
Clinical Kidney Journal , 2023, vol. 16, Suppl 2, ii55–ii61 

https:/doi.org/10.1093/ckj/sfad206 
CKJ Review 

CKJ  REVIEW  

Understanding patient needs and predicting outcomes 

in IgA nephropathy using data analytics and artificial 
intelligence: a narrative review 

Francesco Paolo Schena 

1 ,2 , Carlo Manno 

1 and Giovanni Strippoli 1 ,3 

1 Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy, 2 Schena 
Foundation, Policlinic, Bari, Italy and 

3 School of Public Health, University of Sydney, Sydney, NSW, Australia 

Correspondence to: Francesco Paolo Schena; E-mail: paolo.schena@uniba.it 

ABSTRACT 

This narrative review explores two case scenarios related to immunoglobulin A nephropathy ( IgAN ) and the application 

of predictive monitoring, big data analysis and artificial intelligence ( AI ) in improving treatment outcomes. The first 
scenario discusses how online service providers accurately understand consumer preferences and needs through the 
use of AI-powered big data analysis. The author, a clinical nephrologist, contemplates the potential application of similar 
methodologies, including AI, in his medical practice to better understand and meet patient needs. The second scenario 
presents a case study of a 20-year-old man with IgAN. The patient exhibited recurring symptoms, including gross 
haematuria and tonsillitis, over a 2-year period. Through histological examination and treatment with renin–angiotensin 

system blockade and corticosteroids, the patient experienced significant improvement in kidney function and reduced 
proteinuria over 15 years of follow-up. The case highlights the importance of individualized treatment strategies and the 
use of predictive tools, such as AI-based predictive models, in assessing treatment response and predicting long-term 

outcomes in IgAN patients. The article further discusses the collection and analysis of real-world big data, including 
electronic health records, for studying disease natural history, predicting treatment responses and identifying prognostic 
biomarkers. Challenges in integrating data from various sources and issues such as missing data and data processing 
limitations are also addressed. Mathematical models, including logistic regression and Cox regression analysis, are 
discussed for predicting clinical outcomes and analysing changes in variables over time. Additionally, the application of 
machine learning algorithms, including AI techniques, in analysing big data and predicting outcomes in IgAN is 
explored. In conclusion, the article highlights the potential benefits of leveraging AI-powered big data analysis, predictive 
monitoring and machine learning algorithms to enhance patient care and improve treatment outcomes in IgAN. 
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ON-CLINICAL CASE SCENARIO: HOW 

NLINE SERVICE PROVIDERS UNDERSTAND 

UR NEEDS AND TRAJECTORIES 

 am a seasoned clinical nephrologist renowned for my expertise 
n diagnosing and managing glomerular diseases, particularly 
mmunoglobulin A nephropathy ( IgAN ) . Over the course of my 
areer I have successfully treated numerous patients with this 
ondition. My family and I have been living in a stunning home 
e purchased 8 years ago, furnished with brand new furniture 
hat we invested a significant amount of money in. 

Recently we encountered a problem with our refrigerator,
hich prompted discussions with my wife about the need for a 
eplacement. Interestingly, during the same period I started re- 
eiving multiple promotional e-mails from various sources, in- 
luding my Amazon account, showcasing a wide array of refrig- 
rators. Surprisingly, some of these refrigerators were identical 
o the one we bought 7–8 years ago. What intrigued me even 
ore was the fact that my wife and I had expressed a desire 

o upgrade to a model that also dispenses cold water and ice 
ubes. Astonishingly, some of the promotional messages I re- 
eived featured a refrigerator of the same brand as our current 
ne, equipped with the exact features we were looking for. 
These online service providers seemed to possess an un- 

anny ability to understand my preferences and accurately an- 
icipate my needs, delivering tailored advertisements precisely 
hen I required them. At that moment, I couldn’t help but wish 
hat I had the same level of insight in my clinical practice—
nowing exactly what my patients needed, precisely when and 
here they needed it. If internet services can exhibit such re- 
arkable accuracy in predicting consumer needs, it surely im- 
lies that there must be a methodology behind it. If I can ac- 
uire and apply this knowledge to my own medical practice, I 
m confident it will elevate me to a higher level of proficiency as 
 physician. 

