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Abstract

generated from the Elixhauser comorbidities.

defined on non-overlapping data-collection periods.

auto-extracted: 0.70 (0.67, 0.72).
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Background: Feature engineering is a time consuming component of predictive modeling. We propose a versatile
platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema.
The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines

Results: Hospital medical records was transformed to event sequences, to which filters were applied to extract feature
sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction
task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was
through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered
for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts

For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records,
outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings
(5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD—Dbaseline: 0.60 (95%
Cl: 0.57,0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes—baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69);
mental disorders—baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia—baseline: 061 (0.59, 0.63),

Conclusions: The advantages of auto-extracted standard features from complex medical records, in a disease and task
agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons.
Such feature sets have potential to form the foundation of complex automated analytic tasks.

Background

In their latest book that has attracted wide attention [1],
Mayer-Schonberger and Cukier argued that we are transi-
tioning from a hypothesis-driven small-data world—where
data are purposely collected to validate a hypothesis—to a
data-driven big-data world—where more scientific discov-
eries will be driven by the abundance of data collected
for other purposes. The same trend is observed in
healthcare and biomedical research. Although random-
ized control trials with primary data collection will con-
tinue to be the gold standard, hypothesis generation
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and quality improvement based on the routinely col-
lected patient records have demonstrated great poten-
tials [2-4].

Despite increasing awareness of their potential values
in risk modeling, hospital data are still, to a large degree,
under-exploited [5,6]. A major obstacle lies in the diver-
sity and complexity of patient records. Different medical
specialties will collect disease-specific data—for ex-
ample, suicide risk assessments have a different data
format from white-blood-cell counts. Hand picking fea-
tures (independent variables) for each analysis is clearly
not efficient, and it also cannot guarantee that all im-
portant information in the existing data is included.

In recent years, various risk indices or scores have
been developed, competing to become the feature set

© 2014 Tran et al,; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:svetha.venkatesh@deakin.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Tran et al. BMC Bioinformatics (2014) 15:425

for risk modeling [7]. These include comorbidity based
Elixhauser index [8], Charlson index [9] and variants
[10,11], and physiology-driven Tabak score [12]. How-
ever, as these indices were developed with a small num-
ber of target diseases, it is unknown how they can be
generalized to other diseases. In literature, different fea-
tures were still chosen in different studies [13], which
malke it difficult to compare among different models.

As pointed out by Cukier [14], one important advan-
tage of big data is the ability to look into thousands of
factors at the same time, even those seemingly “extrin-
sic” to the problem at hand (e.g., Vioxx, an arthritis pain
reliever, to heart attack before the Kaiser Permanente
study [15]). In other words, reducing a patient’s medical
history into a small number of known “intrinsic” risk
factors may be unnecessary, in some cases even wasting
important information. With emerging machine learning
techniques that can handle a huge number of independ-
ent variables (known as the p > n problem [16]), it suf-
fices to maximally include information related to patient
history in the database. But can such encoding of diverse
patient information be compiled with minimal human
involvement and be updated when new data are
collected?

In this article, we propose a disciplined framework that
converts diverse patient information in an administrative
database into a set of inputs suitable for machine-
learning risk modeling. The core idea is to treat a pa-
tient’s medical history as a bank of signals recorded since
the first patient encounter, with each signal correspond-
ing to a particular clinical event. The signal concept pro-
vides a unifying format on which a set of generic filters
can be applied to extract feature vectors. This is in con-
trast with what commonly understood as feature gener-
ation (e.g., [17]), where 1) data are often short-term
and with a well-defined format (e.g., physiological sig-
nals), and 2) knowledge of specific medical conditions
is often essential (e.g., [18]). In our framework, the defi-
nitions of the signals were specified through an entity
schema for the whole administrative database—this is
the only manual step in the framework. The separation
of the schema construction step avoids repeated man-
ual work for each medical condition, and allows organic
grow of the feature sets and easy incorporation of do-
main knowledge.

To evaluate the feature extraction framework, we consid-
ered the application of readmission prediction. Readmis-
sion is common following hospitalization for common
medical conditions [19,20]. There is a recognized need for
cost-effective, targeted interventions to decrease avoidable
readmissions [21]. A means of identifying patients at
high-risk of readmission would be of great benefit, but
prediction tools described to date have proved to per-
form relatively poorly [13].
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Methods

Ethics statement

Ethics approval was obtained from the Hospital and
Research Ethics Committee at Barwon Health, with whom
Deakin University has reciprocal ethics authorization
(approval number 12/83). Written consent was ob-
tained from the patients for their information to be
stored in the hospital database and used for research.

