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Abstract

The conversion of skeletal muscle fiber from fast twitch to slow-
twitch is important for sustained and tonic contractile events,
maintenance of energy homeostasis, and the alleviation of fatigue.
Skeletal muscle remodeling is effectively induced by endurance or
aerobic exercise, which also generates several tricarboxylic acid
(TCA) cycle intermediates, including succinate. However, whether
succinate regulates muscle fiber-type transitions remains unclear.
Here, we found that dietary succinate supplementation increased
endurance exercise ability, myosin heavy chain I expression, aero-
bic enzyme activity, oxygen consumption, and mitochondrial
biogenesis in mouse skeletal muscle. By contrast, succinate
decreased lactate dehydrogenase activity, lactate production, and
myosin heavy chain IIb expression. Further, by using pharmacologi-
cal or genetic loss-of-function models generated by phospholipase
Cb antagonists, SUNCR1 global knockout, or SUNCR1 gastrocne-
mius-specific knockdown, we found that the effects of succinate
on skeletal muscle fiber-type remodeling are mediated by SUNCR1
and its downstream calcium/NFAT signaling pathway. In summary,
our results demonstrate succinate induces transition of skeletal
muscle fiber via SUNCR1 signaling pathway. These findings suggest
the potential beneficial use of succinate-based compounds in both
athletic and sedentary populations.
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Introduction

In mammals, skeletal muscle comprises about 55% of the individual

body mass [1,2]. Skeletal muscle is heterogeneous and composed of

slow- and fast-twitch fiber types, which differ in contractile-protein

composition, oxidative capacity, and substrate preference for ATP

production [3]. Slow-twitch fibers have more myoglobin, more

mitochondria [4], a higher level of intracellular calcium concentra-

tions [5], and higher activity of oxidative metabolic enzymes than

fast-twitch fibers. Therefore, the switching of skeletal muscle fiber

from fast twitch to slow twitch is important for sustained and tonic

contractile events [6,7], maintenance of energy homeostasis [8],

and alleviation of fatigue.

Endurance or aerobic exercise is crucial to muscle fiber-type

remodeling by increasing the mechanical and metabolic demand on

skeletal muscle [9]. Previous study showed endurance training

increases intracellular calcium concentration ([Ca2+]i) [10,11], which

activates the calcineurin/nuclear factor of activated T cells (NFAT)

[12,13] and myocyte enhancer factor-2 (MEF2) [14]. These two tran-

scription factors play a dominant role in muscle formation and fiber

remodeling. In addition to transient elevation of [Ca2+]i, endurance

exercise also increases several specific TCA cycle intermediates,

among which succinate increases the most [15,16]. However, whether

these intermediates mediate endurance exercise-induced muscle fiber

transition is rarely investigated. Succinate has been reported to induce

cardiomyocyte hypertrophy [17] and osteoclastogenesis [18]. It also

plays an important role in energy [19] and glucose [20] homeostasis

by regulating mitochondrial oxygen consumption [21] and heat

production from brown adipose tissue (BAT) [22]. Therefore, we

hypothesize that succinate regulates skeletal muscle fiber remodeling.

To test this hypothesis, we first examined the effects of succinate

on skeletal muscle fiber composition, metabolism, and exercise

tolerance. By combining pharmacological and siRNA-mediated
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knockdown model both in vitro and in vivo, we demonstrated that

succinate induces skeletal muscle transition from fast twitch to slow

twitch through the SUNCR1 signaling pathway. Our results indicate

potential use of succinate as a dietary supplement to improve physi-

cal fitness and counteract fatigue.

Results

The dietary supplement of succinate shifts skeletal muscle fiber
size distribution

To determine the effects of succinate on skeletal muscle growth, we

fed male C57BL/6J mice with chow diet supplemented with 0,

0.5%, or 1% succinic acid disodium salt for 8 weeks. We found that

succinate-supplemented diet increased serum SUA level (Fig 1A)

but had no effects on the body weight gain (Fig 1B), food intake

(Fig EV1A), fat mass (Fig 1C), lean mass (Fig 1D), gastrocnemius

muscle index (Fig 1E), or liver index (Fig EV1B). Additionally,

consistent with our previous report [23], we found that succinate

activated Akt/mTOR cascade and inhibited FoxO3a (Fig EV1C and

D). Interestingly, we also found that 1% succinate increased the

proportion of small muscle fiber (200–400 lm2), while decreased

the proportion of large muscle fiber (600–800 lm2; Fig 1F and G).

This shift of muscle fiber size distribution indicates that succinate

may affect skeletal muscle contraction properties.

Succinate enhances endurance exercise capacity and reduces
muscle fatigue

To further investigate the effects of succinate on skeletal muscle

contraction properties, we first tested the exercise capacity of mice.

We found that succinate dose-dependently increased muscle grip

strength (Fig 2A), low-speed running time (Fig 2B), and decreased

falling time in four-limb handing test (Fig 2C). However, high-speed

running time was unchanged by succinate supplementation

(Fig 2D), which indicates succinate may specifically improve endur-

ance exercise performance, but not explosive exercise performance.

It is well-known that endurance exercise performance is deter-

mined by oxygen supply and muscle fiber type [19]. We first tested

if the oxygen-carrying capacity of muscle was enhanced by succi-

nate. We found although succinate slightly increased the number of

red blood cells (RBC; Fig 2E) and the hemoglobin (HGB) level

(Fig 2F), the extent of these increases is not comparable to the

A
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Figure 1. Effects of succinate on growth performance and serum concentration in mice.

Male C57BL/6J mice were fed with chow diet supplemented with 0, 0.5, and 1% SUC for 8 weeks.

A–E (A) Serum SUA level, (B) body weight gain, (C) fat and (D) lean mass and (E) gastrocnemius index.
F, G (F) Gastrointestinal muscle fiber immunofluorescent laminin staining and (G) frequency histogram of fiber cross-sectional area. Scale bar in (F) represents 100 lm.

Data information: Results are presented as mean � SEM (n = 6–8). Different letters between bars mean P ≤ 0.05 in one-way ANOVA analyses followed by post hoc
Tukey’s tests. *: significant difference (P ≤ 0.05) between 0.5% SUC and control group by non-paired Student’s t-test. #: significant difference (P ≤ 0.05) between 1% SUC
and control group by non-paired Student’s t-test.
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dramatic improvement of endurance exercise capacity. In order to

further characterize other parameters related to endurance exercise

capability, we used an ex vivo strategy to evaluate isolated muscle

contraction properties (Fig 2G). We found that dietary

supplementation of succinate did not affect the maximum contrac-

tile force (Fig 2I), but significantly improved fatigue resistance of

muscle (Fig 2H and J), with less glucose consumption (Fig 2K), and

lactate production (Fig 2L) during contraction. Taken together, our

A B C D
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Figure 2. Succinate enhances the endurance exercise capacity of skeletal muscle in mice.

