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3 Institute of Computer Science, University of Białystok, ul. Konstantego Ciołkowskiego 1M,

15-245 Białystok, Poland
* Correspondence: r.piliszek@uwb.edu.pl (R.P.); w.rudnicki@uwb.edu.pl (W.R.R.)

Abstract: In the case of bladder cancer, carcinoma in situ (CIS) is known to have poor diagnosis.
However, there are not enough studies that examine the biomarkers relevant to CIS development.
Omics experiments generate data with tens of thousands of descriptive variables, e.g., gene expression
levels. Often, many of these descriptive variables are identified as somehow relevant, resulting in
hundreds or thousands of relevant variables for building models or for further data analysis. We
analyze one such dataset describing patients with bladder cancer, mostly non-muscle-invasive
(NMIBC), and propose a novel approach to feature selection. This approach returns high-quality
features for prediction and yet allows interpretability as well as a certain level of insight into the
analyzed data. As a result, we obtain a small set of seven of the most-useful biomarkers for diagnostics.
They can also be used to build tests that avoid the costly and time-consuming existing methods.
We summarize the current biological knowledge of the chosen biomarkers and contrast it with
our findings.

Keywords: nonmuscle-invasive bladder cancer (NMIBC); carcinoma in situ (CIS); biomarker
identification; optimal feature set selection

1. Introduction

According to the World Cancer Research Fund International, bladder cancer is the 10th
most common cancer in the world [1]. It is diagnosed mostly in people over 55 in highly
developed countries of southern and western Europe, as well as in North America. Men
are more than four times more likely to develop bladder cancer than women. The most
commonly mentioned urinary bladder cancer risks, other than being male, are smoking
cigarettes, exposure to certain chemicals (such as aromatic amines, polycyclic aromatic
hydrocarbons, and chlorinated hydrocarbons and alcohol), having a red meat-rich diet,
and being genetically predisposed (reviewed in [1]). Urothelial carcinoma of the bladder
is divided into two major groups on the basis of clinical staging with different clinical
outcomes and therapy options: non-muscle-invasive bladder cancer (NMIBC) and muscle-
invasive bladder cancer (MIBC). MIBCs are aggressive tumors, characterized by a five-year
survival rate of less than 50% [2]. Up to 15% of MIBCs are initially diagnosed as NMIBCs
that progressed into MIBCs [3]. NMIBC is considered a tumor with a relatively good
prognosis since the five-year overall survival rate is about 90% [4]. Unfortunately, NMIBCs
are a very heterogeneous tumor group with a high rate of recurrence (up to 70%) and
risk of progression to MIBC (up to 20%), despite significant improvement in the adjuvant
therapies’ efficacy (reviewed in [5–7]). Carcinoma in situ (CIS) belongs to this group and
can be diagnosed as a primary or a recurrent tumor. CIS is associated with a poorer
prognosis, a higher grade, as well as an elevated risk of recurrence and progression to
MIBC [8]. The recurrence rate for CIS is 63–92%, and the progression to MIBC is 50–75%,
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even when the immunotreatment is applied [9,10]. The current treatment of CIS includes
Bacille Calmette–Guérin (BCG) intravesical therapy, but up to 40% of NMIBC patients
do not respond to this treatment. In these patients, one of the second-line treatments is
cystectomy [11]. However, cystectomy causes side effects, especially in elderly patients.
Recent studies identified some predictors of complications, with frailty index score among
them [12,13]. Concomitant CIS is also related to a higher recurrence risk and mortality
rate [14]. Thus, there is a need to develop accurate methods for the prediction of recurrence
and progression in NMIBC, including CIS. Recently, the molecular markers predicting
the progression of NMIBC have been identified [15]. However, their testing is based on
the evaluation of methylation (GATA2 and TBX3) and mutation status (FGFR3); thus, its
usefulness for routine use is rather limited due to the associated cost and labor of the
tests [16]. Moreover, there are no specific markers for development of CIS in disease course
(CIS-DC). Thus, more exact and accessible models should be developed, and new markers
of CIS-DC should be identified.

The goal of the current study is to propose a small, clinically useful set of biomarkers
that can be utilized for the stratification of bladder cancer patients into high- and low-risk
classes, with respect to the development of CIS in disease course. The study is based
on the dataset E-MTAB-4321, first described in [17] and deposited in the ArrayExpress
database [18]. The dataset consists mostly of patients with Ta and T1 tumor stages. In the
original analysis, the authors applied non-supervised learning to stratify patients into three
groups using 119 genetic markers, showing that these three groups differ significantly in
the risk of progressing to stage T2+. The original classification was extended in subsequent
works by various authors [19–21].

The approach proposed in the current study is based on a robust protocol utilizing
multiple supervised and non-supervised machine learning methods, including an extensive
use of cross validation and resampling.

