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Depletion of regulatory T cells in 
ongoing paracoccidioidomycosis 
rescues protective Th1/Th17 
immunity and prevents fatal 
disease outcome
Nayane A. L. Galdino1, Flávio V. Loures2, Eliseu F. de Araújo1, Tania A. da Costa1, 
Nycolas W. Preite1 & Vera Lúcia G. Calich   1

In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the 
disease is already established, regulatory T cells (Treg) cells are associated with disease severity. 
Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most 
studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects 
of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved 
by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks 
of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-
infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased 
fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, 
an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/
Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first 
time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially 
fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel 
immunotherapeutic procedure.

Regulatory T cells (Treg cells) are a fundamental component in regulation of innate and adaptive immune 
responses. These cells play an essential role in self-tolerance maintenance, anti-tumor response, transplantation 
immunity and infectious processes control1–3. In their regulatory function, Treg cells can exert protective or del-
eterious effects depending on the experimental setting or disease process. By suppressing excessive immunity, 
Tregs can function protectively by restraining tissue damage caused by uncontrolled inflammation; however, the 
suppression of immunity can lead to uncontrolled pathogen growth and disease progression that is deleterious 
to the host.

There are several T cell subsets that possess regulatory activity. Naturally occurring Treg cells are CD4+ T cells 
that mature in the thymus and constitutively express CD25 (the alpha chain of IL-2R), low levels of CD45RB, 
and Foxp3 a transcription factor that is fundamental in the preservation of peripheral tolerance4. Induced Treg 
cells can be generated from conventional T cells under certain defined microenvironments such as the presence 
of TGF-β and retinoic acid5,6. In addition to CD25 (IL-2Rα), Treg cells express other activation markers such as 
CTLA-4 (CD152, cytotoxic T lymphocyte-associated antigen 4), GITR (glucocorticoid-induced tumor necrosis 
factor-receptor-related protein), OX40 (CD134), and L-selectin (also known as CD62 ligand, CD62L)7,8. In addi-
tion to the aforementioned markers, Treg cells also possess enhanced expression of Neuropilin-1, CD39, CD73, 
Helios and CCR59,10.

The suppressive activity of Treg cells can be mediated by inhibitory cytokines, metabolic interference, cytoly-
sis, and modulation of dendritic cell function. A set of inhibitory cytokines -TGF-β, IL-10, and IL-35- are released 
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under Treg cell stimulation and may inhibit the function of both innate and effector T cells. This inhibition can 
affect pro-inflammatory mechanisms mediated by Th1, Th2 and Th17 responses11–13.

The presence and the modulatory function of Treg cells have been described in experimental models and 
human fungal infections, including paracoccidioidomycosis, which is the most prevalent systemic mycosis in 
Latin America. An infection with P. brasiliensis can present three outcomes: 1) an asymptomatic infection iden-
tified by positive delayed-type hypersensitivity (DTH) skin tests, but no symptoms of the disease; 2) the acute/
subacute form is characterized by rapid fungal dissemination and involvement of the lymph nodes, liver, spleen 
and bone marrow; and, 3) the chronic form presenting heterogeneous clinical manifestations, ranging from uni-
focal to multifocal forms14–16. The acute form of PCM is distinguished by predominant Th2/Th9 cell activation. 
Patients with the chronic form develop a mixed immune response with the predominant differentiation of Th17/
Th22 cells, high production of IL-17 and IL-22, and variable amounts of Th1 and Th2 cytokines16. In contrast, 
individuals with asymptomatic infection develop a prevalent Th1 immunity16,17.

The characteristic immunosuppression observed in PCM patients has been associated with elevated numbers 
of Foxp3 expressing Treg cells within lesions and blood16,18–20. Furthermore, circulating CD4+CD25+FoxP3+ 
cells of PCM patients can exhibit high surface expression of molecules associated with Treg function such as 
CTLA-4, LAP-1 (latency-associated peptide (TGF-β)), and GITR. Treg cells isolated from peripheral blood of 
PCM patients revealed that both contact-dependent suppression and production of soluble factors can be part of 
their function18,19.

An initial study by our group demonstrated that Treg cells exert a deleterious effect on mice resistant (A/J) and 
susceptible (B10.A) to P. brasiliensis infection. Depletion of Treg cells by an anti-CD25 monoclonal antibody led 
to less severe and regressive infection, in addition to decreased tissue pathology in both mouse strains21. Further 
studies in the murine model provided evidence for the dual role of Treg cells in the severity of pulmonary PCM22. 
Using a loss- and gain-of-function experimental approach for the manipulation of Treg cells in vivo, Treg cells 
were shown to be both protective and detrimental to pulmonary PCM. The transfer of Tregs combined with 
CD4+Foxp3− T cells to SCID mice generated the more efficient and well-adjusted immune response able to limit 
pathogen growth and excessive tissue inflammation, leading to reduced disease severity and high survival rates22. 
Nevertheless, in human PCM all published studies have associated the presence of Treg cells with the severe forms 
of the disease. However, it is also known that the improvement of some PCM patients is only achieved when 
the anti-fungal therapy is associated with anti-inflammatory drugs, highlighting the importance of controlled 
inflammation as a therapeutic tool14,23. Altogether, these findings indicate that further studies on the role of Tregs 
in PCM are necessary to better understand the immunopathology of this disease.