Male C57BL/6J mice fed with chow diet supplemented with 0, 0.5, and 1% SUC for 8 weeks.

A–D (A) The muscle grip strength, (B) running time in low speed, (C) four-limb handing time, and (D) running time in high speed.
E, F (E) Serum concentration of RBC and (F) HGB in whole blood.
G–L (G–I) Ex vivo gastrocnemius muscle force, (J) fatigability, (K) glucose consumption, and (L) lactate production were tested.

Data information: Results are presented as mean � SEM (n = 5–8). Different letters between bars mean P ≤ 0.05 in one-way ANOVA analyses followed by post hoc
Tukey’s tests.
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data indicate that succinate can increase oxygen-carrying capacity

and reduce muscle fatigue.

Succinate induces skeletal muscle fiber-type transition in vivo

There are four types of skeletal muscle fiber, including I, IIa, IIx,

and IIb. Each of them expresses different myosin heavy chain and

troponin isoforms. Here, we studied the effects of succinate on

muscle fiber-type transaction in three different muscles, including

soleus, extensor digitorum longus (EDL), and gastrocnemius. Soleus

is known as a typical slow-twitch muscle (slow/slow), whereas EDL

is a typical fast-twitch muscle (fast/fast). Gastrocnemius usually has

a lot of fast-twitch muscle fibers, or an equal number of fast and

slow-twitch fibers (fast/slow mixed).

In mixed gastrocnemius muscle, we found that succinate upregu-

lated slow-twitch fiber-associated genes MyHC I, MyHC IIa, PGC-1a,
myoglobin, and TnnT1, whereas it downregulated fast-twitch fiber-

associated genes, including MyHC IIb and TnnT3 (Fig 3A). Further,

both Western blot (Fig 3B) and immunofluorescence (Fig 3C and D)

demonstrated that succinate increased MyHC I/IIa protein expres-

sion and slow-twitch fiber percentage, while decreased MyHC IIb

protein and fast-twitch fiber percentage. These results indicate that

succinate induces a fast twitch to slow-twitch transition in skeletal

muscle.

A B

C D

Figure 3. Effects of succinate on MyHC expression in mice.

Male C57BL/6J mice were fed with chow diet supplemented with 0, 0.5, and 1% SUC for 8 weeks.

A The mRNA expression of MyHC I, MyHC IIa, PGC-1a, myoglobin, TnnT1 MyHC IIb, MyHC IIx, and TnnT3 in the gastrocnemius muscle (n = 5–6).
B Immunoblots and quantification of MyHC I, MyHC IIa, and MyHC IIb protein expression in gastrocnemius (n = 3–4).
C, D Representative images and quantification of laminin (green), MyHC I, and MyHC IIb immunofluorescent staining (red) in gastrocnemius (n = 3). Scale bar in (C)

represents 100 lm.

Data information: Results are presented as mean � SEM. Different letters between bars mean P ≤ 0.05 in one-way ANOVA analyses followed by post hoc Tukey’s tests.
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Consistently, we found that succinate dose-dependently

increased MyHC I but not MyHC IIb protein expression in soleus,

suggesting an increased proportion of slow-twitch fiber (Fig EV1E

and F). On the other hand, succinate failed to affect the muscle fiber

composition of EDL muscle (Fig EV1G and H).

Oxidative capacity of three muscles was also evaluated by the stain-

ing of succinate dehydrogenase (SDH), a marker of oxidative capacity

of skeletal muscle at the fiber level. We found that succinate dose-

dependently increased the percentage of SDH-positive fibers in SOL,

EDL, and gastrocnemiusmuscles (Fig EV1I–N), suggesting succinate is

sufficient to improve mitochondrial content and oxidative capacity of

mixed (gastrocnemius), slow/slow (SOL), or fast/fast (EDL)muscles.

Succinate increases aerobic oxidation and mitochondrial
biogenesis in skeletal muscle

A high number of mitochondrial and metabolic adaptation are gener-

ally accompanied with endurance exercise and skeletal muscle type

transition [24]. Here, we tested the effects of succinate on metabolism

and mitochondrial properties. We found that succinate increased

A

E

I J K

F G H L

B C D

Figure 4. Succinate promotes skeletal muscle mitochondrial biosynthesis and aerobic oxidation in mice.

Male C57BL/6J mice were fed with chow diet supplemented with 0 and 1% SUC for 6 weeks.

A–D The O2 consumption (VO2) (A, B) and respiratory exchange ratio (RER) (C, D).
E–H Serum concentration of (E) NEFA in whole blood. The enzymes activity of (F) SDH, (G) HK, and (H) LDH in gastrocnemius.
I, J Immunoblots and quantification of p-AMPK, PGC-1a, and myoglobin in gastrocnemius. The same lysates were used for the detection of PGC1a (100 kDa, Fig 4I),

myoglobin (17 kDa, Fig 4I), myosin heavy chain (180 kDa, Fig 3B), and tubulin (48 kDa, shared in both Figs 3B and 4I).
K Quantification of mitochondrial and electron transport chain (ETC)-related gene expression i respiratory exchange n gastrocnemius.
L OCRs were measured under basal condition in gastrocnemius.

Data information: Results are presented as mean � SEM (n = 4–6). Different letters between bars mean P ≤ 0.05 in one-way ANOVA analyses followed by post hoc
Tukey’s tests. *P ≤ 0.05 and **P ≤ 0.01 by non-paired Student’s t-test.
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whole-body oxygen consumption (Fig 4A and B) and decreased

whole-body respiratory exchange ratio (RER; Fig 4C and D) in the

dark cycle. In addition, serum non-essential fatty acid (NEFA) content

was decreased by succinate supplementation (Fig 4E), suggesting that

the decreased respiratory quotient may be attributed to the elevated

fatty acid oxidation. Consistently, succinate enhanced the activity of

succinate dehydrogenase (SDH; Fig 4F) and hexokinase (HK; Fig 4G)

but suppressed the activity of lactic dehydrogenase (LDH; Fig 4H).

These results suggest that succinate promotes aerobic metabolism. In

supporting this point of view, an enhanced mitochondrial biogenesis

was consistently shown in our model. When detecting the myosin

heavy chain by WB, we also checked PGC1a and myoglobin protein

simultaneously (Fig 4I and J), as well as the expression of genes

related to mitochondria and electron transport chain (Fig 4K). These

protein and mRNA expression level were dose-dependently increased

by succinate in the gastrocnemius. However, the p-AMPK levels were

reduced by succinate (Fig 4I and J), indicating that cellular energy

status may not be the main reason for skeletal muscle type transition.