2. Materials and Methods
Dataset

The E-MTAB-4321 dataset, used in the study, contains clinical and RNA-seq data
from 476 patients with early stage urothelial carcinoma, of whom 74 have developed CIS
at a certain point of the disease course, whereas 402 were free of CIS during the study
period. There are 43,204 genetic markers in this dataset, out of which 4800 have 0 variance,
resulting in 38,404 markers actually carrying any information. A summary of the dataset
characteristics is present in Table 1 and in Appendix A. For details on data collection, please
refer to the original paper by Hedegaard et al. [17].

Table 1. Dataset characteristics. BCG—Bacillus Calmette–Guérin vaccine. PUNLMP—papillary
urothelial neoplasm of low-malignant potential. CIS—carcinoma in situ (in the table as a stage of tu-
mor when its sample was taken). More details on the dataset are available in the Appendices A and B.

Female 109 W/o cystectomy 444 W/o BCG treatment 388
Male 367 W/cystectomy 32 W/BCG treatment 88

CIS 3 High grade 192 W/o CIS in disease course 402
Ta 345 Low grade 277 W/CIS in disease course 74
T1 112 PUNLMP 7
T2-4 16

The analytical protocol is based on supervised feature selection (FS) and supervised
classification. In our analysis, we focus on finding markers for predicting the appearance
of CIS in disease course.

The following base feature-selection protocol is used. We first identify all informa-
tive variables and, therefore, reduce the dimensionality of the problem. Then, we further
decrease the dimensionality by clustering similar variables. Finally, we use clusters’ rep-
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resentatives to build machine learning models for the prediction of CIS-DC. Each step is
described in detail in the following paragraphs.

In the first step, the variables that carry information about future development of
CIS in disease course are identified. To this end, we use the multidimensional feature
selection (MDFS) filter, which is based on the information entropy and is available as a
library in R [22,23]. The informative variables are identified by computing information
entropy conditioned on the knowledge of the descriptive variables and comparing it with
the null distribution of information entropy conditioned on the non-informative variables.
This metric is called information gain (IG). In this case, we use single-dimensional analysis,
which computes maximum IG over multiple (30) random discretizations of continuous
variables. The relevance is determined by a p-value threshold of 0.05 after applying Holm’s
correction [24].

Unlike minimal-optimal approaches to feature selection, all-relevant feature selection
does not have a goal of producing the best set of features for model building. On the
contrary—the goal is to preserve the information about all relevant variables so that they
and their structure can be studied at will. However, this leads to higher complexity for
model building and more uncertainty for tooling to discover such structures. To counter
this, we used feature clustering to group similar features together.

Similarity is a concept rooted in clustering (and data analysis in general) and is a
broad category. For our purpose, we use a correlation coefficient as our similarity metric;
precisely, we use the Pearson’s product–moment correlation coefficient ρ. However, for
the purpose of applying clustering algorithms, we need a function that can be used as a
proper metric—that monotonically describes the similar–dissimilar relation and outputs
the penalty associated with dissimilarity. Thus, we apply the following transformation to
obtain the function d:

d = 1− ρ2 (1)

which satisfies the properties of a proper metric and describes dissimilarity as a penalty
due to lack of correlation. The function d is called the dissimilarity function.

We choose hierarchical clustering as our clustering algorithm due to its property of
revealing the internal clustering structure. As a method of hierarchical clustering, we
evaluated Ward’s minimum variance method as well as the complete linkage method. Of
note here is that we applied clustering only to features—not objects nor both objects and
features—unlike how clustering and biclustering algorithms are usually used.

We evaluate two ways to choose the representatives to build the classification models.
The first is the most commonly applied procedure of working directly with the ranking of
features as they are available from the feature-selection method: choosing top-n features
with the lowest p-values. Secondly, we evaluate the effect of hierarchical clustering to N
clusters and then, analogously, use the ranking to choose one representative from each
cluster, basically the top-1 representative from each group.

To evaluate the marker set, we used the Random Forest [25] (RF) implementation
available in R’s randomForest package [26] as our target classifier. No tweaks to the
default parameters were applied. We used the area under the ROC (receiver operating
characteristic) curve, also known as AUROC or even AUC (area under curve), to describe
the performance of each built classifier.

