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Abstract: Transmission electron microscopy in situ straining experiments of Al single crystals with
different initial lattice defect densities have been performed. The as-focused ion beam (FIB)-processed
pillar sample contained a high density of prismatic dislocation loops with the <111> Burgers vector,
while the post-annealed specimen had an almost defect-free microstructure. In both specimens,
plastic deformation occurred with repetitive stress drops (∆σ). The stress drops were accompanied
by certain dislocation motions, suggesting the dislocation avalanche phenomenon. ∆σ for the as-FIB
Al pillar sample was smaller than that for the post-annealed Al sample. This can be considered
to be because of the interaction of gliding dislocations with immobile prismatic dislocation loops
introduced by the FIB. The reloading process after stress reduction was dominated by elastic behavior
because the slope of the load–displacement curve for reloading was close to the Young’s modulus of
Al. Microplasticity was observed during the load-recovery process, suggesting that microyielding
and a dislocation avalanche repeatedly occurred, leading to intermittent plasticity as an elementary
step of macroplastic deformation.

Keywords: transmission electron microscopy (TEM); in situ straining; indentation; dislocation;
plastic deformation

1. Introduction

In situ observation by transmission electron microscopy (TEM) is a powerful technique
to understand the dynamics of various reactions in materials under an external action, such
as applied stress or high temperature [1,2]. By TEM in situ straining, many researchers
have directly clarified the microstructural change during not only plastic deformation
based on individual dislocation motion [3–16], but also the fracture behavior based on
crack propagation [17–20]. TEM in situ straining has mainly been performed as a type of
microscale tensile test using a conventional tensile holder [4] or by compression using a
developed indentation holder [5]. In the 1960s, Fujita [6] succeeded in observing dislocation
motion using a high-voltage electron microscope equipped with a tensile holder. Saka and
Imura [7,8] further developed a tensile testing system for the transmission electron micro-
scope and a TEM specimen preparation technique for tensile straining. Thereafter, TEM
in situ straining became popular for clarification of the dislocation dynamics in various
materials with face-centered cubic (fcc) [6,9–11], body-centered cubic (bcc) [12–14], and
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hexagonal close-packed structures [15,16] during plastic deformation at various tempera-
tures. For brittle fracture, Ikuhara et al. [17] developed a TEM indentation holder working
at elevated temperatures and reported the crack propagation by intra- and intergranular
fracture in polycrystalline alumina at 1073 K. This indentation technique has been applied
to several ceramic materials with brittle nature, such as magnesium oxide, silicon nitride,
and sapphire (α-Al2O3) [18–21]. To clearly visualize the dislocations introduced during
TEM in situ indentation experiments, Kondo et al. [22,23] recently used a double-tilt inden-
tation holder and characterized an individual dislocation in a SrTiO3 single crystal and
well-oriented SrTiO3 bicrystals with Σ5 and small-angle grain boundaries. They succeeded
in observing individual dislocations and identified the activated slip system. They also
found that SrTiO3 can be plastically deformed even at room temperature [22] and that the
dislocation interaction with the grain boundary strongly depends on the grain boundary
character [23].