Based on a recent study showing that succinate increased

adipose tissue metabolism and induced browning in high-fat diet

(HFD)-induced obesity mice [22], we postulated that succinate has a

similar stimulatory effect on metabolism in muscle. To test this, we

further evaluated oxygen consumption in skeletal muscle and

consistently found that succinate significantly increased oxygen

consumption ratio (OCR) in the gastrocnemius (Fig 4L). Together,

these results indicate that succinate induces skeletal muscle fiber

remodeling by promoting mitochondrial biosynthesis and aerobic

oxidation.

Succinate induces fiber-type remodeling and increases
mitochondrial content in C2C12 myotubes

To test the direct effect of succinate on skeletal muscle, we used

C2C12 myotubes as an in vitro model to study the role of succinate

in skeletal muscle fiber-type remodeling. Similar to the previous

in vivo study, we found that succinate significantly increased the

proteins and genes of slow-twitch fiber markers, while decreased

the proteins and genes of fast-twitch markers as indicated by both

immunofluorescence (Fig 5A and B) and qPCR (Fig EV2A). Regard-

ing metabolic enzymes, succinate enhanced the activity of SDH

(Fig 5C), but reduced the activity of LDH (Fig 5D) and lactic acid

production (Fig 5E) in C2C12 myotubes.

Additionally, we tested the number, morphology, and activity of

mitochondria. Consistent with our in vivo data, succinate signifi-

cantly increased mitochondrial DNA content (Fig 5F), cellular mito-

chondrial density (Fig 5G–J), and coverage (Fig 5I). However, the

size (Fig 5J) and the membrane potential of mitochondria (Fig EV2B

and C) were not affected by succinate. These results suggest that the

enhanced aerobic oxidation is mainly due to the increased mito-

chondrial number, but not the activity of each mitochondrion.

These in vitro data reveal a direct role of succinate in the slow-

twitch transition, mitochondrial biogenesis, and aerobic oxidation.

SUNCR1/PLCb/Calcium signaling pathway mediates succinate-
induced fiber-type transition

To explore the intracellular mechanism for succinate-induced fiber-

type transition, we compared the expression of SUNCR1, an

endogenous receptor of succinate [25], in the soleus and gastrocne-

mius muscles. Interestingly, the protein (Fig 6A and B) and mRNA

(Fig 6C) of SUNCR1 in the soleus (typical slow/slow muscle) are

much higher than levels in gastrocnemius (typical mixed slow/fast

muscle). In addition, exercise significantly increased SUNCR1

protein expression in both soleus and gastrocnemius muscles

(Fig 6A and B), suggesting a potential role of this receptor in skele-

tal muscle fiber-type remodeling.

To test this point of view, we generated pharmacological or

genetic loss-of-function models to investigate the requirement of

SUNCR1 in succinate-induced muscle fiber-type transition. We

found that succinate triggered a transient elevation of [Ca2+]i in

C2C12 myotubes (Fig 6D) and promoted nucleic NFAT accumula-

tion in the gastrocnemius muscle shortly (0.5–3 h) after acute succi-

nate administration (Fig 6E–G). Importantly, pharmacological

blockage of PLC-b, a key mediator of a GPCR-triggered calcium

signaling pathway, effectively abolished succinate-induced [Ca2+]i

elevation (Fig EV3A) and fiber-type transition (Fig EV3B–D) in

C2C12 myotubes. Consistently, siRNA-mediated knockdown of

SUNCR1 in C2C12 myotubes (Fig 6H) effectively abolished succi-

nate-induced [Ca2+]i elevation (Fig 6I); myotube fiber conversion

(Fig 6M–O); activity changes in SDH, HK, and LDH (Fig 6J–L); and

lactate production (Fig EV3E). These in vitro data suggest that succi-

nate-induced C2C12 myotube fiber switch is mediated by SUNCR1.

SUNCR1 is required for succinate-induced skeletal muscle fiber
switch in vivo

To determine the role of SUNCR1 in succinate-induced skeletal

muscle fiber switching in vivo, we constructed a congenital

SUNCR1 global knockout mouse model (Fig EV4A–C). We found

that SUNCR1 null mice showed the same body weight gain

(Fig EV4G), food intake (Fig EV4D), and body composition

(Fig EV4E and F) as their wild-type littermates. Additionally, we

found the stimulatory effects of succinate on AKT/mTOR/FOXo3a

pathway were diminished in SUNCR1 KO mice (Fig EV4H and I),

suggesting a SUNCR1-mediated activation on protein synthesis.

Interestingly, SUNCR1 KO also effectively blocked the regulatory

effects of succinate on oxygen consumption (Fig 7A and B), RER

(Fig 7C and D), and exercise capacities, including slow-speed

running time (Fig 7G), four-limb handing time (Fig 7F), and

muscle grip (Fig 7E). Consistently, the activities of SDH, HK, and

LDH (Fig 7H–J); skeletal muscle fiber type (Fig 7K–N); and the

expression of NFAT and PGC-1a (Fig 7K and L) failed to be

changed by succinate in the gastrocnemius of SUNCR1 KO mice.

These data support an essential role of SUNCR1 in succinate-

induced skeletal muscle fiber switching.

Since SUNCR1 is universally expressed in most metabolic tissues,

including adipose tissue, liver, and heart, succinate may indirectly

act on SUNCR1 expressed in other metabolic tissues to regulate

skeletal muscle metabolism and fiber switching. To exclude this

possibility, we further generated and validated a gastrocnemius-

specific SUNCR1 knockdown mouse model by gastrocnemius-

specific injection of SUNCR1 siRNA lentivirus during adulthood

(Fig 8A and B). Consistent with our observation in congenital

SUNCR1 global knockout mice, SUNCR1 selective knockdown in the

gastrocnemius muscle showed no effects on food intake (Fig EV5A),

body weight (Fig EV5B), and body composition (Fig EV5C and D).
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Importantly, SUNCR1 gastrocnemius-specific knockdown consis-

tently attenuated the regulatory effect of succinate on exercise

capacity (Fig 8C–E), muscle fiber type (Fig 8I and J), and related

associated enzyme activity (Fig 8F–H). Together, these data support

an indispensable role of muscle SUNCR1 in succinate-induced skele-

tal muscle fiber remodeling.

