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prognosis prediction model for lung
adenocarcinoma through machine learning
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Abstract

Background: Predicting lung adenocarcinoma (LUAD) risk is crucial in determining further treatment strategies. Molecular
biomarkers may improve risk stratification for LUAD.

Methods: We analyzed the gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO). We initially used three distinct algorithms (sigFeature, random forest, and univariate
Cox regression) to evaluate each gene’s prognostic relevance. Survival related genes were then fitted into the least absolute
shrinkage and selection operator (LASSO) model to build a risk prediction model for LUAD. After 100,000 times of
calculation and model construction, a 16-gene-based prediction model capable of classifying LUAD patients into
high-risk and low-risk groups was successfully built.

Results: Using a combined strategy, we initially identified 2472 significant survival-related genes. Functional
enrichment analysis demonstrated these genes’ relevance to tumor initiation and progression. Using the LASSO method,
we successfully built a reliable risk prediction model. The risk model was validated in two external sets and
an independent set. The expression of these 16 genes was highly correlated with patients’ risk. High-risk group patients
witnessed poorer recurrence-free survival (RFS) and overall survival (OS) compared to low-risk group patients. Moreover,
stratification analysis and decision curve analysis (DCA) confirmed the independence and potential translational value
of this predictive tool. We also built a nomogram comprising risk model and stage to predict OS for LUAD patients.

Conclusions: Our risk model may serve as a practical and reliable prognosis predictive tool for LUAD and could provide
novel insights into the understanding of the molecular mechanism of this disease.
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Background
Lung cancer remains the leading cause of cancer death
worldwide [1]. The 5-year overall survival rate for lung
cancer patients remains low at about 17% [2]. Lung cancer
consists of two major histological types: Non-small-cell
lung cancer (NSCLC), which accounts for approximately
85%, and small-cell lung cancer (SCLC). Lung adenocar-
cinoma (LUAD) is the major histological subtype of
NSCLC, accounting for more than 40% of lung cancer
incidence [3]. For patients with LUAD, early surgical

resection is currently the standard treatment. After surgi-
cal intervention, patients usually would receive additional
chemotherapy, and the survival rate could be improved by
5 to 10% [4]. Despite that, nearly half of LUAD patients
still suffered a relapse and would die as a result of disease
recurrence [5]. Traditionally, risk factors including tumor
size, stage, and lymph node status are commonly used for
LUAD patients’ risk assessment and therapeutic plan
determination. However, these clinicopathological risk
factors fail to clearly distinguish between patients who
have a high or low risk and do not predict which patients
are more likely to benefit from adjuvant chemotherapy.
Therefore, besides traditional clinicopathological risk
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factors, the discovery of a novel prediction signature
which is capable of predicting prognosis for LUAD
patients and identifying the high-risk subgroup of LUAD
patients is urgently demanded.
In pursuit of predictive biomarkers for patients with

LUAD, previous studies had highlighted various bio-
markers that may have the potentiality to be used for
prognosis prediction in LUAD. However, the limitations
of some of these studies included small study populations,
lack of validation, single-center cohorts, and model over-
fitting [6, 7].
Currently, technological advancements in high-through-

put techniques such as sequencing and microarray have
enabled researchers to examine genetic alterations in car-
cinogenesis and discovering biomarkers for many diseases
[8, 9]. Meanwhile, machine learning methods have been
introduced, tuned, and applied into genetic and genomic
data to elucidate complex cellular mechanisms, identify
molecular signatures, and predict clinical outcomes from
large biomedical datasets [10–12].
In this study, we aimed to identify and validate overall

survival (OS) related prediction model in LUAD. Differ-
ent populations of LUAD patients were enrolled in our
study. We initially used machine learning algorithms
(sigFeature and random forest) and univariate Cox re-
gression analysis to select survival relevant candidate
genes in 492 patients from The Cancer Genome Atlas
(TCGA) followed by gene signature model construction
using LASSO Cox regression analysis in the training set.
A 16-gene-based prediction model for LUAD was suc-
cessfully built after 100,000 times of model construction.
We then validated and evaluated the signature classifier
from various aspects. We hope that this predictive signa-
ture could benefit patients with LUAD and provides
more insights into the molecular mechanisms of this
prevalent and devastating disease.