Moreover, the development of the focused ion beam (FIB) system made it possible to
prepare a TEM specimen containing a concerned local area, such as a grain boundary, with
well-controlled shape and size for measuring the mechanical properties during in situ TEM
experiments as well as the microstructural change. Warren et al. [5] applied the nanoin-
dentation technique to FIB-processed specimens, and they accurately and simultaneously
measured the stress by microstructural characterization. Minor et al. [24] observed the
dislocation nucleation in a polycrystalline Al film by the TEM in situ indentation technique.
They also found that the onset of dislocation motion occurred even before the increase in
the applied force for the pop-in yielding phenomenon under theoretical shear stress [25].
Oh et al. [10] performed TEM in situ straining of an Al single crystal and investigated the
strain-rate dependence of the deformation–microstructure relation. In their study, they
observed the dislocation microstructure during the in situ tensile test and found that the
dislocation density remained statistically constant during deformation at a strain rate of
about 10−4 s−1. However, a sudden increase in the strain rate to 10−3 s−1 resulted in a
considerable increase in the dislocation density, which indicates that deformation of a spec-
imen with sub-micrometer size is strain-rate sensitive. In addition to dislocation nucleation
at the incipient plasticity, Shan et al. [26] also performed TEM in situ compression of a
Ni single-crystal pillar containing FIB-damage layers, and they observed the dislocation-
free pillar after compression by TEM. They presumed that the dense dislocations were
annihilated owing to the balance of the applied stress and image forces from the surface,
which they called “mechanical annealing”. Zhang et al. [27] applied the TEM in situ in-
dentation technique to a bcc Fe–3 mass% Si alloy single crystal. They found that the flow
stress level depended on the character of the mobile dislocations; that is, the lower-stress
stage was dominated by edge dislocations, and the higher-stress stage was governed by
screw dislocations. They also investigated the correlation between the flow stress and
the dislocation density during indentation and discussed the strain-softening based on
the Johnston–Gilman model [28]. Very recently, Qu et al. succeeded in the development
of an algorithm to automate the extraction of the pillar dimension and resulting in the
calculation of the true stress-true strain (S–S) curve and strain hardening exponents [29].
As mentioned above, TEM in situ straining has provided new insights into not only the
microstructural changes, such as individual dislocation motion, but also the quantitative
mechanical properties. FIB sample preparation is a powerful tool for novel characterization.
However, many lattice defects are unavoidably introduced during Ga+-ion irradiation [30],
and they often cause difficulties in dislocation characterization. Moreover, they also cause
extra strengthening during deformation. Kiener et al. [31] investigated the nanomechanics
of Cu by an in situ tensile test in a transmission electron microscope. They used Cu speci-
mens annealed in the transmission electron microscope after the FIB process and compared
the deformation behavior with the as-FIB-processed sample. They found that the annealed
specimens were always stronger than the as-FIB-processed specimens. Lee et al. [32] inves-
tigated annihilation of FIB-induced dislocations under in situ heating in a transmission
electron microscope. They then investigated the deformation behavior and dislocation
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dynamics by scanning electron microscopy (SEM) in situ indentation and TEM in situ
straining, respectively. However, to the authors’ knowledge, scarce information is available
about the mechanical response associated with microstructural evolution.

The main aim of this study is to investigate directly the microstructural evolution
with the synchronized mechanical response through TEM in situ straining. The interaction
between the dislocations and the internal defects with different initial density is discussed
to understand the local mechanical behavior in sub-micrometer Al pillar samples. We also
evaluate the quantitative relation between the dislocation motion and mechanical behavior.

2. Experimental Procedures

The material used in this study, which was supplied from Nippon Light Metal Co.,
(Shizuoka, Japan) was commercially available 99.99 mass% Al ingot. A plate with dimen-
sions of 15 mm × 15 mm × 5 mm cut from the Al ingot was cold-rolled and annealed at
673 K for 12.6 ks in air to obtain a recrystallized microstructure and then furnace-cooled to
room temperature. The average grain size was approximately 500 µm, and it was enough
to prepare the single crystal sample for TEM in situ straining.

The plates were mechanically ground and electrochemically polished to mirror sur-
faces. The microstructure and crystal orientation were characterized by SEM with a
field-emission-type gun (Hitachi SU5000, Hitachi High-Tech Co., Hitachi, Japan) equipped
with an electron backscattered diffraction system (EBSD) using TSL’s orientation imaging
microscopy (OIM) software (OIM 7.3b, TSL solutions, Sagamihara, Japan).

The specimens for TEM in situ straining were picked up from a selected orientation
region in the plate and fabricated into the pillar shape by a FIB–scanning electron micro-
scope system (NB5000, HITACHI High-Tech Co., Hitachi, Japan). The size of the pillars
was approximately 500 nm in width, 700 nm in length, and 300 nm in thickness. Although
the specimens were relatively thick for conventional TEM observations, the thickness was
kept at a few hundred nanometers to prevent buckling during compression straining.

The pillar-shaped specimens were categorized into two conditions. One was the
post-annealed specimen after FIB processing. The other one was as-FIB processing (as-FIB).
Post-annealed specimens were heated up to 523 K at a heating rate of 10 K/min and kept
for 3 × 102 s to reduce the FIB-induced defects to get the post-annealed sample. The
abovementioned annealing was performed with a TEM in situ heating specimen holder
in a vacuum atmosphere (JEM-2100 Plus. JEOL Co., Tokyo, Japan). The microstructural
changes during heating were recorded step by step because the TEM system used for the
in situ heating experiments was not equipped with a video capturing system.

