stabilizing compounds exhibited specific toxicity against human
cells lacking BRCA1, BRCA2 or RAD51 [17,18,54,70]. Depletion of these proteins caused replication
defects including lagging-strand fragile telomeres and shortened fibres in single-molecule assays,
and these effects were increased after treatment with G4-stabilizing compounds [17,18], implying that
HR was needed for defects arising from G4-mediated replication blockage (Figure 1C). These studies
raise the exciting possibility that G4-stabilizing molecules may prove to be an effective cancer therapy
in patients with defects in HR proteins such as BRCA1 and BRCA2, providing a “synthetic lethal”
approach to cancer therapy for these patients.

In addition to presenting a direct impediment to DNA replication, G-quadruplexes may harbor
DNA lesions that themselves block replication; for example, G-rich sequences are particularly prone to
oxidative damage [71,72]. Replication stalling and genome damage caused by oxidative lesions can be
mitigated by the base excision repair (BER) pathway; in particular, the NEIL3 DNA glycosylase can
remove certain oxidized guanine lesions from G-quadruplex DNA [73,74]. This ability may contribute
to the ability of NEIL3 and BER to promote the replication of telomeric DNA, since the depletion of
NEIL3 in human cells leads to an increase in fragile telomeres [75].

Together, the above studies illustrate that one of several DNA repair pathways (TMEJ, HR, BER)
can be deployed to overcome replicative DNA damage caused by G-quadruplexes and their associated
DNA lesions.

4. Downstream Effects of Stalled Replication: Changes in Epigenetic Gene Regulation

The effects of G-quadruplexes need to be considered in the context of DNA organized into
nucleosomes, in which DNA is wrapped around a core of histone proteins that carry post-translational
modifications dictating the identity of the surrounding chromatin (Figure 2). After DNA has been
replicated, it is vital for cellular identity that the pattern of histone modifications present on the parental
strand is re-established on the newly replicated daughter strands. Nucleosomes are disassembled ahead
of the DNA replication fork, and recycled histones are combined with new histones and deposited onto
each of the daughter strands. It is thought that the posttranslational marks of the parental histones
influence acquisition of the same marks by new histones (Figure 2) [76,77]. Replication stress is known
to perturb histone recycling and re-establishment of chromatin marks [78], and there is a growing body
of evidence that G-quadruplexes can contribute to epigenetic deregulation after DNA replication.

Many of the studies linking G-quadruplexes with post-replicative epigenetic changes have been
carried out in the genetically tractable chicken cell line DT40. G-quadruplexes have been shown to
form at several gene loci in DT40, including the β-globin gene and those encoding cell surface markers
CD72 and BU-1 [79,80]. Loss of proteins known to process G-quadruplexes, including FANCJ, BLM
and WRN, or loss of the trans-lesion polymerase REV1, resulted in changes in histone marks deposited
in the vicinity of these G-quadruplexes and changes in expression of the genes, in a manner dependent
on the presence and orientation of the G-quadruplex [79–81]. Loss of FANCJ in DT40 cells also
resulted in global changes in chromatin compaction and an increase in single-stranded DNA across the
genome—effects which were recapitulated by the G-quadruplex-stabilizing ligand telomestatin [41].

These observations suggest a model in which failure to replicate G-quadruplexes leads to
post-replicative gaps that are later replicated in a manner uncoupled from the replication fork and
the supply of parental histones, resulting in the incorporation of new histones without the parental
chromatin marks (Figure 2). The requirement for processive DNA synthesis for the maintenance of
epigenetic memory was supported by the observation that perturbing replication with hydroxyurea
or aphidicolin caused very similar epigenetic changes, and in the case of the BU-1 locus these were
partially dependent on the presence of the G-quadruplex [41,82]. G-quadruplex-stabilizing ligands
caused gene expression changes at these loci in a manner synergistic with hydroxyurea, and the
effects on gene expression remained even after removal of the compound [82,83], demonstrating that
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they were the result of stable epigenetic modification rather than transient impacts on transcription
or translation.
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Figure 2. Model for the mechanism of G4-mediated changes to histone modifications and gene
expression (adapted from [19,79]). G-quadruplex formation at the replication fork can block replication
(here depicted with the G4 on the leading strand, but it may also block lagging strand synthesis).
(Left panel): FANCJ, BLM or WRN helicases can remove the G-quadruplex, and DNA synthesis past
the impediment can be promoted by REV1 or PrimPol. (Right panel): in the absence of any of these
pathways, an extended region of single-stranded DNA template may accumulate. The subsequent
DNA synthesis needed to fill this gap would be uncoupled from the incorporation of parental histones
into the newly replicated DNA strand, resulting in a loss of the restoration of parental histone marks.
Figure created with BioRender.com.

