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With advancement of technologies such as genomic sequencing, predictive
biomarkers have become a useful tool for the development of personalized
medicine. Predictive biomarkers can be used to select subsets of patients, which
are most likely to benefit from a treatment. A number of approaches for sub-
group identification were proposed over the last years. Although overviews of
subgroup identification methods are available, systematic comparisons of their
performance in simulation studies are rare. Interaction trees (IT), model-based
recursive partitioning, subgroup identification based on differential effect,
simultaneous threshold interaction modeling algorithm (STIMA), and adaptive
refinement by directed peeling were proposed for subgroup identification. We
compared these methods in a simulation study using a structured approach. In
order to identify a target population for subsequent trials, a selection of the iden-
tified subgroups is needed. Therefore, we propose a subgroup criterion leading
to a target subgroup consisting of the identified subgroups with an estimated
treatment difference no less than a pre-specified threshold. In our simulation
study, we evaluated these methods by considering measures for binary classi-
fication, like sensitivity and specificity. In settings with large effects or huge
sample sizes, most methods perform well. For more realistic settings in drug
development involving data from a single trial only, however, none of the meth-
ods seems suitable for selecting a target population. Using the subgroup criterion
as alternative to the proposed pruning procedures, STIMA and IT can improve
their performance in some settings. The methods and the subgroup criterion are
illustrated by an application in amyotrophic lateral sclerosis.
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1 INTRODUCTION
With the advances in technologies such as genomic sequencing biomarkers have become useful tools in drug develop-
ment. To date a number of drugs have been authorised in biomarker-defined subgroups.1 Usually, such a stratification
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is based on a predictive biomarker implying a treatment-by-biomarker interaction and determining the effect of a thera-
peutic intervention. A predictive biomarker has to be distinguished from a prognostic one, which predicts the course of a
disease. In our context, the term biomarker may not just be a genetic marker but could also refer to other baseline patient
characteristics such as demographic variables.2

In many cases, the stratification of patients is purely based on the prior knowledge of the drug's mechanism of action. If,
however, the mechanism of a drug is not fully understood, data-driven evidence of a treatment-by-subgroup interaction
can support the pharmacological and biological reasoning of a biomarker's predictivity. This was the case for the drugs
panitumumab and cetuximab with the KRAS marker. Retrospective analyses showed that only wild-type KRAS patients
benefit from these treatments. Based on this finding, the inhibition of the RAS/RAF/MAPK pathway was considered to
be responsible for the activity of panitumumab and cetuximab, two anti-epidermal grow factor receptor (EGFR) agents.
Since the retrospective analyses were convincing, further studies were conducted only in biomaker-selected (ie, wild-type
KRAS) patients.3-7

For the drugs panitumumab and cetuximab differential treatment effects in subgroups were hypothesized upfront. If,
however, there is no prior hypothesis regarding a subgroup with an enhanced treatment effect available, exploratory sub-
group identification methods, which will be considered below, are frequently applied in order to find predictive biomark-
ers and generate such hypotheses. A possibility of incorporating findings regarding potential treatment-by-subgroup
interactions in subsequent trials is by selecting the study design accordingly, eg, by multi-population designs or adap-
tive enrichment designs.8-12 The interest in methods for identifying subgroups increased over the last years. Ondra et al13

identified 86 articles on the topic of identification and confirmation of targeted subgroups in a systematic review of the
literature. The tutorial on subgroup identification by Lipkovich et al14 mentions around 60 articles related to subgroup
identification methods. Usually, they were developed for one of the two following frameworks for personalized medicine.
The first framework aims at identifying patients for a given treatment and is therefore related to a search for quantita-
tive treatment-by-biomarker interactions, whereas the second framework aims at finding the right treatment for a given
patient resulting in a special interest in qualitative treatment-by-biomarker interactions. In the presence of a qualitative
interaction, different patients benefit from different treatments. A subset of patients with specific biomarker values will
profit from the experimental treatment, whereas the complementary subgroup will not benefit or will even be harmed
by the experimental treatment compared with the control. For the first framework, several tree-based methods were pro-
posed. These have the advantage of identifying predictive biomarkers and selecting cut-off values in case of continuous
predictive biomarkers. The selection of cut-off values for continuous predictive biomarkers is needed in order to get deci-
sion rules for subgroups. Interaction trees (IT),15 model-based recursive partitioning (MOB),16 subgroup identification
based on differential effect search (SIDES),17 and simultaneous threshold interaction modeling algorithm (STIMA)18 are
examples for methods with the aim of identifying subgroups with an enhanced treatment effect. The adaptive refinement
by directed peeling algorithm (ARDP) for subgroup identification as included in Patel et al19 is also an example for a
subgroup identification method identifying the predictive biomarker with its corresponding cut-off value.

Although there are numerous methods for this purpose available, comparisons of methods applicable to similar
settings20 are lacking, with the notable exceptions of articles by Doove et al,21 Alemayehu et al,22 and Sies and Mechelen.23

Boulesteix et al20 point out that more neutral comparison studies, which evaluate the behavior of existing methods,
are needed. Also, the existing comparisons focus on emphasizing differences between methods and thereby not always
consider scenarios relevant for drug development.

In drug development, it is often of interest to identify one subgroup with a compelling treatment effect for defining an
enrichment strategy for future studies and to refine the envisaged indication. Most of the subgroup identification methods
identify multiple subgroups. Therefore, those subgroups have to be selected that should form the target population. We
propose a subgroup criterion for this selection. The treatment effects in each of the identified subgroups have to exceed
a pre-specified threshold in order to be assigned to a potential future target population, the biomarker-positive BM+
subgroup. Note that the treatment effect in the BM+ subgroup is not necessarily the average over the subgroups' treatment
effects in all settings due to usually different sizes of the identified subgroups. The effect in the target population may
be smaller than the threshold in case the realized treatment allocation ratios differ in the identified subgroups, which is,
however, in general, expected to be negligible in randomized trials.

Here, we present the methods IT, MOB, STIMA, SIDES, and ARDP in consistent notation, which makes similarities
and differences more apparent. Furthermore, we compare their operation characteristics performances for the selection
of a target population in a Monte-Carlo simulation study using a structured approach.24 Selecting a target population
has the same aim as companion diagnostics. Both aim at identifying “patients who are most likely to benefit from the
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corresponding medicinal product.”25 Therefore, we use performance measures like accuracy, sensitivity, and specificity.26

Furthermore, we evaluate the Type I and Type II error rate for these methods applying the proposed subgroup criterion.
Since we are interested how the performance is influenced by certain data characteristics, we consider different sample
sizes, effect sizes, and data-generating mechanism influencing the true target subgroup, the BM+ subgroup.

The remainder of this paper is organized as follows. In Section 2, we briefly outline the five methods. In the following
section, we describe how subgroup definitions can be obtained by the results of the five considered methods, and we
introduce the subgroup criterion used for selecting the target population. In Section 4, we illustrate the methods and the
subgroup criterion by an amyotrophic lateral sclerosis (ALS), and in Section 5, we will describe the simulation study and
present its results. The manuscript concludes with a discussion.

2 METHODS FOR SUBGROUP IDENTIFICATION

In this section, we will introduce the notation, and we will briefly describe the five methods for subgroup identification
we compared in a simulation study. Since the range of methods proposed for subgroup identification is wide, we focused
on methods, which are able to select cut-off values in the presence of continuous biomarkers and were developed for
continuous outcome variables. Tree-based methods as IT,15 MOB,16 SIDES17, and STIMA18 fulfill these requirements. The
adaptive refinement by directed peeling algorithm (ARDP) for subgroup identification proposed by Patel et al19 uses a
peeling procedure, which identifies a peeling variable and a cut-off value in every iteration step. This is comparable with
the four recursive partitioning methods and can also be described with tree analogies.

We will only consider the situation of a randomized controlled clinical trial. Patients included in the trial receive either
an experimental treatment, denoted T = 1, or a control treatment, denoted T = 0. Besides of the outcome variable Y, the
data include p candidate biomarkers for each of the n patients denoted by X = X1, … ,Xp. The observed data (Yi,Ti,X)
for patient i, with i = 1, … ,n, are assumed to be independent and identically distributed across i. Based on the different
handling of the the selection bias and the availability of many biomarkers measured on a continuous scale, we consider
only continuous biomarkers. In order to define a subgroup, those biomarkers have to be dichotomized. Without loss of
generality, we assume that larger values of the outcome are preferable.