TEM in situ straining was performed using a TEM indentation holder (Hysitron Pi-
coindenter PI 95, Bruker Co., Minneapolis, MN, USA) and a JEOL JEM-2800 transmission
electron microscope (Tokyo, Japan) operating at an acceleration voltage of 200 kV. The
specimens were deformed by a flat-end-type tip with a diameter of 2.5 µm at a constant
displacement rate of 1 nm/s in displacement-control mode at room temperature. Mi-
crostructure evolution during straining was recorded with a charge-coupled device camera
(Orius SC200D, Gatan Co., Pleasanton, CA, USA) at a frame rate of 30 fps.

3. Results and Discussion
3.1. Annihilation of the FIB-Induced Defects during In Situ Heating

Bright-field images of the as-FIB Al pillar are shown in Figure 1a–c, and a selected
electron diffraction pattern of the Al pillar is shown in Figure 1d. From the diffraction
pattern, the incident electron beam was determined to be parallel to [001]. The images in
Figure 1a–c were taken under the near-two-beam condition by excitation of the vectors
→
g = 200, 020, and 220, respectively. The dark contrast along the right-hand side of all
of the bright-field images corresponds to the side edge of the TEM pillar, because the
specimens used in this experiment were thicker than those used for usual TEM observations.
Many dot-like contrasts of dislocation loops are observed in Figure 1a–c, which were

presumably induced by the FIB process. The Burgers vector (
→
b ) of the dislocation loops
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can be determined by the invisible criteria of
→
g ·
→
b = 0 under several two-beam conditions.

Two types of Burgers vectors of the dislocation loops can be assumed in the specimen.

The first is
→
b = 1/2<110>, which is the most typical Burgers vector in fcc metals with

the lowest self-energy introduced by plastic deformation. The second is
→
b = 1/3<111>,

which is frequently observed in fcc metals with a prismatic loop configuration introduced
by ion irradiation [33]. By comparing the images in Figure 1a–c, it was found that some
loop-shaped dislocation contrasts in the region indicated by the dashed ellipse are not
visible in Figure 1c under the

→
g = 220 condition, confirming that the Burgers vector of the

dislocations is
→
b = 1/3<111> of a prismatic dislocation loop. The other type of Burgers

vector
→
b = 1/2<110> is also observed as short line contrast being almost parallel to the

longitudinal direction of the pillar indicated by the white arrowheads in Figure 1a,b, and it
also disappeared under the invisible condition of

→
g = 220 in Figure 1c. However, most of

the defects in the specimen were determined to be <111>-type dislocation loops by several
two-beam conditions.

Figure 1. (a–c) Bright field images showing the defects induced by the focused ion beam (FIB) process
in the as-FIB Al pillar. The images were taken under a near-two-beam condition with the diffraction
vector

→
g , (a)

→
g = 200, (b)

→
g = 020, and (c)

→
g = 220. (d) Selected-area electron diffraction pattern of

the Al pillar shown in (a–c). The incident electron beam was parallel to [001]. Dashed ellipse and

white arrows represent positions existing dislocation loop with
→
b = 1/3 〈111〉 and dislocation with

→
b = 1/2 〈110〉.
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To investigate the effect of the dislocation density on the mechanical response during
TEM in situ deformation, a TEM specimen was annealed by the TEM in situ heating
technique to reduce the dislocation density. Snapshots of the dislocation structure that
disappeared during heating are shown in Figure 2a–c. The relatively small dislocation
loops indicated by the single arrowhead in Figure 2a started to shrink above 353 K and
then disappeared during heating to 458 K (Figure 2b). Conversely, the relatively large
dislocation loops indicated by the double arrowheads in Figure 2a remained at 458 K
(Figure 2b), but they disappeared with further heating to 573 K (Figure 2c). It is presumed
that the relatively small loops had larger line tension with a smaller curvature radius than
the relatively large loops, resulting in shrinking. Conversely, the relatively large loops
seemed to be enlarged owing to the migration mediated by vacancies during annealing
and then escaped from the surface. In addition, by TEM–energy-dispersive spectroscopy
analysis, it was experimentally confirmed that the Ga+ ions introduced by FIB fabrication
almost completely escaped from the specimen during in situ heating [32]. We used the
annealed specimen as the specimen with low dislocation density in the subsequent TEM in
situ straining experiments.