Most studies on the role of Treg cells in human and experimental PCM have revealed the detrimental effect 
Treg cells on protective adaptive immunity. Importantly, all experimental studies were performed using the deple-
tion of Treg cells at the onset of infection, but the immunomodulatory effect of Treg cells depletion in the ongo-
ing disease has yet to be addressed. Because the human PCM is diagnosed late when the disease is already well 
established, we thought it would be important to characterize the effect of Treg cells depletion in ongoing PCM. 
C57BL/6 mice transgenic for the expression of diphtheria toxin receptor (DTR) and GFP (“green fluorescent 
protein”) under the influence of the FoxP3 transcription factor gene, which is characteristic of Treg cells, were 
here employed. The depletion of Treg cells in ongoing PCM significantly reduced disease severity by increasing 
effective Th1/Th17 immunity able to reduce fungal loads and consequent pathogen mediated tissue pathology. 
More importantly, these findings open a perspective of immunotherapeutic treatment for established PCM by 
controlling the number and/or function of Treg cells.

Results
Determination of the ideal dose of DT to deplete Treg cells and kinetics of Tregs recov-
ery.  Initially, we determined the dose of DT that efficiently depletes Treg cells from DEREG mice using a 
previously described protocol24 with minor modifications. The doses of 1.0, 0.5 or 0.25 µg of DT or PBS were 
injected i.p. for two consecutive days and DEREG mice sacrificed 12 h later. Lung leukocytes were obtained 
and labelled with anti-CD25 and anti-Foxp3 antibodies. As shown in Fig. S1A,B, the frequencies of GFP+ 
cells and CD25+Foxp3+ Treg cells were determined by flow cytometry using two different gate strategies. The 
cytometric analysis of lung leukocytes from DEREG mice showed that 1.0 and 0.5 µg of DT, but not with PBS, 
caused a profound depletion of Treg cells as demonstrated by the reduced presence of pulmonary GFP+ and 
CD4+CD25+Foxp3+ cells (Fig. S1C). Accordingly, the treatment of control C57BL/5 WT mice with 1.0 µg of 
DT did not reduce the frequency of these cells (Fig. S1D). This assay led us to choose the dose of 0.5 µg of DT to 
deplete Treg cells of DEREG mice.

We have then evaluated the recovery of Treg cells during a 7 days period after treatment with 0.5 µg of DT for 
two consecutive days. The gate strategy used to determine Treg cells is shown in the Fig. S1. It can be seen that 
at day 2 no GFP+CD25+Foxp3+ cells were found in the lungs, but the frequency of these cells increased in the 
following days and reached normal levels at day 7 after treatment (Fig. 1A,B). This result led us to use a weekly 
treatment to sustain Treg depletion in the course of the infection.

Depletion of Treg cells of DEREG mice does not cause inflammatory damage of organs.  It 
is well known that absence of Treg cells is associated with severe autoimmune pathologies1. This fact led us to 
investigate if the here used protocol to deplete Treg cells for 10 weeks would cause inflammatory damage to 
several organs. Thus, mice were treated weekly with two consecutive doses of 0.5 µg of DT, and at week 10 their 
organs were obtained and histologically analyzed. As depicted in Fig. S2 no changes or inflammatory infiltrates 
were seen in the spleen, brain, heart, liver lung and kidney of DT-treated DEREG mice, indicating the absence of 
autoimmune reactivity.
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Depletion of Treg cells in the ongoing disease reduces the fungal loads, tissue pathology and 
mortality rates of DEREG mice.  DEREG mice were infected i.t. with 1 × 106 P. brasiliensis yeasts. Three 
weeks after infection, infected mice were treated twice weekly with 0.5 µg of DT or PBS and the treatment was 
maintained until the 6th and 10th weeks after infection (Fig. 2A). At these time points, mice were sacrificed, and 
their organs assessed for the presence of viable fungal cells. As seen in Fig. 2B, compared with control PBS treated 
mice, DT treatment led to reduced fungal burdens in the lungs, spleen and liver of DEREG infected mice. The 
histologic sections of lungs and livers from DT or PBS treated DEREG mice were analyzed for the presence of 
inflammation (HE) and fungal cells (Grocott, methamine silver staining). It can be seen (Fig. 2D) that DT-treated 
DEREG mice showed diminished inflammatory reactions accompanied by reduced fungal loads in both organs 
and post-infection periods analyzed. The lesion areas of lung and liver of DT or PBS treated mice were measured 

Figure 1.  Recovery of Treg cells after treatment with 0.5 µg of DT for two consecutive days. DEREG mice 
(n = 4–5) were treated for two consecutive days with 0.5 µg of DT and the frequency of Treg cells in the blood 
was followed in the next 7 days. The frequency of CD4+Foxp3+ cells was measured by flow cytometry. As can 
be seen, Treg cells returned to normal frequency at the day 7 of treatment (A,B). Treg cells reached the lowest 
frequency at day 2 after treatment and progressive recovery their level in the next 5 days (B). The experiment 
was repeated 3 times with similar results.
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Figure 2.  Depletion of Treg cell in ongoing PCM leads to decreased fungal burdens, tissue pathology and 
mortality rates of DEREG mice. Groups (n = 6) of DEREG mice were i.t. inoculated with 1 × 106 P. brasiliensis yeast 
cells. Three weeks later they were treated with two consecutive daily doses/week of 0.5 µg of DT or PBS by the i.p. 
route for next 3 or 7 weeks (A). At weeks 6 and 10 after infection mice were sacrificed and their lungs, liver and 
spleen assessed for the presence of viable fungal cells using a CFU assay (B). Survival curves of DT or PBS treated 
infected DEREG mice were determined in a period of 160 days (C). Mice were sacrificed at weeks 6 and 10 after 
infection and their organs analyzed by histology for the presence of inflammation (HE, left panels) and fungal cells 
(Grocot, right panels) (D). The total area of lung and liver lesions was calculated at weeks 6 and 10 after infection 
(E). Experiments were repeated twice, and bars represent mean ± SEM (*p < 0.05, **p < 0.005 and ***p < 0.001).
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and a significant reduction was observed in Treg depleted mice (Fig. 2E). The reduced fungal burdens and tissue 
damage led to reduced mortality of DT-treated mice (Fig. 2C). These data led us to conclude that the reduction of 
Treg cells in ongoing PCM exerts a protective effect to infected hosts.