Temporal feature extraction: framework description
For various pieces of patient information, a simple
dichotomy will affect how they are used in a big-data al-
gorithm. That is, a piece of patient information is either
constant (in the course of illness) or temporally varying.
The former group includes patient’s gender and other
demographical information; the latter group includes
time-stamped events such as hospitalizations, emergency
visits, and abnormal lab tests. Static information can be
easily incorporated into a flat-data format that most statis-
tical models expect. In contrast, temporal information is
more difficult to handle. Time-series models (e.g., [22]) or
smoothing methods (e.g., [23]) work in simple analyses
with a handful of variables, but break when used in a big-
data setting with thousands of both discrete and continu-
ous features.

The temporal feature extraction consists of three steps:
constructing an entity schema, generating event time
series, and applying convolution filters (See Figure 1).

Construction of the entity schema

At the center of the framework we propose is the obser-
vation that most temporal information is stored in an
administrative database as time-stamped database en-
tities. An emergency visit, a hospitalization, or an abnor-
mal blood test all has a time stamp. Therefore, a patient
history can be reconstructed by scanning an administra-
tive database for time-stamped entities, which results in
a set of event sequences, one for each entity type.

For each administrative database, entities of interest
can be identified and grouped into functionally similar
groups, resulting in an entity schema (see Figure 2 for
an illustration). In practice, the schema can be built it-
eratively. One can start with a basic schema derived from
existing meta-data (e.g., an existing medical ontology) and
keep adding more entities when richer features are
needed. For example, the schema can include diagnoses
encoded using International Statistical Classification of
Diseases (ICD [24]), procedures encoded using Australian
Classification of Health Interventions [25], medications
encoded using the Anatomical Therapeutic Chemical
classification [26], comorbidities encoded using the
Elixhauser comorbidity index [8], admissions encoded
using diagnosis-related groups [27]. In defining the
schema, the mapping from data to entities can be
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realized using SQL snippets. As the result of the map-
ping, each instance of an entity will have a number of
attributes, including the source record id (e.g., patient
UR) and the timestamp for the corresponding event.

Because the function of the schema is to define fea-
tures for a prediction task, redundant information is
allowed and should actually be encouraged. The modern
predictive modeling techniques such as random forests
can handle a large number of redundant independent
variables, without running into the collinearity problem
faced by traditional regression models. Because of this
tolerance to redundant entity definitions, the schema
can be jointly constructed and improved by multiple
users—for example both IT staff and clinical nurses with
inputs from medical specialists.

Note that contents in such an entity schema are pri-
marily driven by the database, not by the risk modeling
tasks. Hence the resulted schema can be used for differ-
ent risk models. This data-driven approach is in contrast
with application-driven feature extraction in the small-
data world, where a small number of data columns are
first selected according to their relevance to the particu-
lar analytical task at hand.

Generation of personalized event time series

Once the entity schema is constructed, the database is
scanned to look for entities and associated time stamps
in the medical history of a person, in an automated

fashion. We distinguish two types of temporal entities:
point entities (e.g., first diagnosis, resection of tumors)
and continuing entities which cover a duration (e.g., an
episode of hospital stay). A pair (time, occurrence of en-
tity) is defined as an event of that entity. The time di-
mension is first discretized using a minimum time unit,
thus a continuing entity may correspond to multiple
events through temporal discretization.

Discretization is also driven the need for efficient pro-
cessing. For modeling of readmission risk, for example,
dicretization by days is a convenient option that often
suffices. Then the time dimension becomes a sequence
1,2,..., T, where T is the maximum length of patient his-
tory of interest. Given an entity i, a time series E; is con-
structed such that each value E;(%) counts the number of
occurrences of the entity during the time interval £.

Therefore each entity in the schema corresponds to an
event sequence (See Figure 3). This common representa-
tion of diverse temporal events forms the basis of the
automated feature extraction to be presented in this
article. This is akin to an “image” of clinical events.

Aggregation with multi-resolution one-side filter bank

As different events may affect patient risk at different
paces, a set of filters of different bandwidths are applied
to smooth an event time series. In the engineering dis-
cipline of signal processing, such multi-resolution ana-
lysis is an effective way to extract multiple underlying
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Figure 2 An example subsection of an entity schema. Not all

entities were used by the experiments in this paper.

signal components of varying time scales (also known as
frequencies, see for example [28]). In our framework,
such filters provide a principled way to aggregate events
in time periods of interest, and at the same time, unco-
vering the smooth progression of diseases from multiple
discrete event sequences. Different from the traditional
filter design, our filters are one-sided, i.e., only historical
events are considered.