Figure 2. Series of snapshots showing the microstructural changes during the annihilation of the defects induced by FIB in
Al in the TEM in situ heating experiment. (a) 303K, (b) 458 K, and (c) 573 K.

3.2. TEM In Situ Straining of the as-FIB Sample with Relatively High Defect Density

The S-S curve of the as-FIB single-crystal Al pillar sample obtained by TEM in situ
straining is shown in Figure 3. The compression axis was determined to be parallel to[
1 5 12

]
by OIM analysis, as indicated by the standard triangle in the bottom right of

the figure. Three specimens with the same orientation were tested, and no remarkable
differences were observed for the specimens, indicating the repeatability of the mechanical
behavior. In the S-S curve (Figure 3), there are many fluctuations in the load, and no clear
yield point is observed. To estimate the yield stress, dashed linear lines were drawn along
the S-S curves, and the curve was separated into the two regions of below (stage I) and
above (stage II) about 0.07 strain (Figure 3), which appear to be analogous to elastic and
elastoplastic deformation, respectively. The gradual slope is seen before stage I, which is
due to a partial contact between the punch and sample with an unavoidable faultiness of the
contact surface on the specimen and indenter. Therefore, the mechanical behavior before
stage I was excluded to avoid uncertainties by the partial contact issue. Although stage I
corresponds to the macroscopically elastic region, the S-S curve shows some fluctuations,
but they appear to be less frequent and smaller in magnitude compared with stage II.
Conversely, the S-S curve in stage II shows very frequent larger fluctuations. Because
the stress fluctuation would result in a strain burst, the local peaks in the S-S curve can
be presumed to be the initiation stress of the plastic strain burst. Therefore, in stage II,
the dashed linear line determined by the least square method to the several peaks on the
S-S curve is regarded as the flow stress. Accordingly, the pseudo-yield stress σy can be
defined as the intersection point between the two dashed linear lines (indicated by the
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arrow in Figure 3). Additionally, the flow stress at the strain of 0.1 (σ0.1) on the line can
also be obtained. These stresses (σy and σ0.1) were used for quantitative discussion of the
deformation behavior in the following section. The average values of σy and σ0.1 for the
three tests with the same conditions were 421 and 454 MPa, respectively. Kunz et al. [34]
investigated the mechanical behavior of a single-grained Al pillar by SEM indentation. They
determined the relationship between the flow stress and the diameter of the cylindrical
pillar through indentation. Although the sample shape with thin-plate pillars in this study
was different from that in the previous study, the flow stresses were consistent for the
same cross-sectional size. Based on these results, it the same tendency of the size effect
was presumed even in the submicrometer-sized sample. However, since the size effect
on the mechanical properties is out of the scope in our report, this shall be discussed in
future work.

Figure 3. S-S curve of as-FIB Al pillar. Points C-F on the S-S curve correspond to snapshots in
Figure 4c–f, respectively. The compression direction is shown by the stereographic triangle at the
bottom right of the S–S curve.

The TEM bright-field image of the as-FIB specimen immediately before deformation is
shown in Figure 4a, and the stereographic projection showing the geometry of the specimen
in the TEM in situ specimen holder is shown in Figure 4b. Before compression, there
were many dislocation loops in the specimen due to the FIB (Figure 4a). The dislocation
structure is different from that in Figure 1 because the images in Figure 1 were taken
using a conventional double-tilt holder to obtain a high contrast for the dislocation lines.
Additionally, Figure 4a is under a different diffraction condition with limitation by a single-
tilt operation in the in situ straining holder. A series of snapshots captured during TEM
in situ compression of the as-FIB Al specimen is shown in Figure 4c–f. A video of this
experiment is provided in the Supplementary Material (Video S1). Figure 4c,d correspond
to the stress states immediately before and after the stress drop indicated by C and D on the
S-S curve in Figure 3, respectively. The times of the snapshots are indicated at the top-right
corners of the images. In Figure 4c, dislocations are observed near the top of the pillar.
During a stress drop, the dislocation density increased in the region within the dashed
ellipse shown in Figure 4d, which was 0.77 s after the snapshot shown in Figure 4c. This
result demonstrates that the stress drop was caused by a collective dislocation glide within
a very short period, like avalanche behavior, even though the stress drop from C to D in
Figure 3 had a relatively small magnitude. After the pseudo-yield point, the magnitude
of the stress drop was much larger than the event from C to D. For example, in another
stress drop from E to F (Figure 3), the corresponding TEM images (Figure 4e,f) showed that
a step (single arrowhead in Figure 4e) instantly grew (double arrowheads in the enlarged
image of the dotted square in Figure 4f), suggesting remarkable plastic strain during the
stress drop. Unfortunately, the dynamic motion of the dislocation was not captured during



Materials 2021, 14, 1431 7 of 16

the event because of the out-of-diffraction condition used to obtain the high-contrast image
of dislocation. This result also supports the model of the collective motion of dislocations
for the stress drop [35].