The following day I approached one of my junior residents 
nd discussed the incident with the refrigerator. Unsurprised,
y resident informed me about the utilization of big data anal- 
sis, artificial intelligence ( AI ) and other advanced tools used by 
nline sellers to predict consumer demands. It became clear that 
he collection, analysis and application of big data are crucial 
actors in this process, enabling companies to refine their un- 
erstanding and meet customer needs more effectively. 

LINICAL CASE SCENARIO: HOW USING 

REDICTIVE MONITORING CAN IMPROVE 

REATMENT IN IGAN 

e present the case of a 20-year-old man who was admitted to 
he renal unit following a 2-week history of fever, tonsillitis and 
ross haematuria. The patient had a recurring pattern of gross 
aematuria and tonsillitis, along with persistent microhaema- 
uria and proteinuria over the past 2 years. During the initial 
isit the patient exhibited normal body weight ( 73.2 kg ) , normal 
lood pressure ( 130/90 mmHg ) , serum creatinine of 1.10 mg/dl,
stimated glomerular filtration rate ( eGFR ) of 96 ml/min/1.73 m 

2 

nd daily proteinuria of 2.5 g. 
A kidney biopsy was performed and the histological exam- 

nation, according to the Oxford classification, revealed IgAN,
haracterized by diffuse mesangial hypercellularity ( M1 ) , seg- 
ental glomerular sclerosis and flocculo-capsular adhesions 

n 20% of glomeruli ( S1 ) , as well as florid crescents in 15% 

f glomeruli ( C1 ) . Considering the presence of active renal 
esions, the patient was treated with renin–angiotensin sys- 
em ( RAS ) blockers in combination with corticosteroids ( 1 mg/kg 
ody weight ) for 2 months. Subsequently a gradual reduction in 
orticosteroid dosage ( 0.2 mg/kg body weight/month ) was im- 
lemented over the following 4 months. RAS blocker therapy 
 ramipril 7.5 mg/day ) was continued. 

The DialCheck tool [ 1 ] was employed to assess the risk of
nd-stage kidney disease ( ESKD ) 10 years after the kidney biopsy,
ndicating a low probability of 23.48%. At the most recent follow- 
p visit, 15 years after the kidney biopsy, the patient exhib- 
ted normal serum creatinine levels ( 0.97 mg/dl ) , improved eGFR 
 101 ml/min/1.73 m 

2 ) and low proteinuria ( 0.3 g/day ) . These find- 
ngs demonstrate the long-term benefits of corticosteroid ther- 
py, as evidenced by the maintenance of normal serum creati- 
ine levels, improved eGFR and reduced proteinuria even after 
5 years. 

The patient’s favourable outcome surpassed the low percent- 
ge predicted by the DialCheck tool for reaching ESKD. This case 
eport highlights the utility of the DialCheck tool in predicting 
SKD, as it serves as a valuable test for evaluating the thera- 
eutic effect and monitoring the long-term follow-up of patients 
ith IgAN. 
Overall, this case emphasizes the importance of individual- 

zed treatment strategies in IgAN, guided by predictive tools like 
ialCheck, to achieve favourable outcomes in management of 
he disease. Long-term follow-up and regular monitoring of kid- 
ey function and proteinuria are crucial in assessing treatment 
esponse and disease progression in patients with IgAN. 

EAL-WORLD BIG DATA 

he collection of electronic health records ( EHRs ) from daily 
n- and outpatient visits has resulted in the generation of ex- 
ensive big data files. Longitudinal EHR data, available in many 
f these files, allow for the study of disease natural history 
nd the prediction of treatment responses ( outcomes ) . Addi- 
ionally, EHR data offer opportunities for identifying prognostic 
iomarkers. 