Methods
Data acquisition and preprocessing
The TCGA LUAD legacy level-3 RNA-Seq data, con-
taining 515 tumor samples and 59 adjacent normal
samples, were downloaded, normalized, and quantile fil-
tered using the TCGAbiolinks R package [13]. The corre-
sponding clinical information of TCGA LUAD patients
was acquired from GDC portal (https://gdc.cancer.gov/
about-data/publications/PanCan-Clinical-2018) [14]. Pa-
tients with follow-up time less than 30 days were ex-
cluded, and finally, a total of 492 TCGA LUAD patients
were enrolled in this study as the discovery set.
For GEO data, the database was thoroughly queried for

all datasets involving studies of LUAD. To promote the
reliability of the results, only datasets supported by peer-
reviewed Pubmed-indexed publications, with complete doc-
umented clinical survival information of LUAD patients,

with sufficient (at least 30) tumor samples, and with ac-
cessible raw gene expression profiles, were selected for
this study. Based on these criteria, five gene expression
microarray datasets (GSE19188, GSE30219, GSE31210,
GSE37745, GSE50081) representing different independ-
ent studies of LUAD were screened out. After examin-
ing the corresponding survival information of each of
the five datasets, a total of 579 GEO LUAD patients
with follow-up time longer than 30 days were included
in this study as external sets.
The gene expression profiles for all five datasets were

generated from the Affymetrix Human Genome U133 Plus
2.0 Array. The raw CEL files of 579 GEO LUAD patients
were downloaded from the repository and were uniformly
processed using the Robust Multichip Average (RMA) al-
gorithm for background correction and normalization. The
R package affy was chosen as the implementation of this
algorithm [15].
The probe sets of Affymetrix HG-U133 Plus 2.0 Array

were annotated to genes based on the annotation platform
GPL570. For each gene, all corresponding probe set sig-
nals were averaged to produce a single expression value.
Finally, the expression data of 21,755 genes was obtained.
Next, the batch correction was performed, followed by
normalization between arrays to remove the heterogeneity
among multiple microarray datasets using sva and limma
packages (Additional file 1: Figure S1) [16, 17].
Apart from the above cohorts, we also downloaded

another dataset (GSE72094) as an independent set for
further validation using GEOquery R package.

Candidate genes selection using three distinct algorithms
We used the discovery set (492 TCGA LUAD patients) to
select candidate genes in this step. We examined each
gene’s prognosis relevance using three different methods
(sigFeature, random forest, and univariate Cox regression).
SigFeature algorithm is a combined machine learning

approach which is capable of identifying the significant
features using support vector machine recursive feature
elimination method (SVM-RFE) and t-statistic [18, 19].
In this study, we used sigFeature method to rank all the
genes based on their discriminative power of distin-
guishing alive patients from dead patients and selected
top 1000 genes for subsequent analysis. The R package
sigFeature was used as the implementation of this
algorithm (http://bioconductor.org/packages/release/bioc/
html/sigFeature.html).
The random forest algorithm is also a machine learn-

ing strategy, which is based on the construction of many
classification (decision) trees that are used to classify the
input data vector [20]. RandomForestSRC package is an
extension of the original random forest method and sup-
ports models including survival, regression, and classifi-
cation. Using this method, a total of 892 genes were
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considered important survival relevant variables for subse-
quent analysis (https://kogalur.github.io/randomForestSRC/).
Univariate Cox regression analysis is also a popular

method for determining the potential prognostic factors.
In this study, the independent hazard rate for each gene
was calculated based on the discovery set, and a descriptive
p-value of < 0.005 was considered statistically significant.
The R package survival was used as the implementation of
this method.

Functional annotation
Functional enrichment analysis (FEA) was used to con-
firm the biological relevance of the genes identified from
the methods above. The R package MoonlightR was used
to perform this analysis [21].

Predictive models construction and selection
After obtaining the candidate genes from the methods
above, we used the LASSO Cox regression analysis to
select the most significant prognostic genes in training set
for predictive model construction. LASSO is a penalized
strategy that is suitable for high-dimensional data and can
prevent overfitting [22, 23]. Here, we used 10 folds cross-
validation to determine the values of λ, and we chose the
λ where the partial likelihood deviance is the smallest as
the optimal λ. Once the predictive genes were determined,
we applied them to build an expression-based risk model
by risk score method as follows:

Risk Score ¼
XN

i¼1

Expi�Cið Þ

Where N is the number of genes, Expi is the expres-
sion level of genei, and Ci is the coefficient of genei
obtained from the LASSO Cox regression analysis in the
training set. We calculated the concordance index (C-
index) to evaluate the predictive accuracy of the risk
model preliminarily.
We then used computer-generated random numbers to

divide 492 TCGA LUAD patients into the training (345
cases) and internal testing (147 cases) sets. The training
models were then applied to the internal testing set, the
entire TCGA set, the external testing set (232 patients
from GSE37745 and GSE50081) and the external valid-
ation set (347 patients from GES19188, GSE30219, and
GSE31219) for the optimal model selection. Here, we con-
sidered a model whose C-index greater than 0.680 in every
LUAD patient cohort to be reliable and stable. R packages
glment and Hmisc were used as the implementation of this
method.

Statistical analysis
After 100,000 times of model construction, a well-per-
formed and stable 16-gene-based prognosis prediction

model outstood, with which every LUAD patient was
assigned a risk score, and LUAD patients were divided
into high-risk and low-risk groups according to the opti-
mal cut-off value (minimum p-value) of the risk score. We
then performed the time-dependent receiver operating
characteristic (ROC) analysis and calculated area under
the curve (AUC) at different cut-off times to measure the
discriminative accuracy of this particular model. The R
package survminer and survivalROC were used to calcu-
late the best cut-off value and performed ROC analysis,
respectively.
To further discover whether this model has advantages

over other commonly used clinical parameters, and is
worth using in clinical practice, decision curve analysis
(DCA) was performed to evaluate the predictive model
[24]. The R code for DCA is available at http://www.
decisioncurveanalysis.org along with tutorials.
Next, we did a multivariate Cox regression, and the

coefficients of the multivariable Cox regression model
were used to construct a nomogram with the rms package.
The performance of the nomogram was assessed by the
C-index via a bootstrap method and was visualized by cali-
bration plots.
To explore the potential biological relevance of the

prediction signature, gene set enrichment analysis
(GSEA) was performed using R package clusterProfiler
to rank gene sets associated with risk [25]. The Reactome
gene sets (http://software.broadinstitute.org/gsea/msigdb/
genesets.jsp?collection=CP:REACTOME) containing 674
gene sets were downloaded from MSigDB [26]. The gene
sets with positive enrichment score (or negative enrich-
ment score) and p-value < 0.05 after 1000 permutations
were considered significantly enriched gene sets.

Results
Patient characteristics
The study flowchart is illustrated in Fig. 1. Common
clinical characteristics of these patients were summa-
rized in Table 1. A total of 1463 LUAD patients were
enrolled in our study, among which 492 patients were
assigned to the discovery set, 232 patients were assigned
to the external testing set, 347 patients were included as
the external validation set, and 386 patients were assigned
to the independent set. The median OS time of patients in
the discovery set, external testing set, external validation
set, and independent set were 667.5 days (IQR 432.8–
1147.2), 1551.25 days (IQR 594.0–2294.9), 1803.0 days
(IQR 1125.0–2391.0) and 831.5 days (IQR 568.5–1022.8),
respectively. One hundred seventy-eight patients in the
discovery set, 127 patients in the external testing set, 100
patients in the external validation set, and 109 patients in
the independent set were deceased during follow-up.
Detailed clinicopathological features of these patients were
shown in Additional file 2: Table S1.
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Genes determined by three algorithms
Three different algorithms, i.e., sigFeature, random forest,
and univariate Cox, were used to select the survival-rele-
vant genes before model construction, and we hypothe-
sized that the combination of the genes identified by each

of the three algorithms was more survival-related and
therefore more suitable for prognosis prediction for
LUAD patients. A total of 2472 genes were identified
(1000 genes from sigFeature algorithm, 892 genes from
random forest algorithm and 1373 genes from univariate

Fig. 1 Study flow chart for our analysis. TCGA: The Cancer Genome Atlas; LUAD: Lung Adenocarcinoma; ROC: Receiver Operating Characteristic
(ROC) analysis; AUC: Area Under the Curve; DCA: Decision Curve Analysis; GSEA; Gene Set Enrichment Analysis
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Cox regression analysis), with 49 genes selected simultan-
eously by the three algorithms (Fig. 2a and Additional file 3:
Table S2). Functional enrichment analysis was performed
on these 2472 genes, and we found that expression alter-
ations of these genes could activate tumor progression-re-
lated biological processes such as proliferation of cells, cell
proliferation of tumor cell lines, cell survival, cell move-
ment of tumor cell lines, migration of tumor cell lines and
cell movement of blood cells and leukocytes, and deacti-
vate processes including morbidity or mortality, organism
death, necrosis, apoptosis of tumor cell lines and synthesis

of lipid (Fig. 2b and Additional file 4: Table S3, |Z-score| >
1, p-value < 0.05).