We denote an identified subgroups by Ŝ. The expected outcomes in the identified subgroups for patients in the control
and the experimental treatment arm are denoted by 𝜇0(Ŝ) = E(Y |T = 0,X ∈ Ŝ) and 𝜇1(Ŝ) = E(Y |T = 1,X ∈ Ŝ),
respectively.

2.1 Interaction trees
Interaction trees were developed for exploring the heterogeneity of treatment effects. Su et al15 use the CART
methodology27 for tree construction, which consists of three steps: growing a large initial tree, pruning, and selecting the
best-sized pruned tree.

In order to construct the tree, we associate each node, root, and child node, with the following linear regression model:

E(Y |X) = 𝛼 + 𝛽0 · T + 𝛾 · I(X𝑗 ≤ c) + 𝛽1 · T · I(X𝑗 ≤ c) with 𝑗 = 1, … , p.

As splitting criterion, the squared t test for testing the hypotheses H0 ∶ 𝛽1 = 0 in the above mentioned model is
used. The model includes the main effect of the treatment indicator variable and of the biomarker considered for the
split. Biomarkers not involved in the split are not included as main effects in the model. The split associated with vari-
able Xj and the split point c yielding the maximum t2-statistic is used for the split. The splitting is repeated recursively
in the obtained child nodes until a stopping criterion (eg, minimum number of observations in a node, node is pure)
is met.

This procedure leads to a large initial tree, which is then pruned. The pruning procedure described in Breiman et al27

was used. This pruning procedure results in a sequence of nested subtrees by iteratively truncating the “weakest link” of
the tree. Afterwards, a single subtree is chosen from the sequence as final tree. For both determining the “weakest link”
and the best-sized subtree selection, an interaction-complexity criterion was developed by Su et al, which is analogous to
the split complexity measure proposed by LeBlanc and Crowley.28 Since the interaction-complexity measure is used for
truncating and the selection of the best-sized tree, the selection might be over optimistic. In order to get an unbiased esti-
mate of the interaction-complexity measure for determining the best-sized subtree, an independent test set or a bootstrap
procedure should be used. Figure 1 shows how a tree obtained by IT can look like.
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FIGURE 1 Theoretical example of trees obtained by the different methods

2.2 Model-based recursive partitioning
MOB for subgroup analyses proposed by Seibold et al16 detects parameter instabilities in the treatment effect of the overall
population. The trees obtained by MOB look similar to the ones obtained by IT. But they differ in their growing procedure.
Like IT, MOB associates every node of the tree with a parametric model denoted by ((Y ,T,X), 𝜃). The vector 𝜽 =
(𝜶, 𝜷, 𝜸,𝝈) denotes the parameter vector fitting the data (Y,T,X). The intercepts are denoted by𝜶, 𝜷 denotes the treatment
effects, 𝜸 refers to other interesting effects, and 𝝈 to the nuisance parameters. The parameter vector can be estimated
by minimizing an objective function Ψ((Y,X), 𝜃) (eg, the negative log-likelihood). We use the linear regression model
E(Y|X,T) = 𝛼 + 𝛽0 · T for every node.

The idea underlying MOB is that in the presence of subgroups, there is not a single global model fitting the data
well. Therefore, MOB splits the data when intercept or treatment effect differ across subgroups. Thus, MOB aims at
detecting parameter instabilities. Since a correlation between the partial score function of 𝜶 and 𝜷, ie, 𝜓𝛼((Y,T,X),𝜽) =
dΨ((Y,T,X),𝜽)∕d𝜶 and 𝜓𝛽((Y,X),𝜽) = dΨ((Y,T,X),𝜽)∕d𝜷, and the covariates corresponds to parameter instabilities,
MOB tests for independence using the M-fluctuation test introduced by Zeileis et al.29 The tested hypotheses are as follows:

H𝛼,𝑗
0 ∶ 𝜓𝛼((Y ,X,T), �̂�) ⟂ X𝑗 , 𝑗 = 1, … , p

H𝛽,𝑗
0 ∶ 𝜓𝛽((Y ,X,T), �̂�) ⟂ X𝑗 , 𝑗 = 1, … , p.

A partition is only performed if at least one of the 2×p null hypotheses can be rejected at a pre-specified nominal level. For
this splitting procedure, MOB uses multiplicity adjustments. The partitioning variable Xj∗ is associated with the maximum
correlation to any of the partial score functions. In order to obtain the cut-off value for the chosen variable Xj∗, we have
to sum the objective functions of the conceivable subsets. We get the cut-off value by optimizing this segmented objective
function. This procedure is recursively applied until we cannot reject any of the independence hypotheses. Since MOB
applies this pre-pruning procedure, the obtained final tree is the best-sized tree, and no further pruning and selection
steps are necessary.

2.3 Simultaneous threshold interaction modeling algorithm
STIMA proposed by Dusseldorp et al18 was developed for overcoming the drawbacks of both additive models in the pres-
ence of higher order interactions and tree-based methods like CART27 in the presence of linear main effects. Therefore,
STIMA can also be used to detect interactions with the treatment variable. The Simultaneous Threshold Interaction Mod-
eling Algorithm associates the whole tree with a linear model. STIMA uses a linear regression model for modeling the
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main effects and a tree for the higher-order interactions. Both, the main effects and the threshold interaction effects, are
optimized simultaneously. Since STIMA combines a parametric and nonparametric approach, it is called a hybrid model.
Although STIMA was developed for a much broader purpose, we use it here for subgroup identification.

For subgroup identification purposes, it is necessary to force the procedure to make the first split at the treatment
indicator variable. Furthermore, we need to exclude the treatment variable from the linear main effects in order to avoid
linear dependencies. Therefore, the initial reference model is as follows:

E(Y |X) = 𝛼 + 𝛽0I(T = 1) +
p∑
𝑗=1
𝛾𝑗X𝑗 . (1)

STIMA performs an exhaustive search among all covariates and all splits for each of the two child nodes of the root
(childnodes T = 0 and T = 1) in order to find further splits defined by a split variable Xj∗ and a split point c∗. STIMA
uses the realtive increase in variance accounted for by an expanded model. This criterion is defined as follows: 𝑓 2

l =
(R2

l − R2
l−1)∕(1 − R2

l ) with R2
l as the coefficient of determination estimated before and after split l. R2

l after split l is defined
as R2

l =
∑

i(Ŷil − Ȳ )2∕
∑

i(Yi − Ȳ )2, where Ŷil refers to the predicted value for patient i with the model induced by split l,
and Ȳ denotes the mean of the observed data. Variable Xj∗ and split point c∗ induce the the highest increase in 𝑓 2

l .
For the first split at node T = 1, the current reference model (Equation 1) is compared with the following expanded

model:

E(Y |X) = 𝛼 + 𝛽0I(T = 0) + 𝛽1I(T = 1)I(X𝑗∗ > c∗) +
p∑
𝑗=1
𝛾𝑗X𝑗 . (2)

When the first split is intended to be made at node T = 0 instead, the variance accounted for by reference model
(Equation 1) has to be compared with the variance accounted for by the following model:

E(Y |X) = 𝛼 + 𝛽0I(T = 1) + 𝛽1I(T = 0)I(X𝑗∗∗ > c∗∗) +
p∑
𝑗=1
𝛾𝑗X𝑗 . (3)

If a split has been performed, the model associated with this split becomes the new reference model, and the split-
ting procedures are repeated until no further splits are found or a predefined maximum of splits has been reached. The
large regression trunk obtained by STIMA is then pruned using the pruning procedure proposed for Classification and
Regression trees.27

2.4 Subgroup identification based on differential effect search
Lipkovich et al17 proposed a direct search of regions, which have an improved treatment effect. Unlike MOB or IT, SIDES
searches only within specific regions of the covariate space and does therefore not estimate the treatment effect for every
point in the multidimensional covariate space like the other tree-based methods.

As the other recursive partitioning methods, SIDES starts with the entire data as parent node. But the following pro-
cedure differs strongly from MOB, IT, ARDP, and STIMA. SIDES considers all possible splits of the parent node into two
child nodes. These pairs of child subgroups have to be ordered in terms of a splitting criterion. Three possible splitting
criteria p1, p2, p3 considering the primary efficacy variable were proposed:

1. Maximizing the differential effect between the two child subgroups:

p1 = 2

[
1 − Φ

(|Zleft − Zright|√
2

)]

2. Maximizing treatment effect in at least one of the two child subgroups p2 = 2 min(1 − Φ(Zleft), 1 − Φ(Zright))
3. Combination of the first and second criterion p3 = max(p1, p2).