A one-sided filter bank is a set of convolution kernels
{k; 1<i<N} with different bandwidths o;. They are

functions of (near) zeros everywhere except for a small
interval defined by o; after the origin. For a time series
of event counts, kernels are used to achieve aggregation
and denoising. The simplest kernel is the uniform func-
tion (also known as rectangular windows):

1

—, 0<t<o;
I(l‘(t) = 0; 7

0, otherwise.

Alternatively, a one-sided Gaussian kernel can be used
to highlight the effect of recent events:

£
2 202
1<l(t) = ﬁe i, > 0
0, otherwise.

For each evaluation point ¢, a set of features are ex-
tracted, one feature for each kernel:

t-1

Xi(t) = ZKi(h—hi)’ Ei(t-h),

h=0

where 1 <i<N and /; >0 denotes delay. The delay oper-
ator is equivalent to shifting the kernel backward. The
effect is that only the history before the point ¢ - /; is
accounted for. By varying /;, the temporal progression of
entities (e.g., diseases) is captured.

In the end, a total of M x N temporal features are ex-
tracted per evaluation point, where M denotes the num-
ber of event time series and N denotes the size of the
filter bank. In this study, uniform kernel was used as it
gives intuitive interpretation of time interval in which a
particular event occurs. The pairs (bandwidth ¢;, delay 4,),
in months, were: (1, 0), (3, 0), (6, 0), (12, 0), (12, 12),
(12, 24). That is, a filter bank of N =6 elements and the
history of 36 months before each evaluation point were
considered.
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The number of event sequences M was controlled by
using two heuristics. First, rare events of the same type
were not considered separately but were grouped into an
extra event. In our setting, an event was considered rare
if it occurred less than 50 times in the database. Second,
a maximum dictionary size was imposed for each event
type, that is, only the top 2,000 most popular events of
each type were considered. The rest was treated was rare
events.

Features extracted through this method are termed
auto-extracted features, reflecting that all feature-
extraction steps after the initial schema creation are
automated.

Overall system

The overall system is shown in Figure 1. For each patient,
datasets from different sources are input. The entity-to-
event mapping followed by convolution with a filter bank
produces a rich set of features that can be input to a
machine learning system for diverse tasks - predicting
readmissions, understanding factors, cohort clustering
or visualization.

Comparison with Elixhauser-comorbidities-based features:
framework evaluation

In the evaluation, a feature set was extracted from admin-
istrative data for a mega cohort consisting of four patient
sub-cohorts: COPD (Chronic Obstructive Pulmonary
Disease), Diabetes, Mental Disorder, and Pneumonia.
The four cohorts were chosen due to their perceived
burden in hospital readmission. For each sub-cohort,
the feature set was applied to model the risk of readmis-
sion. For comparison, purposely-designed features (risk
factors) for each cohort were also applied in parallel.
For the feature extraction framework to have practical
values, the automatically extracted features need to
demonstrate at least the same level of discriminative
power with those handcrafted.

Data were extracted from electronic records of in-
patient admissions and emergency department (ED) visits
at Barwon Health, a regional health service in Australia.
As the only tertiary hospital in Greater Geelong, a catch-
ment area with more than 350,000 residents, the hospital’s
patient database provides a single point of access for
information on patient hospitalizations, ED visits, and
in-hospital medications. In hospital medications were
aggregated in several levels, using the Anatomical
Therapeutic Chemical (ATC) hierarchy [26]. The four
patient sub-cohorts are defined as follows:

1. Diabetes (ICD-10 code block: E10-E14)

2. COPD (ICD-10 code block: J44)

3. Mental Disorders (ICD-10 code block F00-F99)
4. Pneumonia (ICD-10 code block J12-J18)
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The risk-modeling task is the prediction of unplanned
readmissions after an assessment point (AP) within vari-
ous prediction horizons (see Figure 3). Here unplanned
readmission was defined to be readmissions following an
emergency visit. (It is challenging to ascertain the exact
nature of a patient admission using hospital data. Our
definition is mostly driven by pragmatism, but we feel
that it serves the purpose of evaluating our feature con-
struction framework.) The AP can be the discharge date
for a particular admission or a pre-defined date. Only
APs after the first diagnosis of the given disease were
considered. Thus, each AP defines a unit of analysis:
data prior to the AP were used to derive the feature sets
(independent variables); readmissions following the AP
define the dependent variable.