DT treatment of infected DEREG mice causes increased influx of CD4+CD25+Foxp3− T cells 
concomitantly with decreased presence of CD4+CD25+Foxp3+ Treg cells.  The lungs of DT-treated 
and control DEREG infected mice were obtained at weeks 6 and 10 after infection. The lung infiltrating leukocytes 
were isolated, and the expression of T cell markers evaluated by flow cytometry. The gate strategy used is depicted 
in Fig. S3. DT-treated mice showed an increase influx of CD4+Foxp3− T cells allied with decreased numbers of 
CD4+Foxp3+ Treg cells into the lungs (Fig. 3A). When CD4+Foxp3+ Treg cell markers were evaluated, it was seen 
a decreased expression of CTLA-4, ICOS and GITR indicating a lower activation of these cells present in the lung 
cell infiltrates (Fig. 3B).

Depletion of Treg cells in ongoing PCM induces increased influx of activated macrophages, 
dendritic cells and CD4+ and CD8+ T lymphocytes into the lungs of DEREG infected mice.  The 
number and activation of F4/80+ macrophages, CD11b+CD11c+ dendritic cells (DCs) as well as CD4+CD25+ 
and CD8+CD69+ T lymphocytes were determined by flow cytometry in DT-treated and control DEREG mice 
at weeks 6 and 10 of infection. The gate strategies used are shown in the Figs S3 and S4. Macrophages and DCs 
appeared in increased numbers in Treg depleted in comparison with control mice (Fig. 4A,B). Furthermore, 
macrophages increased the expression of activation markers (CD80, CD86 and CD40) that was more evident at 
week 10 after infection (Fig. 4A) while DCs of Treg depleted mice increased the expression of CD86 and CD40 
at week 6 and CD80 and CD40 at week 10 after infection (Fig. 4B). Importantly, at both periods of infection an 
increased number of activated CD4+CD25+ and CD8+CD69+ T cells were found in the lungs of Treg depleted 
mice (Figs 4C and 5D).

Treg cells depleted mice showed increased mRNA expression for transcription factors and 
cytokines of Th1 and Th17 lymphocytes allied with reduced expression of Foxp3.  T helper 
(Th) cells are characterized by different cytokines and master transcription factors profiles which are used to 
define their subsets. Th1 cells preferentially secrete IFN-γ and IL-2, express the transcription factor T-bet and are 
induced by several mediators including IL-12 and IL-18. Th2 cells that differentiate under the influence of many 
cytokines including IL-4, IL-33, IL-25 and thymic stromal lymphopoietin, typically secrete IL-4, IL-5, IL-9 and 
IL-13 under the control of GATA3 transcription factor. The combination of TGF-β and IL-6 as well as IL-1β and 
IL-23 influence the differentiation of Th17 cells which have RORγτ as the master transcription factor and IL-17 
as the major synthesized cytokine. On the other hand, TGF-β causes the expression of Foxp3 transcription factor 
that leads to the differentiation of Treg cells that secrete TGF-β, IL-10 and IL-3525.

To further characterize the effect of Treg cells depletion on T cell subsets, the mRNA expression for transcrip-
tion factors and cytokines of Th1, Th2, Th17 and Treg cells was measured by RT-PCR in lung leukocytes obtained 
from DT and PBS (control) treated infected mice at weeks 6 and 10 post infection. As shown in Fig. 5, both, the 
mRNA for the transcription factor (Tbx21) and cytokine (ifng) which characterize Th1 cells appeared in increased 
levels at weeks 6 and 10 after infection. No differences were found in Gata3 and IL-4 mRNA expression indicating 
that Th2 cells were not significantly altered. In contrast, both, the mRNA for the transcription factor (Rorc) and 
the typical cytokine (IL-17) of Th17 cells were produced in increased amounts by Treg depleted mice at both peri-
ods of the disease. Interestingly, no differences in the mRNA of TGF-β but decreased levels of Foxp3 mRNA were 
observed in DT-treated mice at both post-infection periods studied (Fig. 5).

Treg cells depletion in ongoing PCM increased the presence of Th1 and Th17 cells in lung 
inflammatory infiltrates.  Lung infiltrating leukocytes from DT-treated and untreated DEREG mice were 
obtained at weeks 6 and 10 after infection and intracellular presence of IFN-γ+, IL-4+ and IL-17+ in CD4+ and 
CD8+ T cells was assessed by flow cytometry. The gate strategy used to evaluate these T cell subsets is shown in 
Fig. S3. An increased presence of IFN-γ+ and IL-17+ CD4+ T cells was seen at weeks 6 and 10 after infection, 
while only at the first period studied IL4+ CD4+ T cells appeared in decreased numbers (Fig. 6A). This indicated 
that reduction in Treg cells resulted in prevalent Th1/Th17 responses associated with reduced Th2 immunity. A 
significant increase in IFN-γ+ CD8+ lymphocytes was detected at weeks 6 and 10, and a reduction in CD8+ T 
cells expressing IL-4 was seen at week 10 post-infection in Treg depleted mice. No differences in IL-17+CD8+ T 
cells were detected (Fig. 6B).

Treg cells depletion in ongoing PCM increases the Th1/Th17 cytokines and reduces Treg 
cells-associated cytokines.  Lung cell supernatants from DT and PBS treated infected DEREG mice were 
obtained at weeks 6 and 10 of infection and pro- and anti-inflammatory cytokines measured by ELISA (Fig. 7). 
Increased levels of TNF-α, IFN-γ, IL-12, IL-23 and IL-17 was concomitant with reduced levels of TGF-β and 
IL-35 at both periods of infection assayed. Diminished levels of IL-10 were also seen at week 10 post-infection. 
These data indicate that Treg cells depletion in ongoing PCM caused a prevalent Th1/Th17 response controlled by 
reduced levels of anti-inflammatory cytokines produced by Treg cells.