Zleft and Zright denote the test statistics for a one-sided test of the hypothesis of no differential treatment effect in the
left and right child subgroups. The cumulative distribution function of the standard normal distribution is denoted by
Φ. Smaller values for the splitting criteria indicatie a stronger differential effect between the resulting child nodes. A
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fourth criterion is based on efficacy and on safety and yields at maximizing the differential effect in terms of those two
components.

A pre-specified number M of best child pairs regarding the splitting criterion is selected. Moreover, we retain just the
child node exhibiting the larger treatment effect from each pair. These retained subgroups are added to a set of promising
subgroups. This procedure can lead to child nodes having the same splitting variable but different split points.

After evaluating the splitting criterion for each child node, two further criteria are evaluated on promising subgroups,
the selection criterion, and the continuation criterion.

The continuation criterion decides whether a promising subgroup is further split and therefore added to the set of parent
nodes. A child node becomes only a part of the set of parent nodes if there is a meaningful improvement of its treatment
effect pC-value compared with the parent treatment effect pP-value: pC ≤ 𝜅pP, where 0 < 𝜅 ≤ 1 is the relative improvement
parameter. Small values 𝜅 indicate a very selective identification procedure whereas values close to 1 indicate the opposite.
The nodes included in the set of parent nodes are used for further splitting, but SIDES does not consider covariates already
used for defining a parent node as potential splitting variables.

The selection criterion has the purpose of deciding whether the promising subgroup can be added to the set of candidate
subgroups. Subgroups of this set have desirable efficacy. A candidate subgroup is found when the treatment effect P value
of a promising subgroup is significant at a one-sided nominal level. This nominal level 𝜗 can be determined using a
permutation-based strategy in order to control the familywise Type I error rate in a weak sense.17 A Type I error occurs
when a promising subgroup is selected as candidate subgroup, although, in truth, there is no treatment benefit in any
subgroup. For the permutation strategy, the vector of biomarkers xi = (x1i, … , xip) is randomly permuted against (yi, ti)
in order to mimic the null data. The SIDES algorithm is then applied to these permuted datasets on a grid of values for
𝜗. The proportion of times for which the selection criterion was met for at least one subgroup on the permuted samples
is calculated for each of the values for 𝜗. The largest value of 𝜗 for which this proportion does not exceed a pre-specified
nominal level is chosen as the significance level for the selection criterion.

The procedure is repeated recursively until none of the identified subgroups meet the continuation criterion, a
pre-specified minimum node size, or a pre-specified maximum number of covariates defining the subgroups is met.

2.5 Adaptive refinement by directed peeling
The ARDP algorithm was originally introduced by LeBlanc et al,30 and it aims at identifying subgroups of participants
with poor prognosis. Patel et al19 adapted the peeling algorithm for subgroup identification purposes. ARDP peels off
fractions of the data in every iteration step. Thus, it is not a recursive-partitioning method. Nevertheless, we can illustrate
the algorithm with a tree.

A major difference to the tree-based methods IT, MOB, STIMA, and SIDES is the definition of the cut-off value. Most
of the introduced methods perform an exhaustive search for the split. Thus, the sizes of the resulting child node depend
on the identified cut-off. In ARDP, it is the other way around. The cut-off value depends on the size of the resulting child
node, which we pre-specify by fixing the number of observations to be peeled off in an iterations step. The selection of the
splitting variable and its cut-off values are based on several steps. First, we fit the following linear model:

E(Y |X) = 𝛼 + 𝛽0T +
p∑
𝑗=1
𝛽𝑗XiT + 𝛾𝑗X𝑗 .

The signs of the interaction effects are used to decide in which direction we peel off the observations. A positive sign for
the interaction 𝛽 j, (j = 1, … , p) means that larger values of the covariate Xj lead to larger treatment effects, therefore, we
peel off smaller values in order to increase the treatment effect in the resulting subgroup. A negative sign of 𝛽 j leads to
peeling off larger values of the corresponding covariate.

We order the observations for each covariate Xj. This ordered list is denoted by Xj ∗= X(1j), … ,X(nj). The following
peeling step is comparable with the splitting step of the tree-based methods.

The algorithm starts with a subgroup B0 including all observations and peels off max(𝛼ardp ·n,nmin) observations depend-
ing on the direction determined with the linear model. The proportion of data to be removed in one iteration step is
denoted with 𝛼ardp and nmin denotes the minimum number of observations to be peeled off. Thus, we obtain p possible
subgroups (B1

p) in iteration step i. We select the subgroup Bi
𝑗∗ achieving the largest improvement of the treatment effect

compared with the effect of the previous chosen subgroup B(i−1) standardized by change in subgroup size. This is repeated
recursively until the remaining region includes no less than r observations.



606 HUBER ET AL.

TABLE 1 Overview of the method's properties

IT MOB STIMA SIDES ARDP
Aim
Identifying subgroups defined by predictive covariates yes yes yes yes yes
Identifying subgroups defined by prognostic covariates no yes no no no∗

Algorithm
Recursive partitioning yes yes yes yes no
Evaluating splitting criterion at every possible cut-off point for every covariate yes no yes yes no
Selection of covariate and cut-off value simultaneously yes no yes yes yes
Covariates can be involved in multiple splits yes yes yes no yes
Post-pruning procedure yes no yes N/A N/A
Underlying model structure
Regression model yes yes yes no yes
Adjustment for covariate main effects yes no yes no yes

- All covariates as main effects no no yes no yes
- Dichotomized covariates main effects yes no no no no

Results
Method results in a tree yes yes yes no yes
End nodes are the identified subgroups yes yes no N/A no
Additional steps needed for obtaining subgroups no no yes no yes
Identified subgroups can be overlapping no no N/A yes N/A

Note. Since the algorithms are different for the five methods, not every statement can be interpreted reasonably for all methods. These cases
are marked with N/A. ∗ The ARDP algorithm initially proposed by LeBlanc et al30 was developed for identifying prognostic markers only. The
extension by Patel et al,19 which we are using throughout this paper, aims at peeling on predictive markers only.
Abbreviations: ARDP, adaptive refinement by directed peeling algorithm; IT, interaction trees; MOB, model-based recursive partitioning; SIDES,
subgroup identification based on differential effect search; STIMA, simultaneous threshold interaction modeling algorithm.

The ARDP algorithm does neither include a pruning nor a selection procedure. But it produces a sequence of nested
subgroups of patients benefiting from the experimental treatment. In order to choose one of those subgroups, we need a
selection criterion. This is described in Section 3.

2.6 Discussion on the methods
All five methods try to split the data into subgroups by recursively applying a splitting criterion. This splitting criterion
differs across the methods. Furthermore, the tree growing procedure is not identical for all methods considered. IT and
MOB are quite similar in their tree growing procedure. Both associate single nodes of the resulting tree with a linear
model used for evaluating a splitting criterion. In addition to the splitting criterion, IT and MOB differ in their pruning
procedure. IT uses a postpruning procedure, whereas MOB uses pre-pruning in order to prevent nonsignificant branches.
STIMA, however, differs not just in the splitting criterion. In this method, the whole tree and not just a node is associated
with a linear model. This results in a different interpretation of the end nodes compared with IT and MOB (see Section
3). SIDES in contrast creates multiple trees. For each of the nodes, SIDES decides based on a selection criterion whether
the node could be a candidate subgroup. Such a candidate subgroup is a subgroup, which is likely to have a high benefit
from the experimental treatment. SIDES uses a pre-pruning procedure like MOB. But in contrast to MOB, which uses
the splitting criterion for both splitting and controlling, the size of nonsignificant branches, SIDES introduces another
criterion called continuation criterion.

The peeling procedure of ARDP can be illustrated by a tree with binary splits. But obtaining those splits is different to
the recursive partitioning methods. Similar to SIDES, ARDP deletes one of the resulting two child nodes. This results in a
tree with just one branch. Since ARDP does not include any pruning or selection step, we cannot interpret the end node
as the identified subgroup. Following Doove et al,21 we give an overview regarding different properties of the methods
summarized in a table (see Table 1).

3 PROPOSAL OF A SUBGROUP CRITERION

In this section, we describe how we obtain subgroups from the results of the five different methods and how we select
a potential target population, meaning a subgroup benefiting from the experimental treatment, the BM+ subgroup,
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and its complement, the BM− subgroup. For this selection, we propose a subgroup criterion. By applying MOB or
IT, we get the definition of the identified subgroups directly by the splits of the estimated tree. Figure 1A gives an
example for a tree grown by MOB or IT. Four subgroups denoted by S1, S2, S3, and S4 were identified in this hypo-
thetical example. The subgroup S1, for example, includes only patients with pretreatment characteristic X1 ≤ 0 and
X2 ≤ −0.5.