Integrating data files from various sources often presents 
hallenges, including incongruencies, missing data and errors.
he collection of big data through randomized clinical trials 
an mitigate bias and confounding, given the rigorous exper- 
mental conditions [ 2 ]. Another valuable data source is well- 
esigned observational studies that encompass a diverse repre- 
entation of the study population, enabling outcome prediction 
nalyses. 

However, developing a high-dimensional dataset may en- 
ounter the ‘curse of dimensionality,’ as noted by Sinha et al. [ 3 ].
ulticollinearity, where two or more predictors are not indepen- 
ent, is a common phenomenon that necessitates reducing the 
imensionality of the data file or selecting specific variables for 
nalysis. 

Real-world data files often lack granularity, emphasizing the 
mportance of adhering to the REporting of studies Conducted 
sing Observational Routinely-collected health Data ( RECORD ) 
uidelines. These guidelines provide a comprehensive list of 
odes or algorithms to identify eligible patients and define rele- 
ant outcomes, thus minimizing missing data, misclassification 
ias and unmeasured confounding [ 4 ]. 

Notably, EHRs exist for several cohorts of Caucasian and 
sian patients affected by IgAN. These datasets, collected 
hrough observational and randomized clinical studies [ 5 –7 ], in- 
lude longitudinal data that can be leveraged to develop pre- 
ictive models for clinical outcomes. Clinical variables were 
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ecorded at baseline and during follow-up. Barbour et al . [ 8 ]
tilized these data files to develop an international tool for
redicting ESKD in IgAN patients at the time of kidney biopsy.
dditionally, a tool predicting ESKD 1 or 2 years post-biopsy has
een recently published [ 9 ]. These tools were developed using
raditional statistical methods. 

Furthermore, other data derived from IgAN patients have 
een employed to create prediction models based on AI and ma-
hine learning algorithms. These models will be discussed in the
ection ‘Machine learning applications’. 

ATHEMATICAL MODELS 

he collection of patient data often results in disparate dis-
ributions. To determine appropriate statistical approaches, a 
kewness test can be performed to assess the normality or
bnormality of the data distribution. Quantitative variables 
ith normal distribution values are summarized using the 
ean ± standard deviation or median and interquartile range 

 25th–75th percentile ) for non-normally distributed variables.
ndependent sample t -tests or one-way analysis of variance 
ests are employed to compare normally distributed continu- 
us data across groups, while the Mann–Whitney U test and
ruskal–Wallis test are used for non-normally distributed con- 
inuous data. Categorical variables are presented as absolute 
nd percentage frequencies and are compared using Pearson’s 
hi-squared test or Fisher’s test, as appropriate. 

For analysing cumulative renal survival time based on hard 
r surrogate endpoints, Kaplan–Meier curves are used for cen- 
ored data. Potential non-linear effects of exposure factors are 
xplored and reported when identified. Group comparisons are 
ade using the logrank test and the Breslow test. 
It is important to note that clinical variables may change over

ime and traditional statistical models may not account for such
hanges. This limitation arises when incorporating time-varying 
ovariates. Another challenge in EHRs is the long-term follow- 
p, as healthier and non-compliant patients may miss sched- 
led outpatient visits, resulting in missing data. Additionally,
ith large data files containing numerous variables and inputs,
here can be inadequate processing power for statistical analy- 
es. To address these issues, Brian et al . [ 10 ] propose the use of
he landmark method initially introduced by Anderson et al . in
983 [ 11 ]. This method utilizes the concept of ‘landmark time’
 e.g. age ) to mitigate bias caused by varying degrees of health-
are exposure. It creates relative reference points independent 
f the outcomes, ultimately reducing the data file size. 