The requirement for FANCJ, BLM and WRN in removing G-quadruplexes in order to maintain
chromatin structure can be explained by their known G4-helicase activities, but the role of the
polymerase REV1 in this process is not fully understood. REV1 is known to coordinate other
polymerases in the DNA repair process known as trans-lesion synthesis [84], and both its region
of interaction with these polymerases and its own catalytic activity are required for its ability to
promote the replication of a G4-containing template [79]. REV1 is a highly specialized polymerase;
it incorporates only cytosines, with the identity of the incoming nucleotide being dictated by the
enzyme itself [85,86]. It is therefore possible that REV1 is needed to incorporate cytosines opposite
newly unwound guanines while copying past a G-quadruplex.

The recently identified polymerase DNA-directed primase/polymerase (PrimPol) is also vital for
avoiding effects of G-quadruplexes and other secondary structures on epigenetic stability. PrimPol can
bind to G-quadruplexes, but does not unwind them; instead, it re-primes synthesis immediately 3′ of
an intervening G-quadruplex, allowing replicative bypass of the obstruction [19]. Consequently, loss of
PrimPol causes the same epigenetic changes at the Bu-1 locus of DT40 cells as loss of FANCJ or REV1.
The ability of PrimPol to bypass replicative lesions is not limited to G-quadruplexes; it also counteracts
epigenetic instability caused by replication across a (GAA)n repeat, which is known to form triplex
DNA [87]. The effect of losing PrimPol on epigenetic defects caused by G4 or (GAA)n was counteracted
by the overexpression of RNase H; this suggests that the formation of RNA–DNA hybrids, or R-loops,
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on the strand opposite the obstruction can increase the probability of the secondary structure impeding
replication (Figure 2). Loss of PrimPol resulted in increased R-loop formation across the genome of
both chicken and human cells, particularly in regions predicted to form triplexes or G-quadruplexes,
demonstrating that this polymerase has a genome-wide role in suppressing R-loops associated with
secondary structure formation on the opposite strand [87].

There is an increasing body of evidence demonstrating that G-quadruplexes form in regulatory
regions of the genome, and that their presence in promoters and 5′ untranslated regions of genes directly
regulates gene transcription [15]. The studies summarized above demonstrate that G-quadruplexes can
also influence gene expression through post-replicative effects on chromatin remodelling. In wild-type
cells, many helicases and polymerases collaborate to counteract this effect; this may be why a vast
majority of G-quadruplexes in the human genome occur in nucleosome-free regions [12].

5. Role for G-Quadruplexes in Initiation of DNA Replication

The large amount of literature documenting evidence for G4-mediated interference with
DNA replication gives the overall impression that these structures are inherently deleterious.
However, it should be remembered that most examples of the negative effects of G4 on DNA
replication occur in pathological situations (e.g., in the absence of helicases or in the presence of
G4-stabilizing compounds). In wild-type cells under non-perturbed conditions, it is likely that the
plethora of G4-unwinding proteins is able to counteract any negative effects of G-quadruplexes on DNA
synthesis. Moreover, there is also recent evidence to suggest that G-quadruplexes play a necessary and
positive role in the initiation of DNA replication.