While evaluating the stability and generality of the above base protocol, we developed
an extended procedure that we present here. We propose the use of cross validation as
part of the feature-selection protocol. The entire above-mentioned procedure was run in a
stratified 5-fold cross validation with 30 repeats, the direct results of which are presented in
Figure 1. Essentially, we have obtained a new ranking from cross validation that allows us
to apply the top-n procedure while using the count of repetitions as the quality metric. For
an overview, see Figure 2.
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Figure 1. Plots of the area under the receiver operating characteristic curve (AUC) of the Random
Forest classifiers, using markers selected by the top-n approach and two variants of hierarchical
clustering inside our proposed protocol (complete linkage and Ward’s criterion). These results were
obtained without external cross validation (CV) or resampling, but from inside of the protocol itself
(that is, under the protocol’s internal CV). Error bars denote the standard error.
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Figure 2. Depiction of a single run of the base protocol (A) and the proposed protocol (B). In (A),
the clustering is used directly to obtain markers and build models on them. In (B), the (A) part is
replicated, except for the highlighted part regarding model building and evaluation. Instead, the
results of (A) are used to build a ranking of the most-commonly chosen variables, which then are
used for model building and evaluation.



Int. J. Mol. Sci. 2022, 23, 7057 5 of 18

Furthermore, to estimate the mean and error of our evaluation metric (AUC), we
have applied (independently) both external resampling and external cross validation. The
resampling procedure consisted of 100 repeats of random sampling with replacement.
The omitted objects, called out-of-bag (OOB) objects, were used for verification of the
performance of the built models, i.e., for the calculation of the AUC. The cross-validation
procedure, on the other hand, was conducted using a stratified 10-fold approach with
30 repeats (independent of the CV inside the procedure). The internal procedure was
adjusted to use 10-fold CV as well, to gather enough objects for the MDFS statistic to
work well.

Assuming validation with resampling, the full analytical protocol is, thus, as follows
(with an overview in Figure 3):

1. repeat 30 times: split data randomly in 5 equal bins (i.e., run 30 repetitions of 5-fold
CV) and for each (i-th) bin:

(a) set aside the i-th bin as the test set and create a training set from the 4 remaining
bins;

(b) identify informative variables in the training set;
(c) cluster informative variables using the hierarchical approach and select repre-

sentatives of each cluster on each clustering level between 2 and 15, utilizing
the usual procedure of choosing the most informative one, and:

i. build an RF model of “CIS in disease course” using those representa-
tives;

ii. test the quality of the built model on the test dataset;

2. find cluster representatives at each level that appear most often in the above 150 itera-
tions (30 times 5 iterations), at each level of clustering between 2 and 15;

3. use those representatives for building the final model on the entire dataset:

(a) estimate the confidence intervals of the final models at each number of repre-
sentatives (between 2 and 15) using the bootstrap approach—repeat 100 times:

i. draw with replacement N patients from the original data, build RF
models using the 2 to 15 representative variables;

ii. measure the performance of each model using OOB objects;

(b) compute the aggregate performance of each model;
(c) use the results of the above procedure to propose the relevant markers.

Apart from the above selection of methods, we have verified the final marker set using
naive Bayes [27] and logistic regression classifiers, estimating the achievable diagnostic
metrics with such simpler classifiers. The details of the naive Bayes classifier are presented
in the Appendices A and B, as it is used as an example simple classifier that is useful for
diagnostic personnel.
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Figure 3. Depiction of the final evaluation. Both variants (A,B) from Figure 2 were evaluated,
respectively. An external cross validation was used to obtain the mean and standard deviation of
quality metrics (AUC, odds ratio). The evaluation of the stability of variant (A) (the base protocol)
prompted us to create and apply variant (B) (the proposed protocol).

3. Results

The final set of markers was selected after inspecting both the lists of representatives
and plots of the AUC in predictive models as a function of the number of markers used.
The quality of the predictive models improves with the increasing number of markers used
in the model, until it saturates with about seven–nine markers; see Figure 4.
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Figure 4. Plots of area under the receiver operating characteristic curve (AUC) of Random Forest
classifiers using markers selected by the top-n approach and two variants of hierarchical clustering
inside our proposed protocol (complete linkage and Ward’s criterion). These results were obtained
in external 10-fold cross validation (CV). Internally, for the protocol, 10-fold CV was used to ensure
enough samples. Error bars denote the standard error. The complete linkage variant exhibits the
desired behavior, achieving the best results earliest, with a plateau starting at 7.
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An additional argument for selecting seven markers is the relative stability of the
positions of the first seven markers in the list of markers consistently selected in the cross
validation; see Figure 5. The first 7 markers appear in the set of the top-7 most-often selected
cluster representatives in 150 repeats of the feature-selection procedure, whereas positions
of other markers do not rise to the top-7.