Cytokines were also measured by ELISA in the supernatants of macerated spleens and livers of DT-treated and 
untreated DEREG mice obtained at weeks 6 and 10 weeks after infection (Fig. S5A,B). At week 6 post-infection, 
increased levels of TNF-α, IFN-γ, IL-12, IL-23 and IL-17 were found in the liver and spleen supernatants asso-
ciated with reduced levels of TGF-β only in the spleens. At week 10, Th1 and Th17 cytokines (IFN-γ, IL-12, 
IL-17) were present in higher levels in the spleen and liver supernatants. At this time point, IL-10 and TGF-β 
were reduced in the spleens whereas IL-35 was the only Treg cytokine that appeared in reduced levels in the liver 
supernatants (Fig. S5A,B).
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Figure 3.  Diphtheria toxin treatment of DEREG mice in ongoing PCM reduces the number of CD4+Foxp3+ 
Treg cells and the expression of Treg cells markers. The phenotypic analysis of CD4+Foxp3− and CD4+Foxp3+ T 
cells of lung infiltrating leukocytes from DT-treated and control (PBS treated) DEREG mice was performed by 
flow cytometry at weeks 6 and 10 week after P.brasiliensis infection. The lung cells were obtained as described in 
Material and Methods and labeled with antibodies conjugated to different fluorochromes. The lung infiltrating 
leukocytes were gated by FSC/SSC analysis. The cells were gated for CD4 and then for Foxp3 expression (A). Treg 
cells markers (CTLA-4, ICOS and GITR) were then assessed in CD4+Foxp3+ T cells (B). One hundred thousand 
cells were acquired on FACS CANTO II and subsequently analyzed by FlowJo software. Data are expressed as 
means ± SEM of three independent experiments using 5 mice per group (**p < 0.005 and ***p < 0.001).
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Discussion
Using an experimental approach that allows the adequate manipulation of Treg cells in vivo, it was possible to 
demonstrate that the reduction of these cells in ongoing pulmonary PCM is beneficial to the course of the disease. 
The existence of DEREG transgenic mice expressing the diphtheria toxin receptor under the control of the Foxp3 
gene makes it possible to deplete the Treg subpopulation at any disease stage. The vast majority of experimental 
studies on the function of Treg cells employed anti-CD25 antibodies inoculated before or at the onset of infection. 
It is well known that this antibody is useful to selectively deplete Treg cells prior to the immune system activation, 

Figure 4.  DT treatment of DEREG mice in ongoing PCM increases the number and activation of macrophages, 
DCs and T cells that migrate to the site of lesion. The phenotypic analysis of macrophages (CD11c+F4/80+) and 
dendritic cells (CD11b+CD11c+) cells and some activation markers (CD80, CD86, CD40) of lung infiltrating 
leukocytes from DT-treated and control (PBS treated) DEREG mice was performed at weeks 6 and 10 week after 
P.brasiliensis infection (A,B). The lung cells were obtained as described in Material and Methods and labeled 
with antibodies conjugated to different fluorochromes. The lung infiltrating leukocytes were gated by FSC/SSC  
analysis. The cells were gated for CD11c/CD11b expression and then the CD11b cells were characterized for 
F4/80 expression. Macrophages and DC markers (CD80, CD86 and CD40) were then assessed in both cell 
subpopulations (A,B). For T cells phenotyping the lung infiltrating leukocytes were gated by FSC/SSC analysis 
and then gated for CD4+ or CD8+ expression. The expression of CD25 and CD69 activation markers were then 
evaluated in CD4+ and CD8+ T cells, respectively. One hundred thousand cells were acquired on FACS CANTO 
II and subsequently analyzed by FlowJo software. Data are expressed as means ± SEM of three independent 
experiments using 5 mice per group (*p < 0.05, **p < 0.005 and ***p < 0.001).
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due high CD25 expression by these cells. After the infection, the antibody cannot be used due to the increased 
number of activated T cells expressing high levels of CD25. Therefore, the DEREG model of infection allowed us 
to demonstrate the beneficial effects of Treg cells depletion during the course of PCM. This is particularly relevant 
to human PCM that is diagnosed when the disease is well established.

Initially, we verified that 99.98% of the Treg cells could be depleted by using diphtheria toxin (DT) inoculated 
by the i.p. route at a concentration of 0.5 μg/mL. As previously shown by Lahl et al.24, our examination of the 
kinetics of Treg cell reconstitution demonstrated the recovery of pulmonary Treg cells within 7 days following DT 
treatment in uninfected mice. Importantly, our depletion protocol did not cause autoimmunity-related pathol-
ogy with severe lymphadenopathy and splenomegaly, as described by Lahal et al.26 using daily DT treatment of 
DEREG mice for 20 consecutive days. Therefore, we were able to confirm previous studies27,28 showing that a 
small number of residual Treg cells after DT treatment is sufficient to avoid deleterious autoimmunity. In addi-
tion, the depletion protocol used here24 was sufficient to reduce Treg cells even at the chronic phase and alter dis-
ease outcome without causing autoimmunity or excessive tissue pathology. As expected, DT treatment resulted in 
Treg cells depletion associated with increased expansion of CD4+Foxp3− cells reflecting the suppressive function 
of Tregs on T cell subpopulations. In addition to reducing the number of Treg cells, DT treatment also led to a 
decrease expression of membrane molecules (GITR, ICOS and CTLA-4) associated with the suppressor or deac-
tivating function of Treg lymphocytes. Similar effect was observed in other infection models, such as tuberculosis 
and a viral infection29,30.