1 
 

 
Figure 4. (a) Bright-field image of as-FIB Al pillar before compression. (b) Stereographic projection
showing the geometry of the Al pillar in (a). (c–f) Series of snapshots during TEM in situ compression
corresponding to points C-F on the S-S curve in Figure 3, respectively. The inset in the dotted square
at the bottom right of (f) shows an enlarged image of the step structure. The region of the dotted
square corresponds to the region indicated by a single arrowhead in (e).
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3.3. Deformation Behavior of the Post-Annealed Al Pillar

The S–S curve obtained during TEM in situ compression of the post-annealed Al
specimen is shown in Figure 5. The compression axis was

[
13 5 17

]
, as indicated by

the standard triangle at the bottom right of the figure. The two regions of elastic and
elastoplastic behavior were approximately determined by the two dashed linear lines in the
same way as for the as-FIB specimen in Figure 3. The σy corresponding to the pseudo-yield
stress defined as the intersect of the two linear lines indicated by the white arrow and σ0.1
corresponding to the flow stress at the strain of 0.1 values were determined to be 388 and
470 MPa, respectively. During the stress increase to σy, small stress drops occurred a couple
of times. After the pseudo-yield point, stress drops with a much larger magnitude were
often detected, which was similar to the as-FIB sample (Figure 3). However, it should be
noted that the stress was almost fully relaxed by reaching the horizontal axis with zero
stress for some of the stress drops, which was not observed for the as-FIB sample. Because
the post-annealed sample contained a much lower density of initial lattice defects, such as
prismatic dislocation loops, the dislocations could more easily glide in the post-annealed
sample than in the as-FIB sample. This is further discussed in the following section based
on TEM characterization.

Figure 5. S-S curve of the post-annealed Al pillar. Points C-F on the S–S curve correspond to the
snapshots in Figure 6c–f, respectively. The compression direction is shown by the stereographic
triangle at the bottom right of the S-S curve.

The TEM bright-field image of the post-annealed Al specimen immediately before
deformation and the stereographic projection showing the geometry of the specimen in
the TEM in situ holder are shown in Figure 6a,b, respectively. In Figure 6a, there is no
contrast of defects, such as dislocation loops. A series of snapshots captured during TEM
in situ compression of the post-annealed sample is shown in Figure 6c–f. A video of this
process is also provided in the Supplementary Material (Video S2). Figure 6c,d correspond
to the stress states immediately before and after the stress drop indicated by C to D on
the S-S curve in Figure 5. The times are shown at the top-right corners of the images. In
Figure 6c, the dislocation structure is observed close to the top of the pillar. During a
stress drop, the dislocation density remarkably increased in the region within the dashed
circle in Figure 6d, which was 0.63 s after that in Figure 6c. This was almost the same
behavior as that of the as-FIB sample (Figure 4c,d). In the deformation stage after the
pseudo-yield point, larger magnitude stress drops occurred, for example, the stress drop
from E to F in Figure 5, corresponding to the images in Figure 6e,f. In Figure 6e, a step
is observed on the pillar side, as indicated by the black arrow. From the stereographic
projection in Figure 6b, it is expected that the slip system on

(
111

)
should be activated for

the formation of the step structure observed in Figure 6e,f. For the three possible Burgers
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vectors on
(
111