Getting the definition of the subgroups by applying STIMA is not as straightforward as it is by using MOB or IT. In
order to use STIMA for subgroup identification purposes, we have to force the first split of the tree at the treatment
variable. Thus, end nodes only include patients assigned to either the control or the experimental treatment group. We can
deduce the subgroup definition from the estimated tree by combining each split defining an end node of the experimental
treatment branch with each split defining an end node of the control treatment branch.

The example given in Figure 1B results in three interaction terms included in the linear model: I(T = 0)I(X1 > −0.5),
I(T = 1)I(X2 ≤ 0.5), and I(T = 1)I(X2 > 0.5). Region R1 is used as reference. In this example, the resulting subgroups are
defined by the following assignment rules:

• S1: X1 ≤ −0.5 and X2 ≤ 0.5
• S2: X1 ≤ −0.5 and X2 > 0.5
• S3: X1 > −0.5 and X2 ≤ 0.5
• S4: X1 > −0.5 and X2 > 0.5

Although this example results in four disjunct subgroups, there is the possibility of obtaining overlapping subgroups by
applying this procedure. Splits on the same covariate in the control and experimental subtree cause this. Figure 1D gives
an example of a tree produced by STIMA yielding overlapping subgroups. The combinations of R1 with R3 and R1 with
R4 lead to nested subgroups with S1 defined by X1 ≤ −0.5 and X2 ≤ 0.5 and S2 defined by X1 ≤ −0.5 and (X2 > 0.5
and X1 ≤ 0.5). Another problem arising with this merging procedure is the possibility of obtaining very small subgroups.
STIMA does not include any criterion which can avoid this.

Nodes, which are labeled as a promising subgroup by the SIDES procedure, are the subgroups we are interested in. The
interpretation of those nodes is equivalent to the nodes in MOB and IT. Since SIDES grows multiple trees in each iteration
step, it is possible that the identified subgroups are not disjunct.

With the ARDP procedure, we do not get “final" subgroups as it is the case with the other methods. We have to choose a
subgroup and its complement from the sequence of subgroups resulting from this procedure. Figure 1C shows a theoretical
example of ARDP. We get a sequence of potential BM+ subgroups S∗

1, S
∗
2 and S∗

3. The corresponding BM− groups are
denoted with R.

For defining a future target population, we need a binary classification of patients into a subgroup with an enhanced
treatment effect and its complement. Since most of the used methods identify multiple subgroups, we need to dichotomize
the results of the subgroup identification methods.

The identified BM+ subgroup should be the largest population consisting of identified subgroups exceeding a
pre-specified treatment effect threshold denoted by mintrt. Therefore, we calculate the treatment difference z(Ŝ) =
𝜇1(Ŝ) − 𝜇0(Ŝ) in each of the identified subgroups Ŝ. All subgroups identified by the different methods meeting the crite-
ria ẑ(Ŝi) > mintrt are amalgamated resulting in the BM+ group. The remaining subgroups are merged, and they form
the BM− group. Note that the procedures use the unadjusted estimate ẑ(Ŝ) = 1|Ŝ1|

∑
i∶xi∈Ŝ1

𝑦i − 1|Ŝ0|
∑

i∶xi∈Ŝ1

𝑦i for the definition

of the selected B̂M+ subgroup, where |Ŝ1| and |Ŝ0| denote the number of treated and untreated patients in an identified
subgroup Ŝ. A similar procedure for selecting a target subpopulation was used in Zhao et al31 and proposed in Lipkovich
et al.14 For ARDP, which produces a sequence of possible B̂M+ subgroups, we choose the largest subgroup meeting the
defined subgroup criterion. The B̂M− is the complement of this chosen subgroup.

The shape of the obtained subgroups can differ across the used methods. In general, the BM+ definitions of MOB, IT,
STIMA, and SIDES can consist of unions and intersections of different subsets. This can lead to a disjointed definition
of the BM+ subgroup. Figure 2 illustrates shapes of subgroups of an artifical example. Although there are several tuning
parameters or even pruning procedures to keep the tree structure simple, shapes for the BM+ population as in subgroup
a and c can be obtained by all considered methods except ARDP. These two shapes might be too complex for application
purposes. Subgroup b in Figure 2 is jointed and can be obtained by all methods, although ARDP is constructed in such a
way, that the generated subgroup is always jointed. The interpretation of a jointed subgroup is easier compared with the
other potential shapes.
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FIGURE 2 Hypothetical example of the shape of subgroups defined
by maximal two biomarkers X1 and X2. Three different shapes are
illustrated, which can be obtained by the considered methods.
Subgroup a, which consists of the union of the regions 1 and 2 colored
in green, can be obtained by all methods except adaptive refinement
by directed peeling algorithm (ARDP). Regions 3 and 4 form subgroup
b. This shape can also be obtained by all considered methods except
ARDP. Subgroup c, obtainable by all five considered methods, consists
of just one region, namely, region 5. With regard to application
purposes, the shape of subgroup c seems preferable because it just has
to be checked whether the measurements of a subjects lie within one
box
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4 APPLICATION TO ALS DATA

ALS is a disease affecting the nervous system. Neurons in the brain and the spinal cord controlling the voluntary move-
ment degenerate causing loss of muscle function and paralysis. Therefore, patients with ALS usually have difficulties with
chewing, speaking, and swallowing. Since the paralysis can also affect the respiratory system, patients usually die within
3 to 5 years due to respiratory failure.32

Two treatments for patients with ALS were authorized by the Food and Drug Administration and the EMA, namely,
riluzole and edaravone. Edaravone was authorized just recently. Both treatments do not achieve substantial benefit for
ALS patients in the overall population.33,34 Several other compounds for ALS have been developed and investigated as
well, but they did not show to be effective.32 Since there is apparently no treatment with a substantial benefit, it is of
interest to investigate whether there is a subgroup of patients with a higher treatment effect. Thus, we apply the five
different subgroup identification methods to address this question. Since ALS is designated as orphan disease, clinical
trials are relatively small. We used data obtained from the PRO-ACT (Pooled Resource Open Access ALS Clinical Trials)
database35,36 for our analysis. The PRO-ACT database aggregates data from 23 phase II/III trials in order to overcome
problems arising during the analysis of clinical data from orphan diseases. The database includes survival times, the
ALS functional rating scale (ALSFRS) and forced vital capacity as outcome variables. Baseline variables regarding demo-
graphics, laboratory data, vital signs, and family history are available as well. Furthermore, information whether a patient
received medication or placebo is available. However, the active treatment is not specified in the data as consequence of
de-identification.

We use the ALS data to illustrate the five subgroup identification methods and our proposed criterion in order to identify
a BM+ subgroup. The ALSFRS is a commonly used measure to evaluate the symptom severity of patients with ALS.
It is a score calculated by the sum of 10 assessments regarding the motor function, more precisely speech, salivation,
swallowing, handwriting, cutting food and other things, dressing and hygiene, turning in bed, walking, climbing stairs and
respiratory. Each of these 10 items referring to different motor functions is rated on a scale from 0 to 4, with 4 indicating
a normal function whereas 0 indicates no function. Therefore, the ALSFRS ranges from 0 to 40. ALSFRS-R is a modified
version of the ALSFRS containing 12 instead of 10 items. The item regarding the respiratory function in ALSFRS was
divided in to three, the others remain the same. Clinical trials for the drug edaravone considered ALSFRS-R after 24 weeks
as primary endpoint. The sample size calculation for trial MCI186-19 assumed a difference of 3.0 between the placebo
and the edaravone group. The observed difference in trial MCI186-19 was 2.49 with a 95% confidence interval (CI) of
0.99-3.98.33 Since the number of observations of ALSFRS-R after approximately 6 months is smaller than for ALSFRS, we
used ALSFRS as outcome variable in our analyses. Since a difference of 3.0 score points on the ALSFRS-R is relatively a
smaller difference as 3.0 points on the ALSFRS scale, we think that 3 is a reasonable threshold for our proposed subgroup
criterion. We use the ALSFRS after approximately 6 months allowing a window of 20 days as outcome variable. In order
to keep the presentation simple, we preselected two covariates. This preselection is based on a linear model. We included
all available continuous covariates measured at baseline as main effects and as treatment-by-covariate interaction. This



HUBER ET AL. 609

includes the covariates ALSFRS at baseline and the forced vital capacity. We have chosen the two variables with the
smallest P values for their interaction effects, namely, phosphorus and chloride. Chloride is a well known prognostic
factor. Lower serum chloride levels are associated with a worse prognosis.37 Phosphorus, however, is not mentioned as a
potential prognostic marker in literature. Moreover, no substantial correlation of these two markers is observable in the
ALS data (𝜌 = −0.06; 95% CI, −0.10 to −0.02).