APs from each cohort were split into a derivation set
and a validation set. To achieve the best estimate of per-
formance generalization, the derivation and the valid-
ation sets were separated both in patients and in time.
First, the patient’s events were divided by the validation
point. Patients whose APs occurred before the validation
point formed the derivation cohort. Their subsequent
APs after the validation point were not considered. The
other patients formed the validation cohort.

The Elixhauser comorbidities [8] were used as a base-
line feature set. These 30 comorbidities were chosen for
their relevance in multiple patient groups and can be
mapped from ICD-10 codes using the algorithm in [29].
A recent meta-analysis [7] shows that the Elixhauser
comorbidities have higher discriminative power com-
pared with competing comorbidities. With that said,
the Elixhauser comorbidities depend solely on ICD
codes; other information in administrative data, such as
medications, is not captured. In mapping ICD codes to
the Elixhauser comorbidities, the codes from all hospi-
talizations within a period before the APs are consid-
ered. This compensates for the likelihood of miscoding
certain conditions in administrative data. Two periods
prior to the prediction points were considered: 1 month
and 3 years; they correspond to two baseline feature
sets in Table 1.

From the database, following the entity-event map-
ping, two feature sets were constructed: Set MR (for
Medical Records) and Set MR + Comorbidities. Set MR

Table 1 Feature sets, baseline and auto-extracted
Data Used

Elixhauser comorbidities + demography,
present over 1 month history

Feature set
Baseline (1 M)

Baseline (3Y) Elixhauser comorbidities + demography,

present over 36 months history
Auto-extracted Set MR MR+ demography, over 36 months history

Auto-extracted Set MR+
Comorbidities

MR + demography + Elixhauser comorbidities,
36 months history




Tran et al. BMC Bioinformatics (2014) 15:425

was derived from all available historical clinical data in-
cluding GPs, insurances, admissions, emergency visits,
ICD, DRG, procedure, medication, surgery codes and
higher level categories for them (see Figure 2 for more
comprehensive list). The second set (MR + Comorbidi-
ties) was the Set MR augmented with the Elixhauser co-
morbidities. Both feature sets were complemented with
basic socio-demographic features, such as age, gender,
and postcodes (see Figure 1 for the construction of the
combined features from different sources).

To compare the amount of information captured in
the Elixhauser comorbidities and the automatically ex-
tracted feature sets, a common prediction method was
used on all feature sets. The method consists of logistic
regression with elastic net regularization [30], which is a
widely accepted method for handling thousands of vari-
ables and producing robust prediction. Features were
normalized to the unit interval [0,1], and then trans-
formed using square root. The primary performance
measure was AUC (Area Under the ROC Curve, also
equivalent to the c-statistic) and its Mann-Whitney’s
95% confidence intervals.

Four features sets, 2 baseline and 2 auto-extracted feature
sets, are summarized in Table 1.

Results

8,445 features were automatically extracted from the
dataset. The feature extraction step took less than five
minutes on a standard desktop PC with 4 cores and
8 GB of memory (The database was a SQL Server 2005
instance and the algorithm was implemented in Perl).
Results reported in the main text are for the assessment
points at the discharges following the first diagnosis of
the diseases under study (Diabetes, COPD, Mental
Disorders and Pneumonia). Results for assessments
points at pre-defined times, as well as the discovered
features, are presented in the Additional file 1.

The numbers of analysis units for different cohorts
were summarized in Table 2. Basic characteristics of the
cohorts are summarized in Table 3.

Table 4 shows results using the four feature sets on re-
admission in four diverse cohorts. Readmission horizons
of 1, 2, 3, 6, and 12 months are considered.

On all cohorts, the automatically extracted features
resulted in better prediction accuracy, measured in AUC,
indicating better capturing of the information in discharge
diagnoses.

Discussion

Our results confirm that auto-extracted disease-agnostic

features from hospital medical data can achieve better dis-

criminative power than carefully crafted comorbidity lists.
By generating features from administrative databases,

many data mining and machine learning algorithms that
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Table 2 Definition of derivation and validation cohorts
and the distribution of analysis units in the cohorts
(evaluated at discharges following the first diagnosis)

Derivation cohort Validation cohort

Diabetes

Period 2003-2007 2008-2011
Number of patients 4930 2,101
Number of analysis units 11,897 4,041
COPD

Period 2003-2008 2009-2011
Number of patients 1816 1,816
Number of analysis units 5,746 5270
Mental disorders

Period 2003-2009 2010-2011
Number of patients 3,089 1,248
Number of analysis units 10,728 2,232
Pneumonia

Period 2003-2008 2009-2011
Number of patients 3,258 2,264
Number of analysis units 7,817 4,020

expect flat-table features can now be applied for a broad
range of risk modeling tasks—from readmission predic-
tion to cancer survival prognosis. As data preparation
often accounts for 60%-90% of time in data analysis [31],
our framework has potential in greatly reducing analytics
cost in health care.