ENSG  Gene 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G01 169750 RAC3 G01 G02 G04 G04 G04 G04 G04 G04 G04 G04 G04 G04 G04 G04

G02 088325 TPX2 G02 G03 G03 G01 G03 G03 G03 G03 G03 G01 G01 G01 G01 G01

G03 042980 ADAM28 G01 G01 G03 G01 G01 G01 G01 G01 G03 G03 G03 G06 G06

G04 267213 DPY19L3-DT G02 G02 G02 G05 G05 G05 G05 G06 G06 G06 G03 G03

G05 258472 E9PMD0 (paralog of SPAG5) G05 G05 G02 G06 G06 G06 G05 G05 G05 G05 G05

G06 198720 ANKRD13B G06 G06 G02 G02 G02 G02 G02 G02 G07 G07

G07 186952 TMEM232 G07 G07 G07 G07 G07 G07 G07 G02 G02

G08 G08 G08 G08 G08 G10 G10 G10 G08

G09 G09 G09 G10 G08 G08 G08 G10

G10 G10 G09 G09 G09 G11 G09

G11 G11 G12 G12 G09 G11

G12 G11 G11 G12 G12

G13 G13 G13 G13

G14 G14 G14

G15 G15

�1

Figure 5. Most-representative markers at different clustering levels in 150 repeats of hierarchical
clustering procedure. The first 3 columns show the order in which markers are included in the
representative set, when the number of representatives is increased by 1—from 2 to 15. The Ensemble
code of each marker, with 5 leading zeros removed, is shown in column 2, and the gene name
corresponding to the marker is shown in column 3. In the remaining columns, the markers that
are most often selected as representatives in 150 repeats are shown, and their positions within the
column corresponds to the frequency of selection of a given marker as the representative (higher
position—higher frequency).

The chosen markers maximize the AUC in resampling (see Figure 6) and do not exhibit
strong correlations among themselves (as expected from the protocol); see Figure 7. For
completeness, we also present the internal quality metric of the protocol in Figure 1 and
the details of the selected seven markers in Table 2.
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Figure 6. Plots of the area under the receiver operating characteristic curve (AUC) of Random Forest
classifiers, using markers selected by the top-n approach and two variants of hierarchical clustering
inside our proposed protocol (complete linkage and Ward’s criterion). These results were obtained in
100 runs of resampling of the standard protocol, as described in the paper body. Error bars denote
the standard error. The complete linkage variant again exhibits the desired behavior, achieving the
best results earliest, with the plateau starting at 7.
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Figure 7. Heatmap of the correlation square of the chosen genes’ expression levels. The darker (more
saturated) the square, the higher the level of correlation.

Table 2. Details of the selected genes. The repetitions shown are for the case of selecting 7 clusters.
There were 150 (30 times 5) trials, and thus, 150 is the upper bound for repetitions. IG stands for
information gain, and here, it is the maximum IG computed by the MDFS library in 1D on the entire
set (30 random discretizations were used). Label is a shortened version of gene name, used for
identification purposes in other parts of the paper.

Ensembl Gene ID Repetitions IG Gene Name Label

1 ENSG00000267213 114 29.3 DPY19L3-DT DP
2 ENSG00000042980 66 35.5 ADAM28 AD
3 ENSG00000169750 64 34.0 RAC3 RA
4 ENSG00000258472 52 24.9 E9PMD0 (paralog of SPAG5) E9
5 ENSG00000088325 50 29.0 TPX2 TP
6 ENSG00000198720 47 28.1 ANKRD13B AN
7 ENSG00000186952 38 30.0 TMEM232 TM

The markers exhibit different directionalities of expression levels between high- and
low-risk classes—ADAM28 and TMEM32 expression levels are higher in the low-risk class,
while for the other markers, we observe the reverse; see Figure 8.

The diagnostic properties of the models built with the chosen markers are presented
in Figure 4. Properties of models from the external cross validation are presented in Table 3.
The details of the naive Bayes classifier built on the entire set are reported in Appendix A.
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Figure 8. Boxplots of expression levels of selected markers comparing samples with CIS in disease
course and those without it. Values of “DPY19L3-DT” are presented after applying a logarithm
operation to be able to show the difference. Others are plotted verbatim. It can be seen that low
expression levels of ADAM28 and TMEM232 increase the risk of CIS in disease course, while the 5
other variables exhibit the inverse behavior.

Table 3. Externally cross-validated results for the Random Forest classifiers. The first column defines
the threshold set in the classifiers, separating low- and high-risk groups. The second column displays
the fraction of all patients assigned to a high-risk class (HRC) at a given threshold. Analogously,
the third column presents the fraction of all CIS-DC cases assigned to the high-risk class. Two next
columns present the fraction of CIS-DC in a low- and high-risk class (LRC and HRC), respectively.
Similarly, columns six and seven present the odds of CIS-DC in an LRC and HRC, respectively. Finally,
the DOR column displays the diagnostic odds ratio between the HRC and LRC, and RR displays the
risk ratio between these classes. The comment on the cutoff and share of patients in the HRC from
Table 4 applies here as well.