The sample size of the dataset used for the pre-selection and the subgroup identification methods included n=2156 full
observations. We have used the same tuning parameters for the subgroup identification methods as for the simulation
study. The used tuning parameters are listed in Section 5.1.

SIDES identifies three candidate subgroups. Since the treatment effects in these candidate subgroups are smaller than
the prespecified threshold for the subgroup criterion, no BM+ subgroup is identified by this procedure. IT and STIMA
do not identify a BM+ subgroup when the subgroup criterion is applied after the originally proposed pruning proce-
dure. However, we have to differentiate those two results from one another, eg, IT's initial tree is pruned back to the root
using the originally proposed pruning procedure, whereas STIMA's pruned tree involves some splits. Since the estimated
treatment effects in these resulting subgroups do not exceed the specified threshold, no target population is identified.
Despite this difference, we apply the subgroup criterion on both initial trees. Then, all methods, besides SIDES, iden-
tify a BM+ subgroup. The BM+ subgroup identified by MOB, IT, and ARDP is defined by the variable phosphorus, and
their cut-off values differ only slightly. MOB's and IT's BM+ subgroup only includes patients with values larger than 1.42
for the phosphorus variable and ARDP uses the value 1.36 as cut-off. Since those identified target subgroups are largely
overlapping, we illustrated the shape of IT's, MOB's and ARDP's target subgroup in a single plot, see Figure 3. STIMA
identifies a BM+ group consisting of the union of five subsets. One of these subsets includes patients with values greater
than 1.49 for the covariate phosphorus. This subset overlaps with the other BM+ subgroups identified by the other meth-
ods. Moreover, STIMA's BM+ group involves patients with both 1.42< phosphorus ≤ 1.495 and 100.95<chloride≤ 105.5
and patients with both 1.30<phosphorus ≤ 1.32 and chloride≤ 105.5. Furthermore, patients with 1.20< phosphorus ≤

1.29 and patients with both 0.97<phosphorus ≤ 1.05 and chloride> 106.5 are included in the target subgroup of STIMA.
The subgroup selected by STIMA is the largest one. It includes 483 patients, whereas ARDP involves 204 patients and both
MOB and IT 145 patients. Nevertheless, these four methods identify similar benefiting subgroups. Patients with larger
values for the covariate phosphorus seem to profit the most. The tress obtained by the different methods are illustrated
in Appendix A.

As it was mentioned in the artificial example illustrated in Figure 2, the BM+ subgroup does not necessarily consist of
jointed subsets. This is also the case for STIMA's identified BM+ subgroup. Note that this complex shape of STIMA is a
result of using the initial tree with a high number of allowed splits (see Section 5.1). The pruned tree of STIMA involved
only a single split at the active treatment arm.

FIGURE 3 Shape of the selected
BM+ subgroups for amyotrophic lateral
sclerosis (ALS) patients. Since the
selected BM+ group of adaptive
refinenement by directed peeling
algorithm (ARDP), interaction trees
(IT), and model-based recursive
partitioning (MOB) is almost the same,
it is represented as a single region.
Simultaneous threshold interaction
modeling algorithm (STIMA)'s
identified BM+ subgroup consists of the
union of multiple subgroups defined by
chloride and phosphorus or only by
phosphorus. The BM+ subgroup of IT,
MOB, and ARDP in contrast is just
defined by phosphorus and one
corresponding cut-off value. Therefore,
we obtain a half-open box shape for IT's,
MOB's, and ARDP's BM+ subgroup
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5 SIMULATION STUDY

In the following section, we investigate the performance of the subgroup identification methods IT, MOB, STIMA, SIDES,
and ARDP for the identification of a BM+ in connection with our proposed subgroup criterion using the Clinical Scenario
Evaluation framework.24 In Section 5.1, we specify the used tuning parameters for the five methods. Then, we define
criteria like the selection accuracy, sensitivity, and specificity, which are used to evaluate the performance of the methods.
Afterwards, we introduce the considered data-generating mechanisms and the results.

5.1 Options: Subgroup identification methods and their tuning parameters
We can specify different tuning parameters for the methods used including the subgroup criterion. In the following we
describe how we have chosen those parameters in our simulation study.

5.1.1 Interaction trees
The R code for IT is provided by the authors and is available at http://biopharmnet.com/subgroup-analysis-software/.

TheR implementation requires a learning and test sample in order to overcome the overoptimism induced by the greedy
search for selecting the best sized tree. We use 80% of the dataset as learning sample and the remaining 20% as test sample.
Therefore, IT uses less observations for the growing process of the initial tree compared with the other methods. We set
the parameter controlling the penalization of additional splits in the pruning procedure to the value ln(n), which is said
to provide the best subtree selection compared with other values for this complexity parameter. The minimum terminal
node sizes was set to to 20, the minimum number of observations in one of the the treatment arms for all permissible
splits is set to 5 and the maximum depth of tree was chosen to be 15.

5.1.2 Model-based recursive partitioning
MOB for subgroup identification is implemented in the package partykit.29,38 We used E(Y|X,T) = 𝛽0 + 𝛽1T as model
and all available covariates X1, … ,Xp as possible splitting variables. The minimum node size was set to 20 and the
maximum depth of the tree was set to 15. For the other tuning parameters the default values were used.

5.1.3 Simultaneous threshold interaction modeling algorithm
The R package stima provided by the authors39 was used for applying STIMA. For the minimum size of a terminal node,
we used the value 20 and for the maximum number of splits we used 15. The other tuning parameters both for the growing
and the pruning procedure were set to their default values.

5.1.4 Subgroup identification based on differential effect search
The R code developed by the authors and published on http://biopharmnet.com/subgroup-analysis-software/ was used
for SIDES. The minimum subgroup size was chosen to be 20, and both the maximum number of covariates used for defin-
ing the subgroups and the number of retained subgroups for each parent were set to the value 3. The relative improvement
parameter was set to 1. The local multiplicity adjustment used for penalizing covariates with a large number of candi-
date splits implemented in the available R code was chosen to be 0.1. Moreover, we used 500 permutation for computing
the significance level for the selection criterion. An identified subgroup was selected as candidate subgroup if both the P
value of the treatment effect in the identified subgroup and its adjusted treatment effect P value based on the resampling
method were smaller than 0.05.

5.1.5 Adaptive refinement by directed peeling algorithm
For the ARDP algorithm, we used a self-implemented R code. The tuning parameters 𝛼 and r were set to the values 0.1
and 20, respectively. The minimum terminal node size was set to 20.

5.1.6 Subgroup criterion
The threshold for the subgroup criterion is chosen based on the assumptions for generating the datasets.Therefore, the
chosen values are presented in Section 5.2.

http://biopharmnet.com/subgroup-analysis-software/
http://biopharmnet.com/subgroup-analysis-software/
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5.2 Assumptions: Models and parameter values assumed in the simulations
In this section, we present the data generating models. Each dataset consists of a continuous response Y, a binary treat-
ment variable T and p covariates for each subject i = 1, … ,n. The treatment variable T is drawn from a binomial
distribution (1, 0.5) and the covariates X = (X1, … ,Xp) from p(0, 𝜎2). For simplicity, we chose 𝜎2 = Ip, with Ip denot-
ing the identity matrix. The outcome Y is generated by using Yi = 𝜇(Ti,Xi) + 𝜖i with 𝜖i ∼  (0, 1). As in Graf et al,40 we
considered a step function model (M1) and a linear trend model (M2) as mean functions 𝜇(T,X), ie,

𝜇(T,X) = 0.2 · T + 𝛾 · I(X1 > c) + 𝛽1 · T · I(X1 > c), (M1)

𝜇(T,X) = 0.2 · T + 𝛾 · X1 + 𝛽1 · T · X1. (M2)

We vary the parameters as follows:

• Number of covariates p: p = 1 and p = 4; The performance of all methods in settings with p = 1 is slightly better
compared with those with three noise covariates. For ARDP, we can observe a stronger influence of the noise covariates
on the classification of patients. Since the setting without noise covariates is less relevant in praxis, we do not discuss
the results.

• Cut-off value c in model M1: c = 0, c = −0.5 and c = 0.5. The choice of the cut-off value influences the size of the
true BM+ subgroup. For c = 0, the true subgroup involves around n∕2 subjects, when the threshold mintrt is chosen
appropriately.