)
,
[
110

]
leads to the highest Schmidt factor. Therefore, it is presumed

that the slip system with
(
111

)[
110

]
is preferably activated, although the

(
111

)[
110

]
slip

system corresponds to that with the third-highest Schmidt factor about the compression
axis shown in Figure 5. After the stress drop, the step became larger at the same position,
as shown in Figure 6f. It should be noted that the step size after the stress drop for the
post-annealed sample in Figure 6f was much larger than that for the as-FIB sample in
Figure 4f. This result suggests free-flight motion of a large number of dislocations in a
limited area and then escape from the specimen surfaces for the post-annealed sample,
which is consistent with the larger stress drop ∆σ in Figure 5. Lee et al. [32] also discussed
the effect of FIB-induced dislocations on the deformation behavior. They individually
investigated the mechanical behavior by ex situ microcompression and the microstructure
change by in situ TEM. In their experiment, the annealed micropillar showed a stress
drop in ex situ microcompression, and dislocations escaping from the sample surface were
observed during deformation in in situ SEM and TEM, respectively. The results in our
TEM in situ straining experiment were essentially the same as the previous phenomena,
but the mechanical response and microstructural change, including the evolution of the
dislocation structure, were simultaneously detected in this study, and it was found that
the mechanical behavior such as an individual stress drop can be directly related to the
dislocation motion.

3.4. Quantitative Comparison of the Mechanical Behavior

The S-S behavior showed a similar tendency for the two specimens (Figures 3 and 5).
In the early stage of deformation, the stress increased with a monotonic-like trend with
less frequent and relatively small-magnitude stress drops. After the pseudo-yield stress,
relatively large magnitude stress drops occurred with high frequency in both Al pillars.
Furthermore, from the TEM in situ experiments, which are the combination of measurement
of the mechanical response and microstructure observation, the relatively small stress drops
resulted from a limited number of dislocation motions, while the relatively large stress
drops were governed by the collective motion of many dislocations. The pseudo-yield
stress σy and flow stress at 0.1 strain σ0.1 values on the S-S curves of the as-FIB and post-
annealed Al pillars are summarized in Table 1. These values are the average of five results
under the same test conditions. The resolved shear stress (RSS) values for the slip system
with the highest Schmidt factor at σy and σ0.1 are also given in Table 1. The RSS at the
yield point was higher for the as-FIB Al pillar than for the post-annealed Al pillar. The
RSS at 0.1 strain showed the same trend. Therefore, higher stress was necessary for the
dislocation glide motion in the as-FIB pillar because of the higher defect density induced
by the FIB process. As shown in Figure 1, the as-FIB pillar contained many defects, such as
prismatic dislocation loops and lattice dislocations. We also determined that the Burgers
vector of these dislocation loops was 1/3<111>, which is immobile on any {111} plane in
the fcc structure. When a mobile dislocation with the Burgers vector of 1/2<101> interacts
with the <111> prismatic loop dislocation, a jog is formed on the <101> dislocation line to
remarkably inhibit the glide motion. Hence, the mobile dislocations more often interacted
with these defects during deformation for the as-FIB Al pillar than for the post-annealed
Al pillar.
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2 

 

Figure 6. (a) Bright-field image of the post-annealed Al pillar before compression. (b) Stereographic
projection showing the geometry of the Al pillar in (a). (c–f) Series of snapshots during the TEM in
situ compression corresponding to points C-F on the S–S curve in Figure 5, respectively.
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Table 1. Mechanical properties of the Al pillar obtained by TEM in situ compression measurement.
The stresses (σy and σ0.1) were measured from the S–S curves. The resolved shear stresses (τy and
τ0.1) were evaluated by the slip system activating during the TEM in situ experiments. The activating
slip system has the highest Schmidt factors (m), namely 0.4988 (as-FIB) and 0.4634 (Post-annealed).

Al Piller Pseudo-Yield Stress, σy Flow Stress at the Strain of 0.1, σ0.1

as-FIB 421 MPa 534 MPa
Post-annealed 328 MPa 505 MPa

– τy (= m σy) τ0.1 (= m σy)

as-FIB 210 MPa 266 MPa
Post-annealed 152 MPa 234 MPa

The cumulative distributions of the measured stress drops (∆σ) detected during TEM
in situ straining of the as-FIB and post-annealed Al specimens are shown in Figure 7. The
cumulative fraction of the stress drops steeply increased for the as-FIB Al sample (open
circles). The trend for the post-annealed Al sample gradually changed in comparison with
the as-FIB Al sample. The ∆σ value of the as-FIB Al sample at 50% cumulative fraction was
150 MPa, which was smaller than that of the post-annealed Al sample (275 MPa). Because
the larger ∆σ value is caused by larger ∆ε, ∆ε can be converted into the shear strain ∆γ,
which is given by the function ∆γ = ρb∆x. Hence, for the as-FIB Al sample, the smaller ∆x
owing to interaction with the prismatic dislocation loops is presumably the main reason
for the smaller ∆σ. This phenomenon is in good agreement with the previous report by
Lee et al. [32].