Cutoff Share of Share of Risk Risk Odds Odds DOR RR
Patients CIS-DC for for for for
in HRC in HRC LRC HRC LRC HRC

50% 52.0% 78.8% 6.9% 23.6% 0.07 0.31 4.2 3.4
75% 23.6% 49.9% 10.2% 32.9% 0.11 0.49 4.3 3.2
90% 8.3% 24.6% 12.8% 46.2% 0.15 0.86 5.9 3.6
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Table 4. Cross-validated results for the three classifiers, built using the seven selected markers.
Stratified 5-fold cross validation, repeated 30 times, was used. Column headings are as in Table 3.
Please note that the observed inconsistency between the cutoff and the share of patients in the HRC
stems from the application of cross validation—the share is averaged over all folds from all iterations,
while the cutoff is established using the entire dataset a priori.

Cutoff Share of Share of Risk Risk Odds Odds DOR RR
Patients CIS-DC for for for for
in HRC in HRC LRC HRC LRC HRC

Naive Bayes

50% 49.6% 79.5% 6.3% 24.9% 0.07 0.33 4.9 3.9
75% 25.5% 57.7% 8.8% 35.2% 0.10 0.54 5.6 4.0
90% 11.0% 33.9% 11.5% 47.9% 0.13 0.92 7.0 4.1

Logistic Regression

50% 49.9% 86.0% 4.4% 26.8% 0.05 0.37 8.0 6.2
75% 25.1% 57.4% 8.8% 35.5% 0.10 0.55 5.7 4.0
90% 10.6% 33.6% 11.5% 49.1% 0.13 0.97 7.4 4.3

Random Forest

50% 49.1% 86.6% 4.1% 27.4% 0.04 0.38 8.9 6.7
75% 26.0% 68.0% 6.7% 40.6% 0.07 0.68 9.5 6.0
90% 10.2% 35.5% 11.2% 54.3% 0.13 1.19 9.5 4.9

4. Discussion

Bladder cancer is one of the most-common cancers in the world [1]; thus, there is
a need to develop sensitive methods for the early diagnosis of non-advanced lesions or
poor prognosis predictors. Currently, there is a limited number of commercially avail-
able tests for bladder cancer diagnosis. The NMP22BC test allows for the diagnosis of
non-muscle-invasive bladder cancer and low-grade bladder cancer in urine samples [28].
Recently published data shows that HPLC (high-performance liquid chromatography) of
urine could distinguish bladder cancer patients from non-malignant hematuria patients
based on chromatographic absorptions and fluorescence peaks [29]. Similarly, fluorescence
urine analysis using concentration matrices of synchronous spectra could be useful in
bladder cancer diagnosis, allowing to distinguish between cancer patients and heumaturia
patients [30]. The new diagnostic strategy could include a label-free optical sensing plat-
form based on DNA strand displacement. Currently, there are no data on bladder cancer
detection using this method [31]. Metabolomic analysis is a very promising and useful
tool for the identification of biomarkers; it allows for analyses of urine, blood, and tissue
samples. The results enable distinguishing between MIBC and NMIBC patients [32]. The
aforementioned techniques are aimed at the sensitive and early detection of urinary bladder
cancer or at discriminations between MIBC and NMIBC. However, markers allowing for
the identification of the risk of CIS development have still not been identified.

CIS of the urinary bladder represents the tumors with high risk of progression to
MIBC and metastatic disease [8]. Some data indicate that primary CIS is diagnosed in about
1–3% of newly diagnosed bladder cancers, but some papers report about 20% primary
CIS case diagnoses [33,34]. Secondary CIS (detected during follow-up) are diagnosed in
about 20% of NMIBC cases [33,35]. Our method allowed for the identification of seven
markers related to an increased risk of CIS-DC of urinary bladder cancers. Some of these
markers are well-known molecules involved in cancer biology, but some of them are quite
unique, with very limited information on their involvement in cancer development and
their relationship with tumors.

We identified two markers that are characterized by limited information: DPY19L3-DT
(DPY19L3 Divergent Transcript, ENSG00000267213) and E9PMD0 (ENSG00000258472).
DPY19L3-DT belongs to the lncRNA class, but there is no information on the function of
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this molecule in normal and pathological cells and tissues, while the function of E9PMD0
is linked to the cell division and regulation of the attachment of spindle microtubules to
kinetochore [36].

We also identified five other markers: ADAM28 (ENSG00000042980), Ras-related
C3 botulinum toxin substrate 3 (Rac family small GTPase 3, RAC3, ENSG00000169750),
targeting protein for Xenopus kinesin-like protein 2 (TPX2, ENSG00000088325), Ankrd13
family of ubiquitin-interacting motif (UIM)-containing proteins (Ankyrin repeat domain-
containing protein 13B, ANKRD13B, ENSG00000198720), and TMEM232. Some of them
were previously identified as potential cancer markers or targets for molecular anti-cancer
therapies, bladder cancers among them.