Discussion

Skeletal muscle fiber types are distinguished by myosin heavy chain

(MyHC) isoforms [26], metabolic enzyme activity [6], mitochondrial

number [27], and contractile properties [28]. Endurance or aerobic

exercise is well known as an effective way to induce skeletal muscle

remodeling by increasing mechanical and metabolic demand on

skeletal muscle [29–31]. Interestingly, exercise also dramatically

elevates the content of several TCA cycle intermediates, including

succinate [32]. Succinate previously has been shown to regulate

mitochondrial function and reactive oxygen species production in

muscle [33], which is a distinguishing feature of skeletal muscle fiber

types [34]. Based on these observations, we speculate that succinate

is a key mediator for exercise-induced muscle fiber remodeling.

In supporting this point of view, we found that dietary succi-

nate supplementation improved the endurance exercise perfor-

mance and attenuated skeletal muscle fatigability, accompanied

by enhanced aerobic metabolism and upregulated MyHC I/IIa

expression. These data demonstrated for the first time that succi-

nate induces a switch from fast twitch to slow-twitch fibers,

A
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F

Figure 5. Effects of succinate on MyHC expression, mitochondria biosynthesis, and metabolism in C2C12 cells.

C2C12 cells were treated with 0, 0.5, and 2 mM SUC for 48 h.

A, B Representative images and quantification of MyHC I and MyHC IIb immunofluorescent staining (green) in C2C12 cells (n = 16).
C–E The enzymes activity of (C) SDH, (D) LDH, and (E) lactate production in C2C12 cells.
F Quantification of mitochondrial DNA contents in C2C12 cells.
G–J (G) Mitochondrial electron microscopy showed the (H) mitochondrial density, (I) mitochondrial coverage, and (J) average mitochondrial area in C2C12 cell. Scale bar

in (A) represents 50 lm; scale bar in (G) represents 0.5 lm.

Data information: Results are presented as mean � SEM (n = 6–8). Different letters between bars mean P ≤ 0.05 in one-way ANOVA analyses followed by post hoc
Tukey’s tests. *P ≤ 0.05 by non-paired Student’s t-test.
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suggesting a potential mechanism for metabolite-mediated skele-

tal muscle fiber-type transition.

Mitochondria are the main sites of cellular aerobic respiration. In

general, cellular or tissue oxidative metabolism is enhanced by

increasing the number of mitochondria [35]. PGC-1a has been

shown to be a key regulator of mitochondrial biosynthesis and

oxidative metabolic enzyme [36]. Overexpression of PGC-1a
increases mitochondrial content and the oxidase levels of skeletal

muscle, which results in more resistance to fatigue [37]. In this

study, we found that succinate increased the protein expression of

PGC-1a, as well as the mitochondrial content both in vitro and

in vivo. In addition, succinate further enhanced O2 uptake in skeletal

muscle cells. This observation is consistent with a previous study

showing that succinate increases mitochondrial oxygen consump-

tion in ex vivo skeletal muscle obtained from septic animals.

Besides the number of mitochondria, the function of mitochon-

dria was also strengthened by mitochondrial membrane potential

and mitochondrial membrane enlargement [38]. Thus, we further

A B

E

I

M N O

J K L

F G H

C D

Figure 6. SUNCR1 is required for succinate to induce the fiber-type transition in myotubes.

A, B SUNCR1 protein expression in the gastrocnemius from sedentary or post-running mice (n = 4).
C The mRNA level of SUNCR1 in gastrocnemius and soleus (n = 7–8).
D [Ca2+]i in C2C12 cells treated with 0 or 2 mM SUC (n = 18–20).
E–G NFAT protein expression in nucleus and cytoplasm of gastrocnemius 0.5 h or 3 h after i. p. injection of 15 mg/kg succinate in C57BL/6J mice (n = 4).
H SUNCR1 protein expression in C2C12 cells transfected with vector or siSUNCR1 (n = 3).
I–L (I) [Ca2+]i, and enzymes activity (n = 9–10)of (J) HK, (K) LDH, and (L) SDH in vector or siSUNCR1 transfected C2C12 cells treated with 0 or 2 mM SUC (n = 5–6).
M–O Representative images and quantification of MyHC I and MyHC IIb immunofluorescent staining (green) in C2C12 cells (n = 3). Scale bar in (M) represents 50 lm.

Data information: Results are presented as mean � SEM. *P ≤ 0.05 by non-paired Student’s t-test.
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examined the morphology changes in mitochondria by succinate

using an electron microscope. We found that succinate increased

mitochondrial number without changing mitochondrial size.

Although we were unable to examine the function of all signal mito-

chondria, enzyme activities and O2 uptake strongly suggested that

the increase in mitochondrial number is accounted for the enhanced

mitochondrial function in skeletal muscles.

Skeletal muscle fiber-type remodeling involves several key

signaling pathways, including calcium [39] and AMPK [40]. In this

study, we found that succinate boosted [Ca2+]i and increased the

protein expression of calcineurin, MEF2, and NFATc1 in skeletal

muscles. MEF2 and NFATc1 are important transcription factors for

skeletal muscle fiber switching [41]. When translocated from the

cytoplasm to the nucleus, NFAT regulated calcium-dependent target

genes that promoted the formation of slow muscle fibers [42].

Another important muscle remodeling pathway is Ca2+/CaMK,

which increases MEF2, thereby promotes the formation of slow-

twitch fiber types [43,44]. Ca2+ played a dominant role in these two

A B C D

E F G K

H

M N

I J L

Figure 7. SUNCR1 global knockout blocks the effect of succinate on muscle fiber switch in vivo.

Male C57BL/6J or SUNCR1 KO mice were fed with chow diet supplemented with 0 or 1% SUC for 6 weeks.

A–G (A, B) The O2 consumption (VO2), (C, D) RER, (E) muscle grip strength, (F) four-limb handing time, and (G) low-speed running time.
H–J The enzymes activity of (H) HK, (I) LDH, and (J) SDH in gastrocnemius.
K, L Immunoblots and quantification of MyHC I, MyHC IIb, NFAT, and PGC-1a protein in gastrocnemius.
M, N Representative images and quantification of laminin (green), or MyHC I and MyHC IIb (red) immunofluorescent staining in gastrocnemius muscle (n = 3). Scale

bar in (M) represents 100 lm.

Data information: Results are presented as mean � SEM (n = 5–6). *P ≤ 0.05 and **P ≤ 0.01 by non-paired Student’s t-test.
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signaling pathways [45]. Thus, we wondered if Ca2+ mediated

succinate-induced fiber-type switch in muscle.