Figure 7. Cumulative distribution of the measured stress drop (∆σ) detected in the TEM in situ
compression measurement. Open and solid circles represent the events detected in the as-FIB and
post-annealed Al pillars, respectively.

The deformation steps should be discussed on the basis of the results of TEM in situ
straining, especially in the higher strain region after the pseudo-yield point. The stress
responses after the stress drops in Figures 3 and 6 were linear and steep, and the slopes
ranged from 30 to 60 GPa, which are in the same range as the Young’s modulus of Al. This
suggests that the deformation step during recovery of the load was mainly dominated by
elastic deformation. Because the stress drop associated with the strain burst and reloading
with elastic deformation was repeated on the S-S curve, the plastic strain evolution in
the sample was intermittent plasticity [36]. Additionally, the reloading process was not
purely elastic, but it included microplasticity in small magnitude. Snapshots of the recovery
process captured during TEM in situ straining of the post-annealed Al sample are shown in
Figure 8. The video of this process is provided in the Supplementary Material (Video S3).
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Figure 8a–c correspond to points A–C on the S-S curve in Figure 8d, respectively. Once
the stress steeply dropped, slight strain reduction can be observed in the S–S curve. This
is because of the inertial motion of the indenter, which cannot be naturally controlled by
the feedback. The slope of this segment of the S-S curve is about 40 GPa, which is close
to the Young’s modulus of Al, suggesting elasticity domination. Conversely, dislocation
glide motion can be observed during the loading process from point A to C (Figure 8a–c).
The arrowheads in Figure 8a–c indicate the same positions in the images. This dislocation
motion indicates that deformation in this segment was not purely elastic deformation, but
microplasticity also contributed to some extent. Note that even though some dislocations
glided in the sample during the intermittent microplasticity, macrodeformation was still
mainly governed by elastic deformation because the mobile dislocation density at the stress
level was not sufficient.

Figure 8. (a–c) Series of snapshots during the reloading process captured during TEM in situ
compression of the post-annealed Al pillar. The images in (a–c) correspond to points A–C on the S–S
curve in (d), respectively. At the points indicated by the arrowheads, the change in the contrast due
to the motion of the dislocations are seen. This change is seen in the supplementary video (S3).

A possible reason for the reloading process being macroscopically dominated by
elastic deformation even though the dislocations were moving is as follows. TEM in situ
straining was performed in displacement control mode with a constant nominal strain.

When a certain strain is applied, the strain is balanced by a combination of plastic
strain and elastic strain. The plastic strain is a function of the mobile dislocation density
and the travel distance of the dislocation. If the dislocation density is not sufficient and
the plastic strain cannot compensate for the given strain by the applied load, the elastic
strain has to balance the strain, leading to a higher applied stress based on Hooke’s law. In
particular, the dislocations easily escape from the surfaces of the specimen during TEM
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in situ straining, so it can also be considered to be a thin-film effect. When the applied
stress reaches a critical value to activate plenty of dislocations and dislocation sources,
another strain burst occurs to produce significant plastic strain. It should be noted that all
of the dislocation motion cannot be captured because of the high velocity, suggesting flying
motion in the post-annealed Al sample. Therefore, we can conclude that the macroplastic
deformation in the present sample is dominated by intermittent plasticity consisting of
microyielding and strain burst.