Foxp3 has been considered a lineage-specific transcription factor of Treg cells specialized in the suppression 
of immunity1,4. However, several studies have indicated that Foxp3 expression might not be restricted to immu-
nosuppressive CD4+CD25+Foxp3+ Treg cells. Some CD8+ T, invariant NKT, B, epithelial and tumor cells could 
potentially express Foxp3, although not necessarily presenting suppressive activity31. The expression of Foxp3 

Figure 5.  Depletion of Treg cells in ongoing PCM of DEREG mice increases the gene expression of cytokines 
and transcription factors of Th1 and Th17 cells concomitant with reduced Foxp3 expression. T helper (Th) 
cells are characterized by different cytokines and master transcription factors profiles which are used to define 
their subsets. Th1 cells preferentially secrete IFN-γ and express the transcription factor Tbx21. Th2 cells that 
differentiate under the influence of many cytokines typically secrete IL-4, IL-5, IL-9 and IL-13 under the 
control of GATA3 transcription factor. The combination of TGF-β and IL-6 as well as IL-1β and IL-23 influence 
the differentiation of Th17 cells which have RORγτ as the master transcription factor and IL-17 as the major 
synthesized cytokine. In addition, TGF-β causes the expression of Foxp3 transcription factor that leads to the 
differentiation of Treg cells that secrete TGF-β, IL-10 and IL-35. Here is shown the relative expression of mRNA 
of IFN-γ, IL-4, IL-17, TGF-β, Tbx21, Gata3, Rorc and Foxp3 in whole lung cells of DT and PBS (control) treated 
DEREG mice after 6 and 10 weeks of P. brasiliensis infection. The level of gene transcription was determined 
by Real-Time PCR. Bars show mean ± SEM from three independent experiments using at least four mice per 
group (*p < 0.05, **p < 0.01 and ***p < 0.001).
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by myeloid cells is controversial, and in DEREG mice Mayer et al.32 have not identified Foxp3+ macrophages. 
In our study we have not characterized the expression of Foxp3 in lymphoid or myeloid cells except in CD4+ T 
lymphocytes implicating that other Foxp3+ cells might have contributed to the findings here reported. However, 
our previous studies21,22 clearly indicated the detrimental effects of excessive CD4+CD25+Foxp3+ Treg cells in 
pulmonary PCM leading us to postulate that the protective effects here observed was due to the reduced number 
of this T cell subset induced by DT treatment of DEREG mice.

At both, the sixth and tenth weeks post-infection, a reduction in fungal loads was observed in the target 
organs, demonstrating the inhibitory function of Treg cells on pathogen clearance by host immunity. This result is 
consistent with our previous findings21,22 and other previous reports33, demonstrating that Treg cells favor fungal 
growth in the lesions. The reduced fungal loads paralleled the decreased number and size of lesions indicating 
that fungal-mediated inflammation and pathology is highly relevant in pulmonary PCM.

Treg cells can exert protective or detrimental roles in different infectious processes. For example, depletion of 
Treg cells by anti-CD25 antibodies augmented the parasitic burden and mortality of Toxoplasma gondii infected 
mice34. In Cryptococcus neoformans infection, DT treatment of DEREG mice resulted in increased inflamma-
tory lung injury and exacerbated Th2-type response35. In contrast, the findings reported here and those recently 
reported by our group, using C57BL/6 Foxp3GFP, resistant A/J and susceptible B10.A mice, show that Treg cells 
were deleterious to pulmonary PCM21,22.

In addition to the rescue of protective T cell immunity mediated by the increased presence of activated CD4+ 
and CD8+ T cells at the site of infection, a higher number of activated macrophages and dendritic cells was also 
observed; this indicates the contribution of activated CD4+ and CD8+ T cells to the control of fungal growth 
and severity of the disease developed by DT-treated mice. This finding is consistent with those observed in other 
infections such as those caused by Plasmodium yoelii, Leishmania spp. and M. tuberculosis where the depletion of 
Treg cells has also resulted in increased activation of T cell immunity29,36–38.

As previously shown by Lankford and Frunch39, the increase in IL-12 and IL-23 cytokines in the lungs, not 
only contributed to the activation of T cells, but also possibly contributed to the activation of macrophages, NK 
and dendritic cells of the DT-treated mice; this activation improves their effector and co-stimulatory function. 
The quantification of cytokines has also demonstrated that DT-treated DEREG mice produce less pulmonary 