Logistic regression analysis is traditionally employed for pre- 
iction models based on dichotomous outcomes, such as the 
resence or absence of an event. The Cox regression propor-
ional hazards model is widely used for survival analysis and
ime-to-event data, such as the time to progression to ESKD.
his model assesses the influence of specific variables or prog-
ostic factors on the relative risk or hazard of experiencing a
linical event within a defined time frame. Patient survival in
his context encompasses outcomes of interest beyond mortal- 
ty, such as time to dialysis initiation, hospitalization, doubling 
f serum creatinine or a 40% decrease in eGFR. Variables that are
ignificant predictors of ESKD in univariate analysis ( P < .05 ) or
eemed clinically relevant are included in a multivariate model 
o achieve adequate statistical power. Backward or forward step- 
ise approaches are used for variable selection when dealing 
ith numerous variables. Furthermore, the prediction model 
hould be validated using an external independent cohort of pa-
ients. Risk estimates are presented as unadjusted and adjusted 
azard ratios ( HRs ) with their corresponding 95% confidence in-
ervals ( CIs ) , calculated using estimated regression coefficients
nd standard errors. Baseline variables selected by the multi-
ariate Cox regression model are collected at the time of kid-
ey biopsy and used to evaluate the relative risk associated with
aseline prognostic factors such as sex, age, serum creatinine,
GFR, hypertension, histological renal lesions and therapy. 

Cox regression analysis allows for studying two main types
f survival variables: time-invariant variables, which do not
hange over time ( e.g. patient’s sex ) , and time-varying variables,
hich may change over time ( e.g. proteinuria ) . However, collect-

ng data, especially for infrequent or irregular outpatient vis-
ts, poses constraints and difficulties. In time-to-event data, it
s common for some individuals not to be followed up by physi-
ians until the event time, resulting in censored times instead
f event times. Therefore, statistical models incorporating time-
arying covariates have limitations. Long-term follow-up is par-
icularly challenging, as healthier and non-compliant patients 
ay miss scheduled outpatient visits, leading to missing data.
dditionally, the presence of numerous variables and millions of
nputs in data files often exceeds the processing capabilities of
tatistical analyses. Moreover, non-linearity of some predictors 
nd the effects of drugs further complicate data interpretation
nd their applicability in clinical practice. 

To analyse changes in variables such as eGFR and protein-
ria, mixed models for repeated measurements are utilized.
oint modelling for longitudinal and time-to-event data, com-
rising classical survival analysis and linear mixed effects
odels, is employed to assess the time-dependent prognostic
bility of variables measured repeatedly over time [ 12 , 13 ].
he term ‘mixed’ indicates the inclusion of both fixed effects
 covariates with constant mean effects across the population )
nd random effects ( covariates varying among individuals )
n the models. Discriminative capability is evaluated using a
ynamic discrimination index, defined as the weighted average 
f the time-dependent area under the curve ( AUC ) measured
epeatedly over time. 

Mathematical models have been previously utilized to de-
elop prediction tools for ESKD in IgAN patients [ 14 –20 ]. Re-
ently, Chinese researchers have developed new predictors of
SKD based on nomograms. Liu et al . [ 21 ]. developed a nomo-
ram based on a Chinese cohort of 869 IgAN patients, predicting
isease progression using variables identified by Cox regression
nalysis ( e.g. urinary protein excretion, eGFR, hyperuricemia,
esangial proliferation, segmental glomerulosclerosis, tubular 
trophy/interstitial fibrosis, crescents and glomerulosclerosis ) .
he nomogram achieved high predictive accuracy, with a C-
ndex value of 0.945. Similarly, another study [ 22 ] developed and
alidated a nomogram for predicting IgAN prognosis in a cohort
f 349 Chinese patients, considering variables such as mesan-
ial hypercellularity, tubular atrophy/interstitial fibrosis, aver- 
ge proteinuria and average mean arterial pressure. The nomo-
ram demonstrated good predictive accuracy, with a C-index
f 0.88. 
However, the principal limitation of these tools is their poten-