To test this hypothesis, we blocked [Ca2+]i by inhibiting PLC-b
and found that succinate-induced fiber-type transition was effec-

tively abolished by PLC-b antagonist. These results demonstrated

that succinate-induced muscle fiber transition was closely associated

with calcium signaling pathway and its downstream transcript

factors, MEF2 and NFATc1. On the other hand, we found that succi-

nate decreased p-AMPK/AMPK ratio, suggesting an increased intra-

cellular energy state. The decreased AMPK activity might be

attributed to the enhanced oxidative capacity and ATP production.

This evidence indicated that AMPK signaling pathway might not be

involved in succinate-induced skeletal muscle fiber-type transition.

Besides acting as a metabolite in the TCA cycle, succinate also

exhibits a hormone-like function through the activation of G-

protein-coupled receptor SUNCR1 [46]. SUNCR1 is expressed

throughout the whole body [47,48] and has been reported to couple

with either Gi or Gq protein to trigger different intracellular path-

ways [49]. For example, succinate elevates the levels of hemo-

globin, platelets, and neutrophils [50] and enhances immunity [51]

through SUNCR1-coupled Gi; it also increases intracellular calcium

[52] coupled with Gq to release arachidonic acid along with prosta-

glandins E2 and I2. Here, we showed that succinate increased the

expression of SUNCR1 and its downstream factor PLCb, which were

associated with boosted [Ca2+]i. This finding suggests that succinate

may act on Gq-coupled SUNCR1 in skeletal muscles. In supporting

this view, SUNCR1 global knockout or selective knockdown in

skeletal muscle abolished the regulatory effects of succinate on

muscle fiber transition both in vitro and in vivo. Our data demon-

strated that SUNCR1 is the primary mediating receptor for the effect

of succinate on skeletal muscle fiber-type remodeling.

Consistent with our previous report on the stimulatory effects of

succinate on protein synthesis in skeletal muscle [23], we also

found dietary supplementation of succinate activated Akt/mTOR

cascade and inhibited FoxO3a in WT mice. These regulatory effects

of succinate were diminished in SUNCR1 KO mice, suggesting a

SUNCR1-mediated activation on protein synthesis. In this context, a

seemingly paradoxical finding is that dietary supplementation of

succinate failed to increase muscle mass. How can succinate

increases skeletal muscle protein synthesis without changing muscle

weight? We speculate that this inconsistency may be due to succi-

nate-induced muscle type remodeling from fast- to slow-twitch

fibers. It is known that slow-twitch fibers have lower fiber size and

higher oxidative proteins and capacity for protein synthesis

compared to fast-twitch fibers [53]. Succinate-induced hypertrophy

of skeletal muscle may be neutralized by the discrepancy in fiber

size of slow- and fast twitch or mass of large myofibrillar proteins

and much smaller oxidative proteins. Alternatively, it is also

possible that the protein synthesis is balanced by a high rate of

protein degradation resulting in a higher turnover rate in the high

oxidative fibers.

Regular exercise and chronic hypoxia are natural stimuli that

produce sustainable cardioprotection against ischemia reperfusion

[54]. Consistent with the important role of succinate in muscle

metabolism and fiber remodeling we showed, succinate is elevated

in the blood in response to exercise [32] and accumulated rapidly in

hypoxic/ischemic tissues [33,55,56], suggesting a potential role of

succinate in exercise/hypoxia-mediated cardioprotection. Succinate

may act as a paracrine or endocrine signaling molecules via

SUCNR1 to regulate local cellular metabolism [57], or increase

tissue blood supply through the renin-angiotensin system, thereby

alleviating tissue hypoxia and hypoxia adaptation of metabolism in

the environment [58–60]. Consistently, augmentation of succinate

has been shown to improve cardiac ischemic energetics, a source of

damage at reperfusion [55]. Therefore, succinic acid may not only

play an important role in autocrine regulation of skeletal muscle

metabolism and fiber-type conversion, but also improve the adapt-

ability of cardiovascular and brain tissues to the ischemic environ-

ment.

Our results demonstrated that dietary succinate supplementation

led to remodeling of muscle fiber without changing body weight or

fat distribution, suggesting that the primary function of succinate is

to regulate muscle type transition but not body weight. However,

our study was carried out under normal chow diet (low-fat diet),

which may have concealed a phenotype relevant for human obesity

normally induced by high-energy/fat diet. Indeed, a recent study

has shown that water supplementation of 1.5% but not 1%

succinate stimulates uncoupling protein 1 (UCP1)-dependent

thermogenesis from BAT, which induces robust protection against

HFD-induced obesity [22]. This discrepancy suggests a diet-

dependent anti-obesity effect of succinate, which may be attribute to

different baseline UCP1 activation in chow and HFD condition. It

has been shown that HFD significantly inhibits the expression and

metabolic activity of UCP-1 in BAT [61]. The inconsistency may also

be due to different supplementary method and dose (1.5% in water

vs. 1% diet). The effective dose of succinate to remodel skeletal

muscle fiber type may be lower than that to reduce body weight and

fat mass.

In conclusion, our results demonstrated that succinate induces a

SUNCR1-mediated transformation from fast- to slow-twitch fiber

types in skeletal muscle. This finding indicates the potential applica-

tion of succinate as exercise mimetics for people who are bedridden

or disable to maintain their fitness, and even for athletes to improve

their performance. Additional studies are warranted to identify the

high-affinity ligands of SUNCR1, which may be helpful to maintain

muscle energy homeostasis and alleviate fatigue.

◀ Figure 8. Gastrocnemius-specific SUNCR1 knockdown abolishes the effect of succinate on muscle fiber switch in vivo.

Male C57BL/6J mice were injected with LV-shScrambled or shSUNCR1 lentivirus specifically into the gastrocnemius at 6 weeks of age. After 2 weeks of recovery, mice
were fed with chow diet supplemented with 0 or 1% SUC for 6 weeks.

A Timeline of the experimental protocol.
B SUNCR1 protein expression in gastrocnemius from mice transfected with shSUNCR1 lentivirus or LV-shScrambled (n = 3).
C–E (C) The running time in low speed, (D) four-limb handing time, and (E) muscle grip strength of both control and gastrocnemius-specific SUNCR1 knockdown mice.
F–H The enzymes activity of (F) HK, (G) LDH, and (H) SDH in gastrocnemius.
I, J Immunoblots and quantification of MyHC I, MyHC IIb, NFAT, and PGC-1a protein in gastrocnemius (n = 3).