Figure 6.  The reduction of Treg cells in ongoing PCM of DEREG mice increases the number of pulmonary 
Th1 and Th17 cells but reduces the presence of Th2 lymphocytes. The phenotypic analysis of lung infiltrating 
lymphocytes from DT and PBS (control) treated DEREG mice was performed at weeks 6 and 10 of P. brasiliensis 
infection. The lung cells were obtained as described in Material and Methods and labeled with antibodies 
conjugated to different fluorochromes. The lung infiltrating leukocytes were gated by FSC/SSC analysis. The 
cells were gated for CD4+ (A) or CD8 (B) expression and then for intracellular expression of IFN-γ, IL-4 and 
IL-17. One hundred thousand cells were acquired on FACS CANTO II and subsequently analyzed by FlowJo 
software. Data are expressed as means ± SEM of three independent experiments using 5 mice per group 
(*p < 0.05, **p < 0.01 and ***p < 0.001).
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IL-10 than their controls at weeks 6 and 10 post-infection. Because P. brasiliensis infected IL-10−/− mice present 
a more efficient control of the disease than WT mice40, the lower levels of IL-10 observed were potentially impor-
tant to the increased resistance of DT-treated mice. Simultaneously, the increase in IL-17 and IFN-γ indicated an 
improved Th1 and Th17 immune response. This cytokine profile is consistent with the increased mRNA expres-
sion of Tbet and RORC transcription factors as well as IFN-γ and IL-17 mRNAs seen in DT-treated DEREG 
mice. DT treatment reduced the levels of IL-1β in lung supernatants. We attribute this unexpected finding to the 
reduced fungal loads induced by Treg cells depletion. Our previous studies have shown that IL-1β is synthesized 
following NLRP3 inflammasome activation induced by TLRs and dectin-1 recognition of P. brasiliensis compo-
nents41. Therefore, the diminished fungal loads observed at weeks 6 and 10 post-infection have possibly triggered 
diminished macrophages and dendritic cells NLRP3 activation and reduced IL-1β production. It is well known 
that IL-1β can contribute to Th17 differentiation but here the increase IL-17 differentiation was not accompa-
nied by increased levels of this cytokine. We can suppose, however, that the improved Th17 differentiation has 
occurred at early periods of treatment and/or due to a new balance of other microenvironmental cytokines such 
as IL-6, TGF-β and IL-23 have contributed to Th17 expansion. No significant differences in the expression of IL-4 
and GATA-3 mRNA as well as secreted IL-4 were detected. However, the reduced presence of CD4+ and CD8+ 
T lymphocytes presenting intracellular IL-4 was observed in the lungs of DT-treated mice. These facts indicate 
that Treg cells contribute to reduce pro-inflammatory Th1/Th17 lymphocytes and to facilitate Th2 expansion in 
pulmonary PCM. This finding is similar to that described for allergic bronchopulmonary aspergillosis where Treg 
cells contribute to the exacerbated Th2 response and deleterious eosinophilic inflammation42.

Figure 7.  The reduction of Treg cells in ongoing PCM of DEREG mice controls the levels of pulmonary 
cytokines. Cytokines were measured by ELISA in lung homogenates of DT and PBS (control) treated DEREG 
mice at weeks 6 and 10 of P. brasiliensis infection. Bars show mean ± SEM of two independent experiments 
using 5 mice per group (*p < 0.05, **p < 0.01).
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A recently described suppressor cytokine, IL-35, is produced by nTregs and capable of inducing Tr35 cells 
that do not express Foxp3. Levels of IL-35 were decreased in the lungs of DT-treated mice. Since nTregs are nat-
ural sources of IL-35 and their production increases five- to ten-fold upon contact with T cells43, the decrease of 
this cytokine during Treg cell depletion is aligned with our previous findings demonstrating that P. brasiliensis 
infection induces the migration of nTreg cells to the lungs of mice22. Among the cytokines analyzed in this study, 
an expressive increase in IFN-γ, a characteristic Th1 cytokine, was detected at the early post-infection period 
analyzed. During M. tuberculosis infection, the depletion of the Treg cells has also induced a higher production 
of IFN-γ and a significant decrease in the bacterial loads when compared to the control mice44. In pulmonary 
PCM, Cano et al.45 demonstrated that in both susceptible B10.A and resistant A/J mouse strains the neutralization 
of endogenous IFN-γ resulted in exacerbation of lung infection, early dissemination to the spleen and liver, and 
deficiency in the protective immune response.

In addition to CD4+ IFN-γ+ T cells, increased presence of CD8+IFN-γ+ T lymphocytes were detected in the 
lungs of DT-treated mice at both post-infection periods. This result agrees with our previous studies demon-
strating that aside from CD4+ Th1 cells, resistance to P. brasiliensis infection is mediated by CD8+IFN-γ+ T 
lymphocytes46. In this scenario, the actions of IL-12 and IL-23 cytokines are equivalent, since both are able to 
increase proliferation of memory Th1 cells, as well as the production of IFN-γ47. Another important observation 
was the increased differentiation of CD4+ T cells to the Th17 profile mediated by Treg cells depletion. This T cell 
subpopulation, that is associated with immunoprotection and the less severe forms of PCM16,21,22, can be induced 
by TGF-β signaling which promotes the expression of Foxp3 transcription factor and directs the differentiation of 
naïve CD4+ T cells to the Treg phenotype48. IL-23 and IL-6, however, prevent the induction of Foxp3 by TGF-β, 
and lead to the differentiation of naïve T cells into the Th17 subset via the induction of the Rorc transcription 
factor49.

Over the past years regulatory T-cells with Th17 characteristics have been described50. Recently, CD4+Foxp3+ 
Treg cells with a pro-inflammatory Th17-like phenotype were also found in cultures of A. fumigatus-stimulated 
human peripheral blood mononuclear cells51. An equivalent finding was also described in pulmonary PCM. In 
our previous study22 using SCID mice adoptively transferred with naive CD4+, Treg, or naive CD4+ plus Treg 
cells, we could verify that the transfer of Tregs alone was sufficient to induce a small, but significant, protection. 
This finding was associated with the expansion of some CD4+IL17+ T cells and increases expression of RORc, 
suggesting that some transferred Tregs were also expressing IL-17. The Treg depletion here reported could lead, 
at least theoretically, to reduced Foxp3+IL-17+ T-cells, and reduced protection of hosts. However, at both periods 
assayed, a less severe disease was observed, indicating that this double-positive phenotype cells have a minor 
contribution to PCM immunoprotection.

It is important to note that the increased Th17 response here described was not associated with an exacer-
bated inflammation in any of the target organs, as demonstrated by the histopathological analysis. In contrast, 
the expansion of Th17 cells mediated by decreased presence of Treg cells in disseminated candidiasis caused an 
exacerbated inflammatory pathogenic response. However, in other forms of the disease, such as gastrointestinal 
candidiasis, the expansion of Th17 lymphocytes results in decreased colonization by C. albicans52. Although the 
effects attributed to the IL-23/Th17 axis may be positive or negative, in systemic fungal infections the absence or 
the defective differentiation of Th17 cells has usually been associated with negative effects such as recurrent pneu-
monia due to filamentous fungi and the occurrence of mucocutaneous candidiasis53,54. In agreement, our results 
suggest a protective Th17 response mainly expanded at the late phase of the infection.