• Sample size: n = 600, n = 1200, and n = 2400
• Prognostic effect size: 𝛾 = 0, 𝛾 = 0.2, and 𝛾 = −0.2
• Predictive effect size referring to the difference in outcome between the experimental and control treatment: We con-

sidered a small (𝛽1 = 0.3), medium (𝛽1 = 0.5), and large (𝛽1 = 1) effect. In order to evaluate the Type I error rate, we
also considered cases with no predictive effect (𝛽1 = 0).

Furthermore, we adapted one of the mean functions used in Dusseldorp et al18 and the mean function presented in
Lipkovich et al,17 namely,

𝜇(T,X) = 𝛾1 · X1 + … + 𝛾p · Xp + 𝛽1 · T · I(X1 > 0), (M3)

𝜇(T,X) = a ·
{

I(X1 > 0) · (1 − n01

n
) − I(X1 ≤ 0) · n01

n

}
T. (M4)

Model M3 includes the main effects of all splitting covariates. The number of patients having values larger than 0 for
covariate X1 is denoted by n01 in model M4. This mean function adapted from Lipkovich et al includes in contrast to the
other mean functions a qualitative interaction. Moreover, the overall mean is 0 in this setting. For models M3 and M4, we
used the following parameter values:

• Number of covariates p = 4
• Sample size: n = 600, n = 1200, and n = 2400
• Prognostic effect sizes: 𝛾1 = −0.3, 𝛾2 = 0.4, 𝛾3 = 0, and 𝛾4 = 0.3
• Predictive effect size referring to the difference in outcome between the experimental and control treatment: A medium

(𝛽1 = 0.5) and large (𝛽1 = 1) effect were considered for model M3 and a ∈ {1, 2} for model M4.

For each parameter combination, we generate 500 datasets. The threshold for the subgroup criterion is set to the value
mintrt = 0.4 for all considered parameter combinations. Since the treatment effect increases with increasing values for
the biomarker X1 in settings with a linear trend (model M2), the BM+ subgroup depends strongly on the mintrt value.
Therefore, we varied the threshold mintrt = 0.4., 0.6, … , 1.2 only for the linear trend setting.

5.3 Metrics: Operation characteristics
The subgroup criterion has the same purpose as companion diagnostics. Both distinguish patients who will respond better
to experimental treatment from those who will respond less. Therefore, we want to describe their analytical accuracy with
the following criteria26:

• Sensitivity: P(patients are assigned to the B̂M+ group | patients truly belong to the BM+ group)
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• Specificity: P(patients are assigned to the B̂M− group | patients truly belong to the BM− group)
• Selection Accuracy: P(patients are correctly classified)
• Type I error rate
• Type II error rate

A Type I error occurs when an estimated B̂M+ group, which does not include all or no patients, is identified although
no subgroups are present meaning the treatment effect is homogeneous across the entire population. This corresponds
to falsely rejecting the null hypothesis that no subgroup is present. In contrast, the Type II error is defined as wrongly
retaining the null hypothesis. Therefore, the Type II error refers to the situation when the B̂M+ group includes all or no
patients although “real" subgroups are present. Note that we actually do not test any hypotheses, but we will still refer to
the situations described above as Type I and Type II error. For the calculations of the Type I error rates, we consider the
step function model without any predictive effect. We calculated the proportions of datasets for which a target subgroup
(not equal to the overall study population or the null set) was found.

5.4 Results
The simulation study compared the performance of the five subgroup identification methods in terms of their ability to
identify BM+ and BM− subgroups as defined in Section 3. We summarize the findings of our investigations in Figure 4.

The Type I error rates of the five subgroup identification methods are shown in Figure 5. SIDES' Type I error rate
decreases with increasing sample size and seems not strongly influenced by the presence of a prognostic effect. For MOB,

FIGURE 4 Key simulation findings for the performance of five subgroup identification methods in terms of their ability to identify BM+
and BM− subgroups
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FIGURE 5 Type I error rate for data
generated with model M1 as mean function,
𝛽1 = 0 and c = 0. The y-axes represent the
Type I error rates, whereas the x-axes
represent the considered sample sizes. The
left panel includes the Type I error rates
when the prognostic effect 𝛾 is set to 𝛾 = 0.
The direction of the prognostic effect does
not influence the Type I error rate.
Therefore, the right panel corresponds to
the Type I error rates of the settings with
𝛾 = 0.2 or 𝛾 = −0.2

FIGURE 6 Type II error rate for
settings with the step function model
(M1), 𝛾 = 0 and c = 0. For simultaneous
threshold interaction modeling
algorithm (STIMA) and model-based
recursive partitioning (MOB) low Type
II error rates are observable when the
predictive effect is large. Interaction
trees (IT)'s error rate depends strongly
on the sample size. For medium effect
sizes, MOB clearly outperforms the
other methods in terms of the Type II
error rate. Adaptive refinement by
directed peeling algorithm (ARDP) has
the lowest Type II error rate in settings
with small effects and small sample
sizes, which is due to the treatment
effect in the overall population and the
chosen mintrt value. MOB's Type II
error rate decreases strongly with the
increase of the sample size when the
effect size is small

STIMA, and IT, we can observe small Type I error rates. Since MOB does not just look for instabilities in the partial score
function of the treatment parameter but also of the intercept, it is not surprising that the Type I error rates of MOB are
affected by the presence of prognostic effects. When prognostic effects are present, MOB is more likely to identify a sub-
group even though none is present. STIMA's and IT's Type I error rates differ only slightly across the settings with different
prognostic effect sizes and different sample sizes. Both methods achieve Type I error rates below 2 %. Nevertheless, STIMA
is the method with the smallest Type I error rate. Figure 5 shows that ARDP does not control the Type I error. ARDP
always results in the selection of a target subgroup with the exception of two situations: (a) when the estimated treatment
effect in the overall population is larger than the threshold for the subgroup criterion and (b) when no subgroup of the
obtained sequence exceeds the threshold. These situations do not depend on the presence of true subgroups.

The Type II error rate for settings with model M1 in which no prognostic effect is present and where the BM+ and BM−
subgroups are of equal size is presented in Figure 6. For large interaction effects in model M1, we can observe low Type
II error rates for MOB and STIMA. These methods do not just have low Type II error rates when the interaction effect
is large but they do also classify nearly all patients correctly. In the presence of a large predictive effect, the influence
of prognostic effects, the size of the true BM+ subgroup, and the sample sizes were negligible for MOB and STIMA in
terms of the selection accuracy. IT achieves a comparable performance in settings with large interaction effects when the
dataset is large enough. For IT, we can observe that the sample size is important for its Type II error performance. Recall
that the total sample is split into 80% training sample and 20% test sample for IT. Both sizes should be large for a good
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performance of IT, eg, with small training samples it is likely to not identify the correct splits. Important splits identified
in the initial tree are prone to be pruned back due to a small test sample.

When the biomarker is not only predictive but also prognostic (𝛾 ≠ 0), the performance of MOB and STIMA in small or
medium predictive effect settings is affected (see Figure 7). When predictive and prognostic effects have the same direction
as it is the case when 𝛾 is set to 0.2, the performance improves. For this case and 𝛽1 = 0.3 and n = 600, MOB achieves a
median selection accuracy of 0.98. In case of different directions, only patients from the subgroup with an expected lower
outcome benefit from the treatment. In this setting, the performance deteriorates, eg, MOB does not identify any subgroup
in the scenario with 𝛽1 = 0.3 and n = 600. The reason for MOB's dependency on the presence of a prognostic effect is
explained by its splitting criterion, which wants to avoid missing important cut-off by investigating not only the instability
of the treatment effect. Seibold et al16 showed how the choice of a prognostic effect affects the partial score functions and
therefore the subgroup identification. In cases where the treatment difference between the BM+ and BM− is not large
(𝛽1 = 0.3), IT and STIMA have difficulties identifying any subgroup. This can be seen in Figure 7, which presents the
selection accuracies for settings with model M1 depicted by boxplots. Usually, a selection accuracy of 0.5 refers to a random
classification. This is not the case for scenarios with c = 0, what can be verified by looking at the sensitivity and specificity
or the Type II error. The selection accuracy of 0.5 refers to a selection of the overall population as B̂M+ or B̂M− subgroup.
The reason for this is the size of the true BM+ subgroup. Based on the value c = 0 and mintrt = 0.4, the size of the true
underlying BM+ subgroup is n∕2. IT's and STIMA's difficulty of identifying subgroups becomes more evident by looking
at the Type II error. The Type II error rate for these two methods is near to one (eg, see Figure 6) when the treatment
effect difference between the BM+ and BM− group is small. Although, the power for the two-sided heterogeneity test41