The genome-wide mapping of metazoan replication origins revealed that a majority (70%–90%)
of origins are preceded by a G-rich sequence that has G4-forming ability, known as an Origin G-rich
Repeated Element (OGRE) (Figure 3) [88–91]. The OGRE lies 250–300 bp upstream of the replication
initiation site, in a nucleosome-free region [90]. Experimental manipulation of OGREs located at
two origins in chicken cells provided the first evidence that their G4-forming ability is necessary
for optimal origin activity [92]. Indeed, the combined stability of different G4s within one of these
sequences correlated strongly with the activity of its associated origin of replication [92]. In apparent
contradiction to these data, however, allele-specific analysis of a subset of origins in human cells found
no correlation between origin activity and the presence of a predicted G4 sequence [93].
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Figure 3. Promotion of replication origin firing by a G4-forming sequence. The Origin G-rich Repeated
Element (OGRE) lies 250–300 bp upstream of the replication initiation site, in a nucleosome-free
region, and is needed for optimal origin activity of a subset of vertebrate replication origins [90,92,94].
Figure created with BioRender.com.

A recent elegant study used a number of independent approaches to resolve this apparent
inconsistency, demonstrating that human replication origins fall into two main classes: those
that are regulated by G-quadruplex formation, and those that are instead primarily activated by
transcription [94]. This study provided the first definitive biophysical evidence for G4 formation by
OGRE sequences, and used CRISPR-mediated genome editing to show that a reduced capacity for G4
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formation resulted in a reduction in origin activity. Treatment of human cells with a G4-stabilizing
compound resulted in increased activity of some origins, and decreased activity of others. The latter
were highly enriched for origins lacking G4-forming motifs, and were associated with actively
transcribing promoters [94]. The authors concluded that the presence of G4 structures may promote
origin activation in intergenic areas, which cannot benefit from the known origin-promoting effects of
active transcription.

The mechanism of G4-mediated origin activation has not been fully elucidated, but may involve
the known G4-binding capability of a number of replication-related proteins, including the origin
recognition complex (ORC) [95] or MTBP—a protein that is needed for assembly of the CMG
(CDC45–MCM–GINS) complex during origin firing [96,97]. In support of a role for G4 in origin firing
rather than origin licensing, G4-forming OGRE sequences competed with the chromatin loading of
CMG component CDC45, but not of ORC, in Xenopus extracts [94]. Overlay of human genome-wide
G4-sequencing data [5] with the location of both active and dormant origins [98] suggested that G4
structures form preferentially at firing origins, also consistent with a role for G4 in the efficiency of
origin firing. It has been postulated that the role of OGRE G4 sequences may be related to the exclusion
of nucleosomes, the recruitment of DNA-unwinding helicases, or the presence of single-stranded DNA
in the strand opposite the G4 [94,99], but there is no direct evidence for these hypotheses as of yet.

6. Future Directions: Therapeutic Possibilities

It is apparent that the genome exists in conformations other than just duplex DNA. The study of the
genomic locations and biological consequences of G-quadruplex DNA is revealing fascinating insights
into the regulation of DNA replication that are likely generalizable to other secondary structures and
causes of replication stress. It has revealed new modes of recovery from replicative DNA damage,
and novel mechanisms of the initiation of DNA replication at replication origins. However, these new
insights are not only of academic interest; they also have far-reaching implications for understanding
human disease. Almost all of the proteins that are involved in processing G-quadruplexes are
linked to one or more diseases. FANCJ is one of the set of 19 proteins that are mutated in Fanconi
anemia—a genetic disease that results in sensitivity to genetic damage and predisposes patients to
bone marrow failure and cancer development. Components of the CST complex are mutated in Coats
plus syndrome—an inherited condition characterized by an eye disorder, abnormalities of the brain,
bones and gastrointestinal system, and other features including anemia. BLM is mutated in Bloom’s
syndrome—an inherited disorder characterized by short stature, UV sensitivity, and a greatly increased
risk of cancer. Mutations in WRN cause Werner’s syndrome, a premature aging syndrome that also
imparts an increased risk of cancer. These disorders have some overlapping features, but are also very
divergent. It will be interesting to determine which of these clinical features are contributed by the
shared function of these proteins in facilitating DNA replication through structured DNA, and what
biochemical functions of the proteins lead to other clinical features. Such insights may eventually lead to
improved therapeutic options for patients with these inherited disorders; for example, small molecules
that lower the stability of G-quadruplexes may substitute for the G4-resolving ability of each of these
proteins, improving any patient symptoms that result from G4-mediated genome instability (Figure 4).