Another benefit related to the depletion of Treg cells in ongoing PCM was the decreased mortality observed 
in DT-treated DEREG mice. This finding was concomitant with the improved cellular immunity observed, which 
possibly caused a more efficient eradication of the pathogen and decreased tissue pathology. An equivalent 
response was found in the infections by P. yoelii, Leishmania spp. and M. tuberculosis36–38.

We believe that our findings are important because the reduction of Treg cells could be used as a new immu-
notherapy for PCM that is typically diagnosed late, when the infection is well established. Indeed, targeting a 
CTLA-4 blockade with an anti-CTLA-4 monoclonal antibody to reduce Treg activity has previously been used 
as an immunotherapy of cancer55 and infectious diseases56. Another possibility would be the use of agonists or 
antagonists of the indoleamine 2,3 dioxygenase/aryl hydrocarbon receptor (IDO/AhR) axis that is an important 
inducer of Treg cells in murine PCM21,57–59. We believe that new therapeutic approaches are particularly impor-
tant to PCM patients whose treatment requires intensive and prolonged antifungal chemotherapy that causes 
deleterious side effects60.

In conclusion, using a model that allows for the proper manipulation of Treg cells in vivo we demonstrated 
that the reduction of this T cell subpopulation is highly beneficial to the established PCM because it restores 
immunity and reverses disease severity. Moreover, this finding introduces the possibility of using Treg cells reduc-
tion as a novel immunotherapeutic tool.

Materials and Methods
Ethics statement.  Animal experiments were performed in strict accordance with the Brazilian Federal 
Law 11,794 establishing procedures for the scientific use of animals, and the State Law establishing the Animal 
Protection Code of the State of São Paulo. All efforts were made to minimize suffering, and all animal proce-
dures were approved by the Ethics Committee on Animal Experiments of the Institute of Biomedical Sciences of 
University of São Paulo (Proc.180/2011-CEEA).

Mouse strains.  C57BL/6DTR/eGFP (DEREG) mice transgenic for the expression of diphtheria toxin receptor 
(DTR) and GFP (“green fluorescent protein”) under the influence of FoxP3 transcription factor gene, which is 
characteristic of Treg cells, were here employed. In some experiments, wild type (WT) C57BL/6 mice were used 
as control. WT and DEREG C57BL/6 mice obtained from Jackson Laboratories were bred and maintained at the 
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University of São Paulo animal facilities under specific-pathogen-free (SPF) conditions in microisolator cages. 
Male mice were used at 6–8 weeks of age and received sterilized rodent chow and water ad libitum.

Fungus and infection.  The highly virulent P. brasiliensis 18 isolate (Pb18) was used throughout this study. 
Yeast cells were maintained by weekly sub-cultivation in semisolid Fava Netto culture medium61 at 36 °C and used 
on days 5–7 of culture. For infection studies, fungal particles were washed in phosphate buffered saline (PBS), 
counted and adjusted to 20 × 106 cells mL. The viability of fungal suspensions, determined by Janus Green B vital 
dye (Merck), was always higher than 85%. Mice were anesthetized and submitted to intra-tracheal (i.t.) P. brasil-
iensis infection as previously described62. Briefly, after intraperitoneal injection of ketamine and xylazine, animals 
were infected with 1 × 106 Pb18 yeast cells, contained in 50 µL of PBS, by surgical i.t. inoculation.

Treg cell depletion.  Depletion was performed as previously described24. DEREG mice were treated with 
diphtheria toxin (DT) after 3 weeks of infection with 1 × 106 P. brasiliensis yeasts. The dose of 0.5 µg of DT in 
200 µL of PBS was injected intraperitoneally (i.p.) into each mouse for two consecutive days, once a week. The 
procedure was repeated every week until the end of the experiment. Control infected DEREG mice were treated 
with 200 µL of PBS at the same post-infection periods. DT was purchase from Sigma and reconstituted according 
to the manufacturer’s protocol.

Evaluation of Autoimmunity.  Uninfected DEREG mice were treated i.p. with 0.5 µg of DT in 200 µL of 
PBS or just PBS (control) for two consecutive days once a week for 10 weeks. The mice were observed each other 
day and were euthanized at the tenth week of treatment. After perfusion with 2% paraformaldehyde (PFA) via 
the aortic route, the target organs (lung, liver, spleen, brain, heart and kidneys) were removed and analyzed by 
histology. The organs were preserved in Carnoy fixative at room temperature. After the paraffin inclusion step, 
the organs were cut to a thickness of 5 mm and stained with hematoxylin-eosin (HE), for cellular and tissue iden-
tification and analysis.

Colony forming units (CFU) assays.  To assess the viable number of CFU in target organs, lungs, livers and 
spleens from DT- treated and untreated DEREG mice were aseptically removed, weighted and homogenized in 
5 mL PBS using tissue grinders as previously described63. Next, 100 µL aliquots of 50- and 100-fold dilutions from 
organs were plated onto petri dishes containing brain heart infusion agar (Difco) supplemented with 5% P. brasil-
iensis 192 culture filtrate and 4% (v/v) horse serum (Instituto Butantan, São Paulo, Brazil), and incubated at 36 °C. 
Colonies were counted until no increase in counts was observed and CFU per gram of tissue were determined.

Mortality rates.  Mortality studies were performed with DT or PBS treated DEREG mice inoculated i.t. with 
1 × 106 yeast cells. Deaths were registered daily and the mean survival time after infection was calculated.