Table 3 Characteristics in patient cohorts

Medical Condition Derivation Validation
cohort cohort
Diabetes
Average Age 67.6 66.1
Gender Distribution (% of females) 453 43.1
Median time to readmission (months) 57 84
COPD
Average Age 749 720
Gender Distribution (% of females) 418 424
Median time to readmission (months) 4.1 48
Mental disorders
Average Age 489 499
Gender Distribution (% of females) 50.8 486
Median time to readmission (months) 49 64
Pneumonia
Average Age 67.0 63.9
Gender Distribution (% of females) 448 46.2
Median time to readmission (months) 56 89
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Table 4 Performance (AUC) of predicting unplanned readmissions following the unplanned discharges

BASELINE (95% ClI)

Period ™ 3Y MR (95% Cl) MR + Comorbidities (95% Cl)
COPD
™™ 0.57 (0.55,0.60) 0.60 (0.57,0.63) 0.730 (0.695,0.766) 0.730 (0.695,0.766)
2M 059 (0.56,061) 060 (057,062) 9 (0.689,0.750) 0.719 (0.689,0.750)
3M 0.58 (0.56,061) 0.60 (0.58,0.63) 9 (0.692,0.746) 0.720 (0.693,0.746)
6 M 0.59 (0.57,061) 061 (0.59,0.64) 0.724 (0.703,0.746) 0.724 (0.702,0.745)
12M 0.60 (0.57,062) 062 (0.59,0.64) 0.720 (0.701,0.739) 0.720 (0.701,0.739)
Diabetes
™™ 0.60 (0.57,0.62) 0.60 (0.58,0.63) 0.708 (0.674,0.741) 0.704 (0.670,0.738)
2M 1(0.59,0.63) 063 (0.61,0.65) 8 (0.692,0.744) 0.718 (0.692,0.743)
3M 060 (0.58,0.622) 063 (0.61,0.65) 0.724 (0.703,0.745) 0.724 (0.703,0.745)
6 M 0.62 (0.60,0633) 0.64 (0.62,0.66) 4(0.697,0.731) 0.715 (0.698,0.732)
12M 0.64 (0.62,0.653) 0.66 (0.64,0.68) 8 (0.705,0.732) 0.718 (0.704,0.732)
Mental disorders
™™ 0.56 (0.53,0.59) 0.57 (0.54,060) 0.748 (0.709,0.787) 0.747 (0.708,0.786)
2M 0.58 (0.55,0.61) 0.60 (0.57,062) 0.756 (0.727,0.784) 0.756 (0.728,0.785)
3M 0.59 (0.57,062) 0.60 (0.58,0.63) 0.738 (0.713,0.764) 0.737 (0.711,0.762)
6 M 1(0.59,0.64) 0.63 (0.61,065) 0.718 (0.697,0.740) 0.718 (0.696,0.739)
12M 0.65 (0.63,067) 0.66 (0.64,0.68) 0.713 (0.694,0.732) 0.713 (0.694,0.732)
Pneumonia
™™ 0.58 (0.55,0.60) 0.61 (0.59,063) 0.749 (0.717,0.782) 0.750 (0.718,0.782)
2M 1(0.59,0.63) 0.66 (0.64,0.68) 0.753 (0.729,0.777) 0.756 (0.733,0.780)
3M 062 (0.60,0.64) 067 (0.65,0.68) 0.760 (0.739,0.780) 0.762 (0.742,0.782)
6 M 0.64 (0.62,0.66) 0.68 (0.67,0.70) 0.748 (0.731,0.764) 0.749 (0.733,0.765)
12M 0.65 (0.63,067) 0.70 (0.68,0.71) 0.744 (0.731,0.758) 0.747 (0.733,0.761)

AUC stands for Area Under ROC Curve; Feature sets are Elixhauser comorbidities as baselines, automatically extracted features from medical records (MR), and the

combination of MR and comorbidities.