Furthermore, G4-mediated replication problems are also implicated in cancer. The genetic
instability caused by G-quadruplexes and other structures is likely a driving force in cancer, but may
also be harnessed to specifically kill cancer cells that have deficiencies in the recovery pathways to
deal with structured DNA. The approach of combining the pharmacological targeting of one pathway
together with the genetic targeting of a cooperating pathway is termed a “synthetic lethal” approach to
cancer therapy (Figure 4), and is exemplified by the enhanced susceptibility of cancer cells lacking HR
proteins BRCA1 and BRCA2 to death caused by G4-stabilizing ligands [17,70]. These findings have
resulted in the molecule CX-5461 being one of the first G4-stabilizing compounds to enter clinical trials
in humans, in patients with germline BRCA1 or BRCA2 mutations [18,100]. Recently, a genome-wide
shRNA screen was performed in cells treated with pyridostatin or PhenDC3 in order to systematically



Molecules 2019, 24, 3439 9 of 15

screen for other potential genetic susceptibilities to G4-stabilizing molecules. This resulted in the
identification of 50 sensitizing genes that are known to be somatically mutated in human cancers [54].
These included BRCA1 and BRCA2 and their interacting partners PALB2 and BAP1, and a cluster
of chromatin modifiers including SMARCA4, SMARCB1 and SMARCE1. Consistent with its role in
mitigating DNA damage caused by inappropriate G4 stabilization, the gene encoding Pol θ (POLQ),
which is also mutated in human cancers (https://cancer.sanger.ac.uk/census) also sensitized cells to
pyridostatin treatment [54]. This raises the exciting possibility that a large number of human cancers
may be susceptible to cell death induced by G4-stabilizing compounds.
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with G4 could form the basis of synthetic lethal approaches to cancer treatment. Figure created with
BioRender.com.

Even in cancers without mutations in G4-sensitizing genes, a synthetic lethal approach could
include the combination of G4-stabilizing compounds with the pharmacological targeting of proteins
needed for recovery from G4-mediated genomic damage. For example, pyridostatin acts synergistically
with NU7441, an inhibitor of the DNA-PK kinase that is crucial for nonhomologous end-joining repair
of DNA DSBs [70], and with an inhibitor of USP1, which deubiquitinates a protein in the Fanconi
anemia DNA repair pathway [54]. Many of the genes found to be G4 sensitizers in the genome-wide
screen mentioned above are considered “druggable” [54], including BRCA1, making this a promising
avenue for the further testing of drug combinations.

Cancers may also harbor mutations in proteins that are needed for the removal of G-quadruplexes
in the genome, such as ATRX, which is mutated in a subset of human cancers that use a non-telomerase
mechanism for the elongation of telomeres known as ALT (alternative lengthening of telomeres) [101].
Cells lacking ATRX are also particularly sensitive to cell death caused by G4-stabilizing molecules [49,
50,54], raising the possibility that these molecules will be a useful therapy for ALT cancers. The finding
that G4-specific antibodies detect more G4 in the genomes of cancer cells compared to normal human
cells [12,102] suggests that non-ALT cancers also commonly harbor defects in proteins required for
normal G-quadruplex regulation. Such proteins may be a fruitful further avenue for synthetic lethal

https://cancer.sanger.ac.uk/census
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cancer therapies. It is therefore likely that, after decades of biochemical and biophysical examination
of G-quadruplexes, we are now moving into the era of translation of this fundamental understanding
into human clinical trials.
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