Another important point in the dislocation glide in each strain burst event is an
elementary step of macroplastic deformation. Plots of the S-S data immediately before the
stress drops, meaning the start points of the strain bursts, for the as-FIB and post-annealed
Al samples, are shown in Figure 9. The complete S-S data also showed weak contrast
marks. The dashed linear lines represent the traces of the plots on the same S–S curves
as Figures 3 and 5. For both samples, the stress values at the start points fluctuated. This
behavior indicates that the critical stress to reactivate dislocation glide was dominated
by a stochastic mechanism rather than a deterministic mechanism, because the stress
values at the start points never decreased by a deterministic mechanism. The potential
stochastic model is a thermally activated process in the dislocation motion by the Peierls
stress [37]. Furthermore, the plot for the as-FIB Al pillar (black circles) fluctuated more
than that for the post-annealed Al sample (red circles). This is confirmed by the correlation
coefficients (R) of least square fitting to the dashed lines (R = 0.877 and 0.926 for the as-FIB
and post-annealed Al samples, respectively). The smaller correlation coefficient for the
as-FIB Al pillar compared with the post-annealed Al sample is presumably associated
with the inhomogeneous microstructure, including the prismatic dislocation loops. As
shown for the post-annealed sample in Figure 6, dislocations can glide out of the sample
surface, and hence the dislocation density may not remarkably increase. For the as-FIB
Al sample (Figure 4), the prismatic dislocation loops near the surface region prevent
gliding dislocations from escaping from the sample surface, resulting in higher density
and inhomogeneous dislocation structures. In the inhomogeneous dislocation structures,
the distribution of the critical stress is suitable for activating a dislocation glide, leading
to the fluctuation of the initial stress with a lower R value. The dislocation structure
and associated distribution of the critical stress changed with strain evolution, and the
dislocation with the lowest critical stress preferentially started to glide, so the average of
the critical stress distribution increased. The dashed lines in Figure 9 show monotonically
increasing trends, suggesting that the average stress of the distribution increased with
strain as strain hardened.

Figure 9. Plot of the stresses against the strain immediately before the stress drop, meaning the start
point of the strain burst, for the as-FIB (black) and the post-annealed (red) Al pillars.



Materials 2021, 14, 1431 14 of 16

4. Conclusions

TEM in situ straining measurements, which make it possible to reveal the mechanical
response associated with microstructure changes, have been performed for Al single-crystal
pillars with different initial defect densities. We succeeded in linking the elemental me-
chanical behavior and microstructure evolution directly through the in situ measurements.
The effect of lattice defects, which were introduced by the FIB process, on the mechanical
behavior was also investigated and compared with the defect-free post-annealed Al pillar.
The results are summarized as follows.

1. In the as-FIB Al sample, a high-density of lattice defects was observed with a con-
ventional transmission electron microscope. Most of the defects introduced by FIB
fabrication were prismatic dislocation loops with the Burgers vector 1/3<111>. TEM
in situ annealing at 523 K significantly reduced the number of lattice defects intro-
duced by FIB fabrication.

2. The S–S curves obtained during TEM in situ straining of the as-FIB and post-annealed
Al samples showed repetitive stress drops. The stress drops frequently occurred,
especially after the pseudo-yield point. The magnitude of the stress drops was smaller
for the as-FIB Al sample than for the post-annealed Al sample. In addition, the stress
in the whole range of the S-S curve was higher for the as-FIB Al sample than for the
post-annealed Al sample.

3. The pseudo-yield point, σy, of the as-FIB and the post-annealed Al samples was
421 MPa and 328 MPa, respectively and the σy of the as-FIB was approximately 20%
higher than that of the post-annealed one.

4. The TEM in situ straining experiments revealed that the stress drops on the S–S curve
were accompanied by collective dislocation motions. The change in the dislocation
density and the traveling distance of the dislocations strongly affected the magnitude
of the stress drop.

5. The cumulative fraction of the measured stress drop detected in the as-FIB Al samples
were more steeply increased in comparison to the post-annealed samples. The stress
drop at 50% cumulative strain was 150 MPa in the as-FIB Al sample and 275 MPa in
the post-annealed one, which is almost twice higher than that in the post-annealed
sample. This means that the dislocation loops in the as-FIB act as an obstacle for the
mobile dislocations.

6. After the stress rapidly decreased, the stress increased to the original stress state
within 1 min with mainly elastic behavior, which is identified as intermittent plasticity.
However, because microplasticity also occurred during recovery of the stress, the
stress values for starting the strain bursts were not consistent, and they significantly
fluctuated. The intermittent plasticity is triggered by a thermally activated process.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/6/1431/s1, Video S1: The microstructure evolution recorded by the TEM in situ compression
experiment of the as-FIB Al specimen. The S-S curve obtained simultaneously is synchronized with
the microstructure evolution. Video S2: The microstructure evolution recorded by the TEM in situ
compression experiment of the post-annealed Al specimen. The S-S curve obtained simultaneously is
also synchronized. Video S3: The microstructure evolution during the reloading process after stress
drop in the post-annealed Al pillar. Text S4: Brief interpretation of the videos of S1–S3.
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