ial applicability to specific races and ethnicities. Consequently,
he International IgAN Prediction Tool developed by Barbour
t al . [ 8 ]. using a large population of 3927 biopsy-proven IgAN
atients from different races and ethnicities is widely utilized
n clinical practice. This tool provides predictions of ESKD as
 percentage at a maximum estimated time of 7 years. How-
ver, it is important to note that IgAN is a long-term disease
nd many patients develop ESKD ≥2 decades after the kidney
iopsy [ 23 ]. 
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ACHINE LEARNING APPLICATIONS 

ig data analysis can be conducted using data mining algo- 
ithms, which encompass supervised, unsupervised and semi- 
upervised learning approaches. Various methods such as clas- 
ification techniques ( e.g. logistic regression, decision trees,
aive Bayesian methods, neural networks and support vector 
achines ) , clustering techniques ( e.g. k-means, principal com- 
onent analysis and self-organizing maps ) and linear regression 
nalysis can be employed for analysing big data. Prior to the 
nalysis, the dataset is divided into a training set and a vali- 
ation set using a bootstrapping method. Subsequently, the ob- 
ained data are tested on an independent external cohort of pa- 
ients to validate the model’s performance. Accuracy, sensitivity,
pecificity, receiver operating characteristics ( ROC ) curve, preci- 
ion, recall, F-measure, number of positive predictions and false 
ositive predictions are common metrics used to evaluate the 
ool’s performance. 

Machine learning algorithms are models that learn to per- 
orm tasks or make decisions automatically based on the avail- 
ble data. The spectrum of machine learning applications ranges 
rom classic machine learning approaches to deep learning.
hese applications have the potential to generate valuable tools 
or the modern healthcare system. It is crucial that these algo- 
ithms ensure robust and valid decision making in clinical prac- 
ice, as their outcomes can significantly impact patient care. 

SKD PREDICTION 

able 1 provides an overview of different AI-based models used 
or predicting ESKD in patients with IgAN. 

Geddes et al . [ 24 ]. conducted the initial study on applying 
I to predict ESKD in biopsy-proven IgAN patients, using a 
mall cohort of 54 Scottish adult patients, among whom 23% 

eveloped ESKD. The researchers employed an artificial neural 
etwork ( ANN ) algorithm trained and tested with a jack-knife 
ampling technique. The model achieved a correct outcome 
ssignment in 87% of patients, demonstrating good sensitivity 
 86.4% ) and specificity ( 87.5% ) . Subsequently the model under- 
ent validation by six nephrologists in clinical practice, yielding 
 mean score of 69.4% with a sensitivity of 72% and specificity 
f 66%. The predicted outcome time was based on a 7-year renal 
unction follow-up. The researchers concluded that enhancing 
he ANN’s performance could be achieved by incorporating a 
reater number of variable components into the ANN. 

Building upon this work, DiNoia et al . [ 25 ] developed an ad- 
anced ANN model that included the kidney biopsy report in 
ddition to the variables used by Scottish nephrologists. Using 
n experimental approach to determine the optimal ANN ar- 
hitecture [ 26 ], they developed a clinical decision support sys- 
em ( CDSS ) consisting of two ANN models, one for predicting 
SKD and another for predicting the time to ESKD development 
 1 ]. This model was constructed using a larger retrospective in- 
ernational cohort of 1040 IgAN patients. The CDSS tool exhib- 
ted high performance in predicting ESKD. The model’s histo- 
ogic variables were improved by incorporating the international 
xford classification [ 27 –29 ] into a new retrospective cohort of 
uropean IgAN patients. The enhanced ANN model consisted of 
our hidden layers, each with 100 neurons for the classification 
odel, and three hidden layers, each with 125 neurons for the 

egression model. This modification significantly improved the 
ool’s performance, resulting in an ROC AUC of 0.82 for a 5-year 
ollow-up and 0.89 for a 10-year follow-up. The CDSS tool is ac- 
essible as a mobile app and web-based application for Android 
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nd iOS cellular phones. The DialCheck tool has been validated
n an independent external cohort of IgAN patients [ 1 ]. 