is larger than 95% assuming a sample size n = 2400 and the standard two-sided significance level of 0.05.
For both methods, a subgroup identification is observable in their initial trees but the applied pruning procedures prune

the initial trees back to their root. Since our proposed subgroup criterion can be seen as a pruning rule, we additionally
investigated the performance of our subgroup criterion applied on the initial trees of IT and STIMA. This means that the
large trees of IT and STIMA are grown as proposed by the developers. But instead of the originally proposed pruning
procedures, we apply the subgroup criterion described in Section 3 on the subgroups obtained by the initial trees. The
pruning procedures for IT and STIMA aim at reducing the amount of unreliable branches in the decision tree. Therefore,
it is not surprising that the Type I error increases when we apply the subgroup criterion to the large initial trees. Using
the subgroup criterion on the unpruned STIMA tree results in a Type I error rate of 1, whereas IT's Type I error is larger
than 0.6 for all considered parameter combinations. IT's Type I error rate increases with increasing sample size because
numerous small subgroups are identified without the originally proposed pruning procedure. Reducing the complexity
of the initial tree by setting the maximum tree depth to a smaller value, namely, to 5, did decrease the Type I error rate
for STIMA and IT considerably. The Type I error is close to 0 for those cases. Although changing the tuning parameter
referring to the maximum tree depth has a huge effect on the Type I error rate, the improvement achieved by reducing
the tree complexity on the selection accuracy is moderate compared with allowing more complex trees. Nevertheless, the
use of the subgroup criterion on the unpruned trees regardless of the chosen maximum tree depth criterion improves the
selection accuracy of IT and STIMA compared with the accuracy of the pruned trees in settings with small and medium
interaction effects (see Figure 8). Imposing an even smaller value for the tree depth would improve the performance, since
the obtainable complexity of the trees is closer to the complexity of the true underlying tree. For larger effects and sample
sizes, we classify more patients correctly when we apply the subgroup criterion after the originally proposed pruning
procedures.

With the chosen value for the relative improvement parameter, SIDES identifies large sets of subgroups. When multiple
identified subgroups fulfill the subgroup criterion the resulting B̂M+ is very large or can even be equivalent to the overall
study population. This behavior can be observed in the results of the simulation study, regardless of the presence of a
prognostic effect or the true effect size. We can observe this peculiarity in Figures 6 and 7. The Type II error rate is not
equal to 1, and the selection accuracies of SIDES are around the value 0.5 for settings with equal BM+ and BM− sizes. This
indicates that the size of identified subgroups differs only slightly from the sample size. SIDES tends to identify several
subgroups defined by noise covariates only. The true treatment effect in these spurious subgroups is equal to the overall
treatment effect, which exceeds the chosen threshold for the subgroup criterion in some settings of the simulation study.
Therefore, the subgroup criterion is not able to separate the spurious subgroups from subgroups defined by the predictive
biomarker (X1), what results in too large BM+ subgroups.

ARDP in general chooses the overall study population as B̂M+ group when the treatment effect in the overall population
is larger than the pre-specified mintrt threshold. This is the case for the step function model (M1) with 𝛾 = 0, c = −0.5,
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FIGURE 7 Selection accuracy for data generated by using model M1 with c = 0 and A, 𝛽1 = 0.3 or B, 𝛽1 = 0.5. The median is displayed
with the horizontal line within the box. For several setting and methods, eg, IT for all settings shown in A, median, upper, and lower quartile
differ only slightly or are even equal. Therefore, some of the shown boxes are just a horizontal line
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FIGURE 8 Selection accuracy for interaction
trees (IT) and simultaneous threshold
interaction modeling algorithm (STIMA)
without the originally proposed pruning
procedures using a maximum tree depth of 5 in
settings with model M1, c = 0 and A, 𝛽1 = 0.3 or
B, 𝛽1 = 0.5

and all considered interaction effects or for 𝛾 = 0, c = 0 and a medium 𝛽1 = 0.5 or large 𝛽1 = 1 interaction effect. For
a small interaction effect, the true treatment effect in the overall population is 0.35. Therefore, some peeling steps are
performed, and the identified B̂M+ subgroup does not involve all subjects. Therefore, the specificity is not equal to zero
in those cases. But the performance of ARDP is still poor.

In settings with model M1, the size of the true underlying subgroup is the same across the different values for the
interaction effect 𝛽1 when the subgroup criterion mintrt is fixed to the value 0.4. For model M2, this is not the case. For
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FIGURE 9 Sensitivity and
Specificity using model M2 with 𝛾 = 0
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a fixed subgroup criterion mintrt, the size of the true BM+ decreases with a decreasing interaction effect. Figure 9 shows
the sensitivity and specificity for all five methods in settings with a continuous treatment-by-biomarker interaction and
no prognostic effect. As in the setting with data generated by the step function model (M1), we can observe that MOB
classifies patients better compared with the other methods. In contrast to the scenario with the step function, the influence
of a prognostic effect seems to be negligible for all methods. SIDES in general seems to select too large subgroups, and
therefore we can observe a high sensitivity but a low specificity. When a continuous treatment-by-biomarker is present,
SIDES performance improves with increasing sample sizes. As SIDES, the ARDP algorithm's performance improves with
increasing sample size, and it also tends to select too large B̂M+ subgroups. But as can be seen in Figure 9, not all patients
belonging to the true BM+ subgroup are included in the identified B̂M+ subgroup. This can be explained by ARDP's
sensitivity towards the presence of noisy covariates.

Model M3 includes in contrast to the step function (M1) and linear trend (M2) model all available covariates as
main effects. Furthermore, the main effects are not based on dichotomized covariates. STIMA, ARDP, and IT adjust
for main effects. However, only STIMA and ARDP consider the main effects of all available covariates in their under-
lying regression models. Moreover, these main effects of underlying regression model are not based on dichotomized
covariates.

Figure 10 shows that IT's median selection accuracy is 0.5 for a medium treatment effect and all considered sample
sizes. As in settings with data generated with model M1 and c = 0, a selection accuracy of 0.5 means that all patients
are assigned to either the BM+ or BM− subgroup. For ARDP and MOB, the median selection accuracy slightly increases
with an increasing sample size in settings with a medium effect size. However, the median selection accuracies of these
two methods are smaller than 0.7. SIDES' median selection accuracy is the highest for a medium treatment effect and
1200 observations, but its variation is larger than the variation of MOB's and ARDP's selection accuracies. For 2400 obser-
vations and a medium treatment effect, the highest median selection accuracy is observable for STIMA. In almost all of
the performed simulation runs, all patients are classified correctly to either the BM+ or BM− subgroup by STIMA when
the treatment effect difference is large (𝛽1 = 1). For IT, we can observe almost the same when more than 1200 observa-
tions are available, although the variation of the selection accuracies is slightly larger compared with STIMA's variation.
MOB's median selection accuracy is always below the ones of IT and STIMA in settings with a high treatment effect. This
is due to the presence of multiple prognostic covariates, which MOB does not adjust for. In fact, MOB approximates these
prognostic effect by step-functions, which are induced by splitting the tree on these covariates. As observed with data
generated with M1, ARDP and SIDES tend to assign all patients to either BM+ or BM− when the treatment effect differ-
ence is set to be 1. For both methods, this can be explained by the overall treatment effect and the value for the subgroup
criterion as in settings with model M1.

The previous models used for data generation included a quantitative treatment-by-biomarker interaction. Model M4
generates data with a qualitative treatment-by-biomarker interaction and an overall mean of 0. Figure 11 shows that IT,
MOB, STIMA, and SIDES selection accuracies are close to 1 in 75% of the simulation runs for data generated with model
M4 and a = 2. Even for the settings with a smaller treatment difference, namely, those with a = 1, the assignment of
patients to the BM+ or BM− subgroup is good for IT, MOB, STIMA, and SIDES. The median selection accuracies are
close to 1, and we can just observe a larger variation for IT and SIDES in settings with 600 observations. ARDP's selection
accuracy is smaller compared with the accuracies obtained by applying the other methods. However, we can observe that
ARDP assigns more patients correctly with increasing sample size.