The number of features generated is constrained by
the size of the entity schema. As the entity schema has a
tree structure, the number of entities in the schema is at
most twice the number of the most granular entities.
With a specific application, these features generated
from the generic entities can be further processed if do-
main knowledge exists for guiding “pattern” generation.
For example, knowledge about clinical domains was ap-
plied to drive temporal feature extraction [18]. (However
such domain knowledge is not always readily available
for a hypothesis-generating data-mining task.)

A slightly surprising result was that adding Elixhauser
comorbidities into the auto-extracted feature set did
not increased predictive power. This may be due to that
the Elixhauser comorbidities were themselves mapped
from ICD-10 codes, and hence contained no additional
information.

The feature extraction step precedes the analysis task
and is disease agnostic. Therefore the auto-extracted

features make it easier to model risk across different
medical conditions—analyses with pooled data have be-
come more common [32-34]. This advantage is demon-
strated by our results on the aggregated mental disorder
cohort. This disease-agnostic property is particularly
valuable for diseases that are not yet sufficiently studied.

It is difficult to validate the best readmission predic-
tion performance reported in the literature. In the previ-
ously mentioned systematic review of 26 models [13],
only two models from [35] had achieved an AUC (c sta-
tistics) higher than 0.72, but on predicting “complicated
care transitions” as defined by the authors, which are
different from readmissions. In addition, we divided the
derivation cohort and the validation cohort by time, in
contrast to random partition in most previous studies.
Although models can be updated weekly or even more
frequently, the update cannot capture future trends of
the readmission rates, especially when we are predicting
readmission in a longer term—for example—the next
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3 years. The uncertainty of future readmission rates, we
believe, should be accounted for by using a temporally
non-overlapping validation set. This choice may lead to
lower reported prediction accuracy, but it helps avoid
unwarranted confidence towards our prediction model.
Actually in Australia, the time-to-readmission has been
steadily increasing (and consequently the readmission
rate has been decreasing) over the years due to service
improvements (see Table 3), the prediction task we set
for ourselves is more realistic, but also more challenging.
In this sense, our automatically extracted features have
predictive power better than the best feature sets crafted
to predict readmission.

In many fields, significant resources has been invested
to develop standardized feature sets, as people believed
that a small number of features form a necessary bridge
between raw data and knowledge. In image processing,
such standardized feature sets, called low level features
(e.g., SIFT [36]), are critical in the complex task of image
understanding and provide a task independent way to
deal with the diversity, complexity and volume of data.
In the big data world, limiting the number of features is
no longer possible and no longer necessary, thanks to
the emerging machine learning algorithms for extremely
high dimension data. We believe that our automated fea-
ture sets are the equivalent of low level features in ad-
ministrative data, but the size of the feature set can grow
with the data. They provide a principled way to extract
features in a disease and task invariant way, laying a cru-
cial foundation for more complex tasks.

The clinical implications of our framework lie in the
renewed possibility of highly accurate prediction of indi-
vidual risk, through exploiting all possible raw data avail-
able for a particular patient, especially when he or she
has uncommon medical conditions. We have applied the
techniques reported here in predicting suicidal behav-
iors, and the initial results were very encouraging. We
are also in the process of applying auto-extracted features
to help a health service tailor risk profiles of Diabetes/
COPD patients, potentially resulting in better utilization
of costly medical resources.

One contribution of our framework in the big-data
context is the notion of entity schema for time-stamped
data. This enables parallel scanning of a database for
temporal events. Defining each event is a key-value pair
of a time stamp and an entity allows a MapReduce
scheme to be applied for scalability.

For the simplicity of evaluation, only readmission mod-
eling was considered. Another common risk modeling
task is for mortality prediction. As mortality information
is not routinely collected in administrative databases,
evaluation is more difficult. However, with a broadly de-
fined entity schema, the same feature set for readmission
prediction can also be applied to mortality prediction.
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Risk estimation remains central to medical care. A
paradigm shift, to consider thousands of factors is now
open through electronic medical records. We proposed
a framework for automated feature extraction, in a task
and disease independent manner.

Conclusions

We proposed a framework that generates features for
machine-learning risk modeling from administrative data-
bases. The framework does not rely on a pre-existing data
warehouse. It allows organic growth of the feature sets and
easy incorporation of domain knowledge. The process is
efficient and task-agnostic. The auto-extracted disease-
agnostic features from the hospital databases achieve better
discriminative power than carefully crafted comorbidity
lists.

Additional file

Additional file 1: Additional results: Prediction performance and
top features.
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