ADAM28 belongs to the disintegrin and metalloprotease domain (ADAM) family. Its
role in cancers is ambivalent: it promotes cancer cells’ proliferation, survival, migration, and
metastasis by affecting neoangiogenesis, epithelial-to-mesenchymal transition, and extra-
cellular matrix degradation, but in the tumor microenvironment it shows strong protective
effects against deleterious metastasis dissemination [37]. In bladder cancers, ADAM28
may represent a possible biomarker, since it is overexpressed in bladder transitional cell
carcinoma patients and detected in urine [38,39]. In our model, its higher expression was
found in patients with low-risk cancers.

Another marker identified by our protocol, RAC3, is involved in neuronal develop-
ment and in tumor progression, by modulating the organization of the cytoskeleton, cell
migration, cell proliferation, and reactive oxygen species production. Its expression was
found in different cancers, and it is considered as a marker of poor prognosis, metastasis,
and a target for molecular-targeted therapies in some human cancers, such as breast or
lung (reviewed in [40]. In our model, the increased expression of RAC3 in high-risk cancers
is in line with the existing knowledge and data published by Chen et al. [41]. It indicates
that, in bladder cancer, this molecule can be a potential prognostic marker and a target for
molecular medicine.

TPX2 is a microtubule-associated protein, involved in the assembly of mitotic spindles
and in cell cycles, cell proliferation, and apoptosis [42,43]. TPX2 was found in in silico
studies to be related to the risk of the distant metastasis of breast cancers [44]. In bladder
cancer, TPX2 is involved in TPX2-mediated phosphorylation of the AURKA-PI3K-AKT
axis [45]. In addition, heterogeneous nuclear ribonucleoprotein F, by regulating the TPX2
protein, promotes the cell cycle and proliferation of bladder cancer cells [46]. The prolif-
eration of bladder cancer cells can also be regulated by the interplay between TPX2, p53,
and GLIPR1 [47]. In our model, similar to Yan et al. [48], a higher expression of TPX2 was
found in high-risk cancers. Thus, we conclude that TPX2 plays an important role in the
progression of bladder cancers, including CIS in disease course, and represents a good
potential marker for targeted therapy.

ANKRD13B is ubiquitin-binding protein that specifically recognizes and binds Lys-63-
linked ubiquitin and that is responsible for the internalization of ligand-activated EGFR [49].
In addition, it is involved in DNA methylation since ANKRD13B (and ANKRD13A and
ANKRD13D) form a complex with RNF11 (RING finger protein 11), belonging to the Really
Interesting New Gene E3 ligase family (RING) [49,50]. Based on our data, we suggest that
ANKRD13B could act as a marker of high-risk bladder cancer, since its expression was
significantly elevated in these cancers. It could also be a potential molecular target for
anticancer therapies.

TMEM232 is a member of the transmembrane protein family (TMEMs), consisting
of more than 300 proteins, being components of cellular membranes [51]. Proteins of this
family have differential expression in cancers, but there is limited information on TMEM232.
Published data have linked this protein with atopic dermatitis [52,53] or with multiple
sclerosis [54]. In our model, the TMEM232 expression pattern was similar to ADAM28,
with higher expression in low-risk cancers.

Using externally cross-validated results for the Random Forest classifier and a 75%
threshold in our model (Table 3), the fraction of all patients assigned to a high-risk group
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was 23.6%, and the fraction of all CIS-DC cases assigned to the high-risk group was 49.9%,
while the fraction of CIS-DC in a low-risk group was 10.2%, and that in a high-risk group
was 32.9%. The fraction of these patients for the 75% threshold, using cross validation
and naive Bayes, logistic regression, and Random Forest classifiers are similar, with very
promising diagnostic results for Random Forest. The described method could aid clinicians
in identifying high-risk bladder cancer (the risk of CIS in disease course). Thus, it offers
a diagnostic tool that allows for the personalization of bladder cancer surveillance, more
precise treatment option determinations, and the improvement of bladder cancer prognoses.