Hou et al . [ 30 ] recently aimed to develop an ANN-based model
o predict the risk of developing IgAN solely using laboratory
ata. They analysed a cohort of 212 biopsy-proven IgAN patients
nd 518 non-IgAN patients utilizing a backpropagation ANN al- 
orithm. The results revealed that seven variables ( age, haema- 
uria, eGFR, serum albumin, serum IgA levels, IgA:C3 ratio and
gG ) were independent risk factors for the presence of IgAN. The
odel achieved an ROC curve value of 0.88 in the validation
et, surpassing the performance of the logistic regression model.
owever, it is important to note that this algorithm was devel-
ped using a small cohort of Chinese patients and has not yet
een validated in a large external cohort where the diagnostic
odel should be confirmed by kidney biopsy. 
Liu et al . [ 31 ] developed a random forest ( RF ) model to pre-

ict ESKD in Chinese IgAN patients. The variables for the model
ere selected using the Gini impurity index in the RF model lo-
istic regression analysis. The model was developed in a retro-
pective cohort of 262 IgAN patients and was trained and tested
sing the six predictors from the CDSS tool [ 26 ]. Subsequently
he model was further trained by adding variable predictors with
ignificant impact on the progression of kidney damage. The in-
lusion of data from the MEST [mesangial ( M ) and endocapillary
 E ) hypercellularity, segmental sclerosis ( S ) and interstitial fibro- 
is/tubular atrophy ( T ) ] classification significantly improved the 
UC from 0.92 to 0.97. However, this model has not been vali-
ated in an independent external cohort of patients. 
Chen et al . [ 32 ] designed the Nanjing risk stratification model

ased on the gradient tree boosting method implemented in the
Xtreme Gradient Boosting ( XGBoost ) system. They employed 
he Shapley Additive exPlanation ( SHAP ) method to explain the 
GBoost prediction results. Data from the Nanjing Glomeru- 
onephritis Registry were collected from 18 renal centres and a
ohort of 2047 Chinese IgAN patients was divided into a deriva-
ion cohort ( 50% ) and a validation cohort ( 50% ) . Compared with
ther machine learning algorithms and statistical methods, this 
odel demonstrated the best performance, with an AUC of 0.89.
he XGBoost and SHAP models were incorporated into the Nan-
ing IgAN Risk Stratification System, which is accessible through 
 web-based calculator. However, it should be noted that among
he 36 variables considered, some show inconsistency in their 
linical relevance throughout the disease course. 

Zhang et al . [ 33 ] analysed five different AI models to predict
SKD within 5 years in Chinese children with biopsy-proven 
gAN. The researchers used the chi-squared test to select the
ost relevant variables from 37 attributes, of which one variable
roved to be independent. The XGBoost model exhibited the best
erformance, with an accuracy of 85.11%. However, a significant 
imitation of this study is the prediction of ESKD within 5 years
or a disease characterized by long-term outcomes, particularly 
n children who often experience renal function recovery. Con- 
equently, the model’s utility in clinical practice may be limited.

Li et al . [ 34 ] utilized real-world data from the Nanjing
lomerulonephritis Registry, which collected data from 18 renal 
entres in China. The cohort of 2047 biopsy-proven IgAN pa-
ients was divided into derivation ( 1022 patients ) and validation 
ohorts ( 1025 patients ) . The researchers developed a survival 
odel, Extreme Gradient Boosting for Survival ( XGBoost-Surv ) ,
dapted to time-to-event prediction to forecast ESKD. They 
mployed the SHAP method to interpret individual predicted 
esults. A panel of 36 variables was considered as candidate
redictors. The XGBoost-Surv tool was compared with other 
onventional machine learning algorithms and statistical meth- 
ds. The model achieved a performance of 0.82 in the validation
ohort using the time-dependent concordance index. The 
nterpretation model identified 10 top variables, with tubuloin-
erstitial damage and global sclerosis emerging as the strongest
ontributors. The study successfully demonstrated the com- 
lex relationship between certain predictors and outcomes.
owever, it is important to note that this model has not been
alidated in an external independent cohort of IgAN patients. 