FIGURE 10 Selection accuracy
for data generated with model M3.
Simultaneous threshold interaction
modeling algorithm (STIMA)
classifies all patients correctly to
either the BM+ or BM− subgroup
for settings with a larger interaction
effect (𝛽1 = 1)
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FIGURE 11 Selection accuracy
for data generated with model M4
including a qualitative interaction

FIGURE 12 Mean bias of the
treatment effect for settings with the
A, step function and B, the linear
trend function. The depicted mean
biases were calculated by including
all scenarios with the same
interaction effect and the same
sample sizes

A well known problem after identifying a subgroup is that the treatment effect in this identified subgroup is likely to be
overestimated. Figure 12 shows the biases of the naive estimator of the treatment difference ẑ(B̂M+) for the five different
subgroup identification methods. We calculated the depicted biases with b̂ias = 1

D

∑D
i=1 ẑ(B̂M+)(i) − z(B̂M+)(i) where D

denotes the number of generated datasets with differing prognostic effect and cut-off value but the same combination of
sample size, interaction effect size, and mean function. The estimated and true treatment effect in the identified B̂M+ of
dataset i is denoted ẑ(B̂M+)(i) and z(B̂M+)(i), respectively. Note that we did not include cases where the overall population
was chosen to be the B̂M+ or B̂M− group in the calculation of b̂ias. Therefore, the depicted averages are based on different
numbers of observations (see the Type II error of the methods, eg, Figure 6). In general, we can observe that the biases
are larger when the treatment effect in the true underlying subgroup is small. Moreover, the biases tend to get larger
with decreasing sample size. As seen in the previous simulations results regarding the selection accuracy, the chances of
identifying the right BM+ subgroup increase with increasing effect in the true BM+ subgroups and with increasing sample
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sizes. For SIDES, we can observe the smallest values for the biases. But we have to keep in mind that the B̂M+ subgroups
identified by SIDES include only few observations less than the overall study population. As expected, we overestimate the
true treatment effect of the identified subgroups. An exception of a positive bias can be observed for subgroups identified
by ARDP in settings with the step function, when the treatment effect in the true subgroup is large. Only in settings with
c = 0.5, a B̂M+ subgroup different from the overall population is selected in some simulation runs. This is based on the
lower true treatment effect in the overall population compared with the considered settings with equally sized BM+ and
BM− subgroups (c = 0) and a BM+ subgroup larger than its complement (c = −0.5).

6 DISCUSSION

The range of methods developed for identifying subgroups with a homogeneous treatment effect is wide. However, little
has been done so far to evaluate their performances in comparison based on realistic trial scenarios and using criteria
appropriate for drug development. We chose five methods proposed for subgroup identification in order to select a future
target population and compared them numerically by applying them to a data set from ALS and by means of simulations.
Therefore, we selected a target population from the results obtained by MOB, IT, SIDES, and STIMA. For this selection,
we combined those identified subgroups with a treatment effect considered as relevant. For ARDP, which results in a
sequence of possible target populations, we additionally imposed that the final subgroup should be the largest subgroup
showing a relevant treatment effect. We used the raw, nonstandardized treatment effect in the subgroup criterion as
clinical relevance is not just indicated by the effect size but also by the outcome itself.42 Nevertheless, imposing a threshold
for the standardized treatment effect could also be justified. The selection of potential future target populations based
on treatment effects is of special interest in a regulatory context. Therefore, our comparative study focuses on a selection
criterion appropriate from a regulatory point of view. Other comparisons are based on a single dataset,21 evaluate the
estimation of tree-based treatment regimes23 or focus on identifying covariates affecting treatment effects22 rather than
identifying subgroups.

For the authorization of a new drug, the key importance is showing a positive risk/benefit balance in a specific target
population used in the indication. Therefore, the study population in which this positive balance is indented to be demon-
strated should “closely mirror the target population.”43 In some scenarios as described by the subgroup draft guideline,44

a restriction of the target population might be of interest in order to increase the chances of a successful following trial.
Usually, those restrictions are based on expected treatment heterogeneity. IT, STIMA, and MOB enable the user to find
such a restriction of the target population with a low type I error rate. When a new trial is then planned in a restricted tar-
get population, some justification should be presented for the exclusion of certain patients. A justification purely relying
on the results of such a method might not be accepted by regulatory authorities. Adding a biological rational referring to
the biological mechanism of a drug to the exploratory subgroup findings can help to evaluate the credibility of subgroup
findings. Note that the biological plausibility should imperatively focus on the mechanism of action, since all subgroups
defined by any combination of prognostic biomarkers seem biologically reasonable.45

On the basis of the simulation study conducted, we found that MOB, STIMA, and IT can be used in settings with larger
sample sizes as all three methods perform comparably well in terms of the proportion of correctly classified patients.
Although STIMA showed a slightly better performance compared with IT throughout the scenarios considered, IT has
the advantage of a more intuitive interpretation of its result with regard to the assignment rules. However, MOB exhibits
the best performance in most of the settings. The exception are settings where biomarkers have a linear prognostic effect
although they are not predictive. Seibold et al46 addressed this setting with a proposed extension of MOB called PALM
trees. The effect of the prognostic variables are assumed to be constant over all subgroups as it was the case in our simula-
tion study. Furthermore, variables being only prognostic but not predictive have to be known for the use of PALM trees. If
purely prognostic variables are not known in advance and are used as splitting candidates STIMA leads to the best results.
Nevertheless, STIMA needs larger sample sizes or larger treatment effect differences in the target population and its com-
plement to achieve satisfactory performance. Seibold et al16 suggested to examine the estimated model parameters in the
partitions obtained by MOB in order to decide whether splitting variables are prognostic only. A constant treatment effect
in nodes with the same parent-node suggests covariates being purely prognostic.

In the simulations SIDES' performance is not convincing when an overall treatment effect is present. Since the splitting
criterion of SIDES seems to evaluate the difference in precision between two nodes resulting from a split, SIDES tends
to identify higher proportions of spurious subgroups when larger overall treatment effects and larger sample sizes are
present.47,48 Therefore, Mistry et al48 proposed a new splitting criterion for SIDES considering the differential effect of
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two nodes rather than the precision. ARDP's performance in the simulations, however, is not convincing mainly due to
the criterion used to select the final subgroup. Although, the performance of MOB is good in many of the considered
settings, it still performs poorly in settings with smaller sample sizes. All considered methods do not show a convincing
classification for the smaller sample size of our simulation study. But the identification of a future target population is of
special interest after early phase trials, which usually involve much less than 600 patients. This problem can be addressed
by pooling data from different trials on the same drug, which should not be done naively. Pooling the data should be done
by an individual-patient meta-analysis framework allowing to account for heterogeneity. Examples were proposed by Patel
et al,19 Mistry et al,48 and Fokkema et al49 who proposed extensions to some of the here mentioned subgroup identification
methods. However, systematic evaluation and practical experience of these extensions are lacking in particular with the
view on regulatory settings.
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APPENDIX A: GROWN TREES OBTAINED BY APPLYING THE METHODS TO ALS DATA

In the following, the trees which are grown by IT, MOB, STIMA, SIDES, and ARDP are illustrated. For IT and STIMA, no
BM+ subgroup is selected when the originally proposed pruning procedures are used. Therefore, the initial trees of those
two procedures are illustrated in Figures A1 and A2.

For IT and MOB, the size and the treatment difference z in each identified subgroup are given in Figure A1. The leafs
fulfilling the subgroup criterion are colored in gray. IT grows an initial tree with one split on the variable chloride resulting
in two subgroups of unequal size. The subgroup involving 131 patients has an estimated treatment effect of 5.3 and is
therefore assigned as BM+ subgroup. An initial tree involving just one split is a comparable small tree. Here, this small
initial tree is a result of the chosen tuning parameter for the minimum size of an end node. As IT, MOB also uses the
estimated treatment difference ẑ to decide which leave is considered belonging to the BM+ or BM− subgroup.

For the STIMA solution, the mean outcome was calculated in each leaf. In order to define the BM+ group, fur-
ther steps are necessary (see Section 3). The results of SIDES and ARDP are shown in Figure A3. SIDES does not
identify any candidate subgroups. The estimated B̂M+ subgroup using ARDP is colored in gray. The treatment differ-
ences in the sequence of subgroups is denoted by ẑ. The illustrated solution of ARDP does not include all estimated
peeling steps.

https://doi.org/10.1002/pst.1951


624 HUBER ET AL.

FIGURE A1 Trees obtained by A, interaction
trees and B, model-based recursive partitioning
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FIGURE 14 Tree obtained by simultaneous threshold interaction modeling
algorithm (STIMA)
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FIGURE 15 A, Subgroup
identification based on
differential effect search
(SIDES) does not identify any
subgroup fulfilling the subgroup
criterion presented in Section 3.
B, The illustrated result of
adaptive refinement by directed
peeling algorithm (ARDP) does
not involve all iteration steps
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