To summarize, the identified genes can be used as markers of progression in uri-
nary bladder cancers. Moreover, the increased expression of some identified proteins
(RAC3, TPX2, ANKRD13B, and TMEM232) indicates their usefulness as potential targets
in molecular-tailored therapies. Some of them require more detailed studies since their
biological role, especially in cancer, is unknown, or the data are contradictory (ADAM28,
TMEM232, DPY19L3-DT, and E9PMD0). We also conclude that, since we identified seven
important genes, their evaluation in routine diagnostic procedures is possible using im-
munohistochemistry or in situ hybridization. Such a panel would not burden laboratories
with high costs and labor. Finally, a ready classifier based on naive Bayes technique is
presented in the Appendices A and B, along with an example calculation to enable the
research and diagnostics communities to readily analyze applicable data.
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The following abbreviations are used in this manuscript (sorted alphabetically):

AUC Area under the ROC curve
BCG Bacillus Calmette–Guérin vaccine
CIS Carcinoma in situ
CIS-DC CIS in disease course
CV Cross validation
DOR Diagnostic odds ratio
FS Feature selection
HRC High-risk class (in this paper: predicted as with CIS-DC)
LRC Low-risk class (in this paper: predicted as without CIS-DC)
MDFS Multidimensional feature selection
MIBC Muscle-invasive bladder cancer
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NMIBC Nonmuscle-invasive bladder cancer
OOB Out-of-bag (in model training)
PUNLMP Papillary urothelial neoplasm of low-malignant potential
RF Random Forest
ROC Receiver operating characteristic
RR Risk ratio

Appendix A. Dataset Properties

In this short appendix, we summarize the details of the dataset properties in terms of
the clinical metadata values’ distribution. The details are in the following four tables.

Table A1. Dataset characteristics per sex (female/male). BCG—Bacillus Calmette–Guérin vaccine.
PUNLMP—papillary urothelial neoplasm of low-malignant potential. CIS—carcinoma in situ (in the
table as a stage of tumor when its sample was taken).

Female Male

Total 109 367
CIS-DC 18 56
Cystectomy 11 21
BCG treatment 18 70
High grade 46 146
Low grade 60 217
PUNLMP 3 4
CIS 1 2
Ta 80 265
T1 22 90
T2-4 6 10

Table A2. Dataset characteristics per CIS in disease course (CIS-DC; yes/no). BCG—Bacillus
Calmette–Guérin vaccine. PUNLMP—papillary urothelial neoplasm of low-malignant potential.
CIS—carcinoma in situ (in the table as a stage of tumor when its sample was taken).

CIS-DC No CIS-DC

Total 74 402
Female 18 91
Cystectomy 9 23
BCG treatment 35 53
High grade 41 151
Low grade 32 245
PUNLMP 1 6
CIS 3 0
Ta 46 299
T1 22 90
T2-4 3 13
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Table A3. Dataset characteristics per cystectomy (yes/no). BCG—Bacillus Calmette–Guérin vaccine.
PUNLMP—papillary urothelial neoplasm of low-malignant potential. CIS—carcinoma in situ (in the
table as a stage of tumor when its sample was taken).

Cystectomy No Cystectomy

Total 32 444
Female 11 98
CIS-DC 9 65
BCG treatment 0 88
High grade 27 165
Low grade 5 272
PUNLMP 0 7
CIS 0 3
Ta 8 337
T1 18 94
T2-4 6 10

Table A4. Dataset characteristics per BCG treatment (yes/no). BCG—Bacillus Calmette–Guérin
vaccine. PUNLMP—papillary urothelial neoplasm of low-malignant potential. CIS—carcinoma in
situ (in the table as a stage of tumor when its sample was taken).

BCG Treatment No BCG Treatment

Total 88 388
Female 18 91
CIS-DC 35 39
Cystectomy 0 32
High grade 47 145
Low grade 41 236
PUNLMP 0 7
CIS 2 1
Ta 50 295
T1 36 76
T2-4 0 16

Appendix B. Naive Bayes Classifier Using the Seven Chosen Markers

The naive Bayes classifier built using the seven chosen markers is a simple classi-
fier with diagnostically interesting properties (as shown in the main text). Thus, in this
appendix, we present the details of classification made possible by the data we have used.

The naive Bayes classifier requires knowledge of the distribution of each variable. In
most cases, it is assumed that the underlying distribution is normal. This is not the case in
the raw gene expression data. Nevertheless, the logarithm of gene expression is usually
sufficiently close to normal distribution. To avoid numerical artifacts for cases with very
low expression, a value of 0.001 has been added to each recorded value.

To make the model general, the expression levels have been normalized using values
of expression levels of genes with a stable and high level of expression that are available
in the dataset. The three genes selected as reference are: ENSG00000075624 (ACTB),
ENSG00000166794 (PPIB), and ENSG00000149273 (RPS3).

The values of these three have been combined to create a reference gene. The weights
applied are ratios of the mean to the standard deviation, as was used in the initial choice.
They are the following: 14.1, 12.8, and 8.79, respectively, normalized to 0.395, 0.357, and
0.247, respectively. The reference gene’s expression level is used as the denominator in the
construction of normalized expression levels of diagnostic genes, while their expression
levels are the respective nominators. Thus, for a particular gene and patient, we have the
following formula:

log v
0.395 log vr1 + 0.357 log vr2 + 0.247 log vr3

(A1)
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where v is the patient’s gene expression level that we normalize, and vr1 , vr2 and vr3 are the
patient’s gene expression levels for reference genes mentioned above: ACTB, PPIB, and
RPS3, respectively. The log function is a natural logarithm, i.e., a logarithm with base e.