Data information: Results are presented as mean � SEM (n = 5–8). *P ≤ 0.05 by non-paired Student’s t-test.
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Materials and Methods

Animal experiments

C57BL/6J about 3-week-old mice were purchased from the Medical

Experimental Animal Center of Guangdong Province (Guangzhou,

Guangdong, China). All animals raised and experiments were permit-

ted by the College of Animal Science, South China Agricultural Univer-

sity, and in line with “the instructive notions with respect to caring for

laboratory animals” issued by the Ministry of Science and Technology

of the People’s Republic of China. C57BL/6J mice were housed in an

individual cage under the controlled room temperature (23°C � 3°C)

and relative humidity (70 � 10%) conditions, with a 12-h–12-h light–

dark cycle. C57BL/6J mice were left to acclimate for 1 week, then

randomly divided into three groups (n = 11) based on their body

weight. Three groups of mice were fed with normal standard diets

containing 0, 0.5%, or 1% succinic acid sodium salt, respectively. Body

weight and food intake were measured every Monday in morning.

Low-speed running was tested in the fourth week, fast running was

tested in the fifth week, and four-limb handing test was tested in the

sixth week. After 8 weeks, the mice were sacrificed and whole blood,

serum, gastrocnemius, soleus, fat, and liver tissues were collected.

UPLC–Orbitrap–MS/MS analysis

LC-MS/MS was performed as previously described [62]. In brief,

chromatographic separation was performed on a C18 Hypersil Gold

(100 × 2.1 mm, 1.9 lm, Thermo Scientific) column using acetoni-

trile (eluent A) ultrapure and water-0.1% formic acid solution (elu-

ent B) as mobile phase at a flow rate of 0.2 ml/min. The gradient

program was set as follows: A 0–7 min, 5–50%; 7–8 min, 50–75%;

9–11 min, 80–90%; 11–15 min, 90–95%; and 15–20 min, 95%, with

a total running time of 20 min. The column temperature was 35°C,

and the injection volume was 2 ll. The MS data were acquired

using electrospray ionization (ESI) in the negative and positive

ionization modes, spray voltage, 4 kV (�4 kV in ESI�), 3.5 kV

(+3.5 kV in ESI+); sheath gas (N2, > 95%), 40 bar; auxiliary gas

(N2, > 95%), 10 bar; heater temperature, 300°C; and capillary

temperature, 320°C. MS Scanning mode: Full MS scan ranged from

m/z 100 to 1,500, and the resolution was 35,000; in-source colli-

sion-induced dissociation (in-source CID) was set at 0 eV. MS/MS

scanning mode: Data-dependent ms2 scan (dd-ms2) with the resolu-

tion was 17,500, and high collision-induced dissociation (HCD) was

set as stepped mode (10, 30, 50 eV). The test method is based on

the paper of Xin et al and is slightly modified.

Generation of Sucnr1 knockout mouse model

The SUCNR1 knockout mouse model used in this study was

designed and developed by Shanghai Model Organisms Center, Inc

(Shanghai, China). Briefly, Cas9 mRNA was in vitro-transcribed

with mMESSAGE mMACHINE T7 Ultra Kit (Ambion, TX, USA)

according to the manufacturer’s instructions, linearized using NotI

(NEB, USA), and subsequently purified using the MEGAclearTM Kit

(Thermo Fisher, USA). Four independent sgRNAs designed to delete

exon 2 of Sucnr1 were ①: 50-TGGACCTTCAATACGAGGGC-30, ②:

50-GGCATGGACCTTCAATACGA-30, ③: 50-CGCCCATGATTAAATT
CCAC-30, and ④: 50-GATCCTGTGGAATTTAATCA-30. The sgRNAs

were transcribed in vitro using the MEGAshortscript Kit (Thermo

Fisher, USA). In vitro-transcribed Cas9 mRNA and sgRNAs were

injected into zygotes of C57BL/6J mouse and transferred to pseudo-

pregnant recipients. Obtained F0 mice were screened by PCR and

sequencing using primer pairs: F1 50-GGCTGGCCATGAAGATACA-30;
R1 50-TTGGAATGCCGAGAACTGAG-30. The positive F0 mice were

chosen and crossed with C57BL/6J mice to obtain F1 heterozygous

Sucnr1 knockout mice. The genotype of F1 mice was identified by

PCR and confirmed by sequencing. Male and female F1 heterozy-

gous mice were intercrossed to produce the homozygous Sucnr1

knockout mice.

In vivo oxygen consumption assay

After mice were fed with different concentration of succinate for

6 weeks, O2 consumption (VO2) and respiratory exchange ratio

(RER) were obtained using the promotion metabolism measurement

system (Sable Systems International, USA).

Strength and exercise endurance

Mouse had maximum muscle force measured three times by a grip

strength meter (BIO-GS3, Bioseb/France), and the mean maximum

strength was used for data analysis. The mice performed a tread-

mill-running test on the FT-200 Animal treadmill at an initial veloc-

ity of 10 m/min for 10 min in order to keep mice sober. Then,

velocity was increased by 5 m/min every 2 min until 40 m/min in

high-speed running tests, and 1 m/min every 3 min in low-speed

running tests. The above tests refer to the previous study [63].

Inverted screen, which was a 43 cm2 of wire mesh, consisted of

12 mm2 of 1-mm-diameter wire, made as the previous article [64] to

test mice falling time. Fat mass, lean mass, and body composition

were determined using a nuclear magnetic resonance system (Body

Composition Analyzer MiniQMR23-060H-I, Niumag Corporation,

Shanghai, China).

Ex vivo gastrocnemius muscle force and
fatigability measurements

For ex vivo gastrocnemius fatigability assessments, mice were anes-

thetized, and the gastrocnemius muscles along with their tendons

were surgically removed and then kept in an aerated bath of physio-

logical Krebs solution. Each muscle was mounted vertically in a

double-jacketed bath of aerated (95% O2/5% CO2) physiological

solution (2.5 mM Ca2+ tyrode solution: 140 mM NaCl, 5 mM KCl,

10 mM HEPES, 2.5 mM CaCl2, 2 mM MgCl2, and 10 mM glucose) at

room temperature. Supramaximal electricity with a pulse width of

1 ms was delivered to muscles by a pair of platinum electrodes

placed in parallel. Following equilibration of the muscle, several

baseline twitches were recorded. Muscles were subjected to an

intermittent stimulation protocol in which a stimulus train at 180

times per minute was administered. Intermittent fatigue stimulation

was used to test fatigue resistance for 80 s. The contractile perfor-

mance was assessed by measuring half relaxation time (the time

required for force to decrease 50% from the peak value at the end of

stimulation). The ex vivo contractility experiment was set up using

the BL-420F biological signal acquisition and analysis system

(Chengdu Taimeng software Co., Ltd. China) [65].
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Cell culture

The mouse myoblast cell line C2C12 (ATCC) was cultured in high

glucose DMEM (GIBCO, Grand Island, NY, USA) containing 10%

fetal bovine serum (FBS), 100 U/ml penicillin, and 100 lg/ml strep-

tomycin at 37°C, in a humidified atmosphere containing 5% CO2.