Histopathological analysis.  Lungs, liver and spleen from DT or PBS treated DEREG mice were collected 
at weeks 6 and 10 post-infection, fixed in 10% formalin and embedded in paraffin. Sections of 5 µm were stained 
with hematoxilin-eosin (H&E) for analysis of the lesions and Grocott for fungal evaluation. Pathology was ana-
lyzed based on the size, morphology and cell composition of granulomatous lesions, presence of fungi and inten-
sity of the inflammatory infiltrates. Morphometric analysis was performed using a Nikon DXM 1200c digital 
camera and Nikon NIS Elements AR 2.30 software. Results are expressed as the mean ± standard deviation (SD) 
for the total area of lesions.

Flow cytometry analysis.  Lung cell suspensions were prepared as previously described64. For cell-surface 
staining, leukocytes were washed and resuspended at 1 × 106 cells/mL in staining buffer (PBS, 2% fetal calf 
serum and 0.1% NaN3). Fc receptors were blocked by the addition of unlabeled anti-CD16/32 (Fc block; BD 
Biosciences). Leukocytes were then stained in the dark for 20 min at 4 °C with the optimal dilution of each mono-
clonal antibody: Brilliant Violet 510 (BV)-labeled anti-CD45; Pacific Blue (PB)-labeled anti-CD4; phycoerythrin 
(PE)-labeled, anti-CTLA-4, anti-IL-17, PE-Cy5-labeled anti-CD69; PECy7-labeled anti-CD25, anti-IL-4; perid-
inin chlorophyll protein (PerCP)-labeled anti-CD25, anti-ICOS, anti-IFN-γ; allophycocyanin (APC)-labeled 
anti-CD8, anti-GITR, anti-F4/80; APC-Cy7-labeled anti-CD4, fluorescein isothiocyanate (FITC)-labeled 
anti-Foxp3 (from BD Biosciences or BioLegend),. Cells were washed twice with staining buffer, fixed with 1% par-
aformaldehyde (Sigma) and acquired using a FACSCanto II equipment and FACSDiva software (BD Biosciences). 
For intracellular detection of cytokines, leukocytes obtained from lungs were stimulated for 6 hours in complete 
RPMI medium containing 50 ng/mL phorbol 12-myristate 13-acetate, 500 ng/mL ionomycin (Sigma-Aldrich), 
and 3 mM monensin (eBioscience). Next, cells were labeled for surface molecules and then treated according to 
the manufacturer’s protocol for intracellular staining using the Cytofix/Cytoperm kit (BD Biosciences). Cells were 
washed twice with staining buffer, resuspended in 100 μL, and an equal volume of 2% formalin was added to fix 
the cells. A minimum of 50,000 events were acquired on FACScanto II flow cytometer (BD Biosciences) using the 
FACSDiva software (BD Biosciences). Lymphocytes were gated as judged from forward and side light scatter. For 
Treg cell characterization, FACS plots or histograms were gated on live CD4+FoxP3GFP+ cells. Otherwise, gated 
cells were measured for CD4 or CD8 expression and then for the respective surface or intracellular molecules.

RNA isolation and cDNA synthesis.  Lungs were homogenized in TRIzol reagent using tissue grinders. 
Phase separation was achieved following addition of 0.2 mL chloroform per mL of TRIzol and centrifugation at 
12000 × g for 15 min at 4 °C. The upper aqueous RNA phase was transferred to a fresh tube and further purified 
using Ultraclean Tissue & Cells RNA Isolation Kit (MO BIO Laboratories) according to the manufacturer’s pro-
tocol. RNA purity and concentration were assessed on a NanoDrop ND-1000 spectrophotometer. An amount of 
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1 µg total RNA was reverse transcribed in a 20 µL reaction mixture using the High Capacity RNA-to-cDNA kit 
(Applied Biosystems) following the manufacturer’s instructions.

Real-time quantitative polymerase chain reaction (RT–PCR).  The cDNA was amplified using 
TaqMan Universal PCR Master Mix (Applied Biosystems) and predeveloped TaqMan assay primers and probes 
(Tbet, Mm00450960_m1; GATA3, Mm00484683_m1; RORγC, Mm01261022_m1; Foxp3, Mm00475162_m1; 
IL-17, Mm00439618_m1; IL-4, Mm00445260-m1; GAPDH, Mm99999915_g1; all from Applied Biosystems). 
Probes were labelled with 6-carboxyfluorescein (FAM) at their 5′-terminal end. Data were normalized to GAPDH 
gene expression. TaqMan PCR assays were performed on a MxP3000P QPCR System and data were developed 
using the MxPro QPCR software (Stratagene).

Cytokine detection.  Lungs from mice infected with P. brasiliensis were aseptically removed and individually 
disrupted in 5 mL of PBS. Supernatants were separated from cell debris by centrifugation at 3000 × g for 20 min 
and stored at −80 °C. The levels of IL-2, IL-4, IL-6, IL-10, IL-12, IL-17, IL-23, IL-1β, IFN-γ TNF-α, IL-35 and 
TGF-β were measured by capture enzyme-linked immunosorbent assay (ELISA) with antibodies pairs purchased 
from eBioscience. The ELISA procedure was carried out according to the manufacturer’s protocol. Plates were 
read using a spectrophotometric plate reader (VersaMax, Molecular Devices).

Statistics.  Data are expressed as the Mean ± SD. The omnibus K2 D’Agostino-Pearson normality test was 
used to test the Gaussian distribution of samples. Differences between groups were analyzed by non-paired 
Student’s t test or analysis of variance (ANOVA) followed by the Tukey test. Differences between survival times 
were determined with the LogRank test. Data were analyzed using GraphPad Prism 5.01 software (GraphPad 
Prism Software, Inc.). p values ≤ 0.05 were considered significant.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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