Overall, these studies show the potential of AI models for pre-
icting ESKD in IgAN patients. Nevertheless, further validation
n large external cohorts and incorporation into clinical practice
re necessary to establish their robustness and utility. 

I: PROMISES AND LIMITATIONS 

I holds great promise for revolutionizing healthcare by en-
bling the development of new products and services. AI in the
ra of big data can assist physicians in improving the quality
f patient care, but it cannot replace the traditional physician–
atient relationship. In fact, AI cannot replace the intellectual
ork of the physician at the bedside and the conversation be-
ween physician and patient. 

In the coming years, AI will become a routine part of nephrol-
gy, just as today GFR is estimated and not measured in clinical
ractice. The successful use of AI in nephrology will depend on
he awareness of physicians in clinical practice. Nevertheless,
ack of familiarity with AI can be overcome by dedicated courses
ffered by companies to practitioners and by official courses to
tudents in the medical curriculum. However, companies that
re involved in the development of AI tools must be legally li-
ble for any medical errors in clinical practice. 

AI also presents several important limitations. It is crucial to
nderstand and address these limitations to fully leverage the
otential of AI in the field of medicine. 
One significant limitation of AI is its applicability to rare dis-

ases. Due to the scarcity of real-world data, AI may struggle to
enerate high-quality systems for diagnosing and treating rare
onditions. The lack of sufficient data hampers the development
f valuable tools in such cases. 
Another limitation arises from the unstructured nature of

ata involved in the initial diagnosis of kidney diseases, which
elies on patient history. If AI lacks a deep understanding of hu-
an language, it faces challenges in processing and interpreting
nstructured data. The current applications of natural language
rocessing in healthcare, such as chatbots, are limited by this
onstraint. 

AI excels when working with structured data. The develop-
ent of machine learning tools relies heavily on data gener-
ted and collected by physicians. Yet physicians are fallible and
an make errors in documentation. If AI models are trained on
atasets with inaccuracies or mistakes, the generated output
ay be erroneous. Therefore, it is crucial to conduct a thorough

eview and revision of medical files before proceeding with the
evelopment of AI tools. 
Recent research by Kellis et al . [ 35 ] highlights the importance

f focusing on understanding the causal pathways underlying
isease development rather than solely treating disease mani-
estations. AI can play a crucial role in unravelling these causal
athways, offering the potential to manipulate disease causa-
ion and reverse disease outcomes. Thus, investing time and ef-
ort in utilizing AI to comprehend the underlying causes of dis-
ases can have a transformative impact on healthcare. 

While AI brings promising opportunities to healthcare, it is
ital to acknowledge and address its limitations. The scarcity
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f data for rare diseases, challenges in processing unstructured 
ata, reliance on structured data, potential errors in physician- 
enerated data and the need to delve into causal pathways are 
ll important considerations when utilizing AI in medical prac- 
ice. By understanding and mitigating these limitations, we can 
arness the full potential of AI to improve patient care and 
utcomes. 

ONCLUSIONS 

n this review we have highlighted the limitations of tradi- 
ional mathematical techniques, such as regression models, in 
nalysing survival data and longitudinal data, such as eGFR and 
roteinuria, in IgAN patients. We emphasize the need for more 
dvanced computational approaches, including joint modelling 
nd AI, to enable a more comprehensive analysis of dynamic and 
ndividualized prognostic factors. 

We have discussed the different computational approaches 
sed to predict ESKD in IgAN patients, ranging from tradi- 
ional regression models to complex non-linear AI models. As 
he field continues to evolve, a competition between these two 
pproaches is anticipated in the coming years. 

While there have been significant advancements in the de- 
elopment of mathematical models and AI tools for IgAN, it is 
mportant to acknowledge their limitations. Mainly, these tools 
ften overlook the heterogeneity of the world population, in- 
luding differences in race and ethnicity, which may impact the 
ccuracy of predictions. 
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