When cells reached 90% confluency, culture media was switched

by DMEM with 2% horse serum to induce myoblasts’ differentiation

to myotubes for 6 days.

Immunofluorescence staining and imaging

For staining of muscle sections, we collected mouse gastrocnemius

muscle samples frozen by liquid nitrogen-cooled isopentane in

Tissue-Tek OCT and then sliced muscles into 10 lm by a cryostat

(CM1850, Leica) for staining. Muscle sections were fixed with

paraformaldehyde (PFA)/PBS (1%, 10 min), quenched with glycine

(50 mM, 10 min), permeabilized with Triton X-100 (0.5%, 10 min),

blocked with Mouse On Mouse (M.O.M.) Blocking Reagent (Vector

Laboratories) and 5% BSA/5% normal goat serum/PBS, and incu-

bated with primary antibodies. Antibodies used included mouse

anti-MyHC I (BA-D5-S 1:100, DSHB), mouse anti-MyHC IIb (BF-F3

1:100, DSHB), and rabbit anti-laminin (PA1-16730 1:1,000, Thermo

Fisher). Sections were washed in PBS/0.1% Tween-20, incubated

with Alexa Fluor-labeled (goat Anti-Mouse IgM/Alexa Fluor 555

antibody, bs-0368G-AF555, Bioss) and FITC-labeled (goat anti-

mouse FITC, bs-50950, Biowarld) secondary antibodies (1:1,000,

1 h). Mounted slides were imaged on a LEICA TCS SP8 (LEICA,

Germany) confocal microscope.

For staining of C2C12 cell, C2C12 cell was punched in 0.4%

Triton for 10 min and then blocked for 1 h in slowly shaking at

room temperature. The sections were then immunostained with

primary antibody at room temperature overnight in a wet box. Goat

anti-rabbit FITC (bs-0295G, Bioss), goat anti-mouse IgM/Alexa Fluor

555 antibody (bs-0368G-AF555, Bioss), goat anti-rabbit Flour 555

(bs-0295G, Bioss), goat anti-mouse FITC (bs-50950, Biowarld),

rabbit anti-goat IgG FITC (bs-0294R, Bioss), and corresponding

second antibodies were supplied for use. A Nikon Eclipse Ti-s

microscope was used to take photos of these sections. Images of flu-

orescent intensity were captured with Nis-Elements BR software

(Nikon Instruments, Tokyo, Japan).

Quantification of muscle cross-sectional area

In cryosectioned muscle preparations, we used immunofluorescence

for laminin staining. All measurements were made by a single person

blinded to the hypothesized outcomes. To determine the relative size

of muscle fibers, we measured muscle fiber cross-sectional area

(CSA) and fiber perimeter in skeletal muscle. Each group measured

the same number of skeletal muscle sections. Muscle fiber cross-

sectional area was determined using MetaMorph software (image

pro plus 6.0, MEDIA CYBERNETICS, United States).

Succinate dehydrogenase staining

Succinate dehydrogenase staining was performed as previously

described [66]. Briefly, muscle sections (10 lM) were incubated in

liquid (6 mM CaCl2, 0.3% glacial acetic acid, pH 4.4) for 10 min,

flushed by Tris-CaCl2 eluent buffer (0.1 M Tris, 18 mM CaCl2) twice,

1 min per flush, and then incubated in 37°C pre-heated SDH eluent

buffer (0.1 M sodium succinate, 0.18 mM tetranitroblue tetrazolium

chloride (NBT), 0.81% N,N-dimethylformamide, 0.23 M Tris, pH

7.4) for 45 min. The sections were washed with distilled water twice

and then incubated in 37°C pre-heated ATPase eluent buffer (3 mM

adenosine 50-triphosphate disodium salt, 0.2 M Tris, 18 mM CaCl2,

50 mM KCl, pH 9.4) for 30 min. Sections were then washed with

distilled water twice, incubated in 2% CoCl2 for 4 min, and washed

carefully with distilled water twice. Sections were then incubated in

2% ammonium sulfide for 30 s, followed by careful washing with

distilled water, twice. After staining with Ehrlich’s hematoxylin,

sections were sent for dehydration in alcohol and fixated by neutral

balsam. Images were captured with an olympus CX41 microscope

(Olympus Corporation, Japan). Four different horizontal regions

were captured in each section, and images were acquired with Meta-

Morph software (image pro plus 6.0, MEDIA CYBERNETICS, United

States) for morphology measurements. The amount of SDH staining

in the four horizontal regions was analyzed.

[Ca2+]i assay

[Ca2+]i was measured by calcium fluorometry following the manu-

facturer’s instructions of fluo-8 AM kit. After induced into

myotubes, C2C12 cells were washed twice with Hank’s Balanced

Salt Solution (HBSS, pH = 7.2–7.4) containing 8 g/l NaCl, 0.4 g/l

KCl, 0.1 g/l MgSO4�7H2O, 0.1 g/l MgCl2�6H2O, 0.06 g/l

Na2HPO4�2H2O, 0.06 g/l KH2PO4, 1 g/l glucose, 0.14 g/l CaCl2, and

0.35 g/l NaHCO3, and incubated with 10 lM fluo-8-AM at 37°C for

1 h. After incubation, cells were then washed twice again. Nikon

Eclipse Ti-s microscopy was used to observe fluorescence which

was initiated by succinate. Fluorometric data were acquired at exci-

tation and emission wavelengths of 490 and intensity at 525 nm

(490/525 nm), for every 2-s interval over a 180-s period.

Measurement of oxygen consumption rate (OCR) in
gastrocnemius tissue homogenate

All measurements were done using a high-resolution respirometer

(Oxygraph-2k, Oroboros Instruments, Innsbruck, Austria). Before

the experiments, the Oxygraph was calibrated to correct for back dif-

fusion of oxygen into the chamber, leak from the exterior, oxygen

consumption by the chemical medium, and by the polarographic

oxygen sensor. O2 flux was resolved by software (Datlab 5, Oroboros

Instruments, Innsbruck, Austria). All respirometry measurements

were done in duplicate in the respiration medium MiR05

(110 mmol/l sucrose, 60 mmol/l potassium lactobionate, 0.5 mmol/

l EGTA, 3 mmol/l MgCl2�6H2O, 20 mmol/l taurine, 10 mmol/l

KH2PO4, 20 mmol/l HEPES, 1 g/l BSA, pH 7.1 at 37°C) at 37°C after

hyperoxygenation (450–200 nmol/ml) to avoid oxygen limitations.