Let us assume that some patient has the following values of gene expression for the
respective reference genes: 490, 180, 304, and we want to normalize the value of TPX2, for
which this same patient has a gene expression value of 2.03. We substitute the values in the
above formula:

log 2.03
0.395 log 490 + 0.357 log 180 + 0.247 log 304

≈ 0.708
2.45 + 1.85 + 1.41

=
0.708
5.71

≈ 0.124 (A2)

The normal distribution is described using two parameters which are real numbers:
the mean µ and the standard deviation (SD) σ. The density function fµ,σ of the normal
distribution with the declared parameters is expressed as follows:

fµ,σ(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

(A3)

The parameters for the selected seven genes are presented per class in Table A5.

Table A5. Parameters of the normal distributions of the values of the selected markers in the used
dataset, per class. SD means standard deviation. For formatting, markers are identified with the
labels from Table 2.

DP AD RA E9 TP AN TM

Mean LRC −0.19 0.41 0.02 0.11 0.24 −0.08 −0.02
SD LRC 0.15 0.20 0.21 0.13 0.19 0.17 0.19

Mean HRC −0.09 0.27 0.13 0.21 0.41 0.04 −0.11
SD HRC 0.16 0.21 0.20 0.12 0.17 0.13 0.18

The name—naive Bayes—stems from the underlying statistical approach. The method
uses Bayes’ theorem, with an assumption that the different variables are independent. This
assumption is false in most real-life cases; hence, the method is called naive. Nonetheless,
the naive Bayes classifiers work surprisingly well in many cases [55].

Having the distributions well defined, equipped with the independence assumption,
and using the Bayes’ theorem, it is possible to evaluate whether a particular sample belongs
with higher probability to the low- or high-risk class. To this end, one needs to calculate the
simplified nominator from the Bayes’ theorem’s formula:

p(Ck)∏
i

p(xi|Ck) (A4)

where p(Ck) is the prior probability of the class, while p(xi|Ci) is the conditional probability
of sample with value xi of the i-th variable, under the assumption that the sample belongs
to class Ck—this is performed using the assumed distributions. The ∏ symbol means
product. The class with the larger value is the more probable class. However, it is possible
to use the classifier with an arbitrary threshold, which enables the classifier to be tweaked
depending on the nature of the problem.

For practical purposes, in the case of binary classification, it is possible to define a
score as a logarithm of the ratio of the probabilities of each class, in our case low-risk (L)
and high-risk (H):

∑
i

log
p(xi|CL)

p(xi|CH)
+ log

p(CL)

p(CH)
(A5)
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Since the second part is effectively a constant, and we are allowing arbitrary thresholds,
the score becomes the following:

Score = ∑
i

log
p(xi|CL)

p(xi|CH)
(A6)

Let us assume that the patient for whom we want to apply the method above has
the following values of normalized expression levels: DP = −0.2, AD = 0.51, RA = 0.02,
E9 = 0.08, TP = 0.18, AN = 0.0, and TM = 0.02. Then, utilizing Equations (A3) and (A6)
(as we can substitute the probability function with probability density function since we
have a ratio of them) and data from Table A5, we obtain the following contributions to the
final score:

Score = log
f−0.19,0.15(−0.2)
f−0.09,0.16(−0.2)

+ log
f0.41,0.20(0.51)
f0.27,0.21(0.51)

+ log
f0.02,0.21(0.02)
f0.13,0.20(0.02)

+ log
f0.11,0.13(0.08)
f0.21,0.12(0.08)

+ log
f0.24,0.19(0.18)
f0.41,0.17(0.18)

+ log
f−0.08,0.17(0.0)
f0.04,0.13(0.0)

+ log
f−0.02,0.19(0.02)
f−0.11,0.18(0.02)

≈ log
2.65
1.97

+ log
1.76
0.99

+ log
1.90
1.71

+ log
2.99
1.85

+ log
2.00
0.94

+ log
2.10
2.93

+ log
2.05
1.71

≈ 0.297 + 0.575 + 0.105 + 0.480 + 0.755 +−0.333 + 0.181 = 2.06 (A7)

Taking into account the thresholds computed for the three analyzed cutoffs (Table A6),
the calculated score classifies the patient as low-risk, regardless of the cutoff.

Table A6. Externally cross-validated thresholds for naive Bayes classification. Scores above the
threshold mean low risk, below the threshold—high.

Cutoff Threshold

50% 1.435
75% −1.066
90% −2.676
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