SUNCR1 siRNA transfection

The transfection steps and siRNA sequences of SUNCR1 were

described in our previous study [67]. The siRNA of SUNCR1 was

purchased from GenePharma Co., Ltd (Shanghai, China) and trans-

fected with lipofectamine (Invitrogen, Carlsbad, CA, USA) in accor-

dance with the manufacturer’s instructions.
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SUNCR1 knockdown

The shSUNCR1 lentivirus was generated from Hanbio Biotechnology

Co., Ltd (Shanghai, China). Thirty-two mice were randomly divided

into four groups (n = 8): LV-shScrambled, LV-shScrambled+SUA,

LV-SUNCR1, and LV-shSUNCR1 + SUA. After the interference effi-

ciency was verified, 60 ll (107 titers) lentivirus was intramuscularly

injected in three different sites of the gastrocnemius.

Mitochondrial staining

The mitochondrial staining was performed by using Mito-Tracker

Green (C1048) purchased from Beyotime Biotechnology Institute

(China). Initially, Mito-Tracker Green was formulated with anhy-

drous DMSO (anhydrous dimethyl sulfoxide) to the concentration of

1 mM, while the working concentration is 100 nM diluted with

DMEM, incubating cells for 30 min at 37°C. The cells were then

washed twice with phosphate-buffered saline (PBS). Pictures were

taken and analyzed by Nikon Eclipse Ti-microscope and Nis-

Elements BR software. The work of mitochondrial electron micro-

scopy was done by Fucheng Biotechnology Institute (China).

Mitochondrial electron microscopy

C2C12 cells were gathered from a cell culture dish and preserved in

5% glutaraldehyde, and diluted with phosphate buffer for at least 2 h.

The cells were dissected into 1 mm3 and carefully washed in phos-

phate rinse solution for 15 min (three times). Cells were post-fixed in

1% osmium tetroxide solution for 2–3 h and carefully washed in

phosphate rinse solution for 15 min (three times), then dehydrated

with increasing concentrations of ethanol. Cells were incubated in

acetone and solidified in the oven. Ultrathin sectioning was then sliced

by Ultra Microtome Leica UC6 in 70 nm and collected in grids. 3%

uranyl acetate-lead citrate double-stained the grids. Images were

obtained from a Jeol1230 transmission electron microscope at 120 kV

at ×10,000, ×20,000, and ×50,000 magnification for posterior analysis.

MitoProbeTM TMRM assay

For each sample, the cells were re-suspend in cell culture medium or

PBS at approximately 1 × 106 cells/ml. For the control samples, 1 ll
of 50 mM CCCP was added to the cells and incubated for 5 min at

37°C, 5% CO2. Experimental samples had 1 ll of 20 lM stock TMRM

(M20036, Thermo Scientific) reagent (20 nM final concentration)

added and were incubated for 30 min at 37°C. Cells were washed once

in 1 ml of PBS and then re-suspended in 500 ll of PBS. The cells were

analyzed on a CytoFLEX software (Beckman Coulter, USA) with 561-

nm excitation, using emission filters appropriate for R-phycoerythrin.

Mitochondrial DNA

Total cellular DNA was extracted from C2C12 cells with DNAzol reagent

(Invitrogen, CA, USA) according to the manufacturer’s instructions. Mito-

chondrial DNA copy number was determined by quantification of four

mitochondrial marker genes, including mitochondrially encoded ATP

synthase membrane subunit 6 (ATPase6), cytochrome c oxidase subunit

2 (COX2), Mit-1000, and mitochondrial-encoded cytochrome b (mt-

Cytb). The expression level of ATPase6, COX2, Mit-1000, and mt-Cytb

was tested by quantitative real-time–PCR and normalized to an intron of

the nuclear-encoded b-globin gene as described before [68,69]. The

primer sequences can be found in the Table EV1.

Western blot assay

We use RIPA lysis buffer containing 1 mM PMSF to lyse C2C12 cell

or muscles. For the nuclear or cytoplasmic protein extraction,

proteins were isolated according to the procedure of the nuclear

extraction kit (Solarbio, SN0020). Protein concentration was deter-

mined using a BCA protein assays kit. After sodium dodecyl sulfate

(SDS)–polyacrylamide gel electrophoresis gels, primary antibodies

were used, including rabbit anti-b-tubulin (bs-1482M, 1:5,000,

Bioss), rabbit anti-SUNCR1 (NBP1-00861, 1:1,000, Novus), mouse

anti-MyHC I (ab11083, 1:1,000; Abcam), rabbit anti-MyHC IIa

(ab124937, 1:1,000, Abcam), goat anti-MyHC IIb (sc-168672, 1:500;

Santa Cruz), mouse anti-PGC-1a (ST1202, 1:1,000, Millipore), rabbit

anti-histone (4499S, 1:2,000; CST), mouse anti-NFAT (sc-7294,

1:500; Santa Cruz), rabbit anti-NRF-1 (#12381s, 1:2,000, CST),

rabbit anti-calcineurin (#2614s, 1:2,000; CST), rabbit anti-Myoglobin

(ab77232, 1:1,000, Abcam), and rabbit anti-MEF2A (#97365,

1:2,000; CST). Protein expression levels were determined using

MetaMorph software (ImageJ, National Institutes of Health, USA).

RNA extraction, reverse transcript, and qPCR

We extracted total RNA from C2C12 cell lines using an RNA extrac-

tion kit (Guangzhou Magen Biotechnology Co., Ltd, China). Skeletal

muscles were dissolved in TRIzol reagent (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s instructions. 2 lg of total RNA

was treated with DNase I (Takara Bio Inc., Shiga, Japan) and reverse

transcribed to cDNA by M-MLV Reverse Transcriptase (Promega,

Madison, WI, USA) and random primers 9 (Takara Bio Inc., Shiga,

Japan) according to the manufacturer’s instructions. cDNA synthesis

was performed with the Applied Biosystems QuantStudio 3 Real-

Time PCR System (Thermo Fisher Scientific, USA).

Metabolites and enzyme activities assay

Triglyceride (TG), non-esterified fatty acid (NEFA), lactic acid (LD),

the activity of lactic dehydrogenase (LDH), succinodehydrogenase

(SDH), and hexokinase (HK) were all measured by commercial

assay kits which were purchased from Nanjing Jiancheng Bioengi-

neering Institute (China).

Statistical analysis

All data are presented as means � the standard error of the mean

(SEM). The difference between control and dose-effect groups was

determined by one-way ANOVA tests (GraphPad Prism 6.0).

P < 0.05 was considered statistically significant.

Expanded View for this article is available online.
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