Building a predictive model for LUAD
In order to build a clinically available risk prediction
model for different populations of LUAD patients, ex-
pression data of the 2472 genes in 345 patients from the
training set were subjected to the LASSO Cox regression
analysis. In the initial 50,000 times of model construc-
tion, we failed to build a reliable and stable risk model
that could be validated in different populations of LUAD

Table 1 Clinical characteristics of LUAD studies from TCGA, GEO and ICGC data repositories

Fig. 2 Survival-related genes selected by the three algorithms from the discovery set and functional annotation. a 1000 genes from sigFeature
algorithm, 892 genes from random forest algorithm and 1373 genes from univariate Cox algorithm. There are 2472 genes in total, and 49 genes
that are in the overlapping region of the three algorithms. b Top 18 biological processes enriched significantly with |Moonlight-score| > =1 and
FDR < 0.05 using above 2472 genes. Increased activities highlighted in yellow and decreased in purple, green indicates the -Log10FDR. A negative
z-score indicates the activity of this biological process is decreased and a positive z-score indicates the opposite
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patients. On the 54,360th trial, we successively captured
a well-performed and stable prediction model, with C-
indices reaching 0.700, 0.689, 0.696, 0.682, and 0.704 in
the training set, internal testing set, entire TCGA set, ex-
ternal testing set, and external validation set, respectively
(Additional file 1: Figure S2). We then continued to
increase the number of trials to see whether there would
be a better risk model. However, as we continued to
increase the number of trials, the performance of models
tended to level off. After 100,000 times of calculation, a
total of 96,580 prediction model consisting of various
gene signatures were constructed, and we did not find
another better model (Additional file 5: Table S4).
Finally, 16 critical prognostic genes were successfully
extracted. Based on the coefficients generated from the
LASSO Cox regression analysis, an expression-based risk
score model was built using the formula described in the
Materials and methods section (Additional file 6: Table
S5). Using above risk score model, each patient of the
TCGA LUAD cohort was assigned a risk score according
to expression values of 16 gene biomarkers, and then
patients were separated into high-risk and low-risk
groups using the optimal cut-off value (1.767) (Fig. 4a,

top panel). Seventy-nine high-risk LUAD patients had
poorer OS (hazard ratio [HR], 4.31; 95% CI, 2.67 to 6.96;
p-value < 0.0001) than did the 413 low-risk LUAD
patients (Fig. 3a, top panel). We further assessed the
prognostic accuracy of the 16-gene-based classifier with
time-dependent ROC analysis at varying follow-up times
(Fig. 3a, bottom panel), and the area under the curve
(AUC) received 0.753, 0.726 and 0,656 at 1-, 3- and 5-
year. We also assessed the distribution of the risk score,
survival status and expression patterns of the 16-gene
classifier in the TCGA LUAD cohort, patients with
lower risk scores generally had better outcomes than
those with higher risk scores, and the former tended to
have higher expression of PEBP1, SFTA3, GNG7, ENPP5
and ZNF14, whereas the latter tended to have higher
expression of the remaining genes (Fig. 4a, middle and
bottom panels).

Evaluating the prediction model
To further substantiate the availability and stability of
this 16-gene-based risk model, we did the same analyses
on the two external sets (Additional file 7: Table S6). For
the external testing set (n = 232), the optimal cut-off

Fig. 3 Kaplan-Meier survival analysis and time-dependent ROC curves in the TCGA cohort, external testing, and external validation sets. AUC: area
under the curve. a TCGA LUAD cohort. b External testing set. c External validation set. We used AUCs at 1, 3, and 5 years to assess prediction
accuracy, and calculated p-values using the log-rank test

Li et al. BMC Cancer          (2019) 19:886 Page 6 of 14



value for classifying LUAD patients into high- and low-
risk group was 0.656 (Fig. 4b, top panel), with which the
model successfully categorized 110 patients into the high-
risk group and 122 patients into the low-risk group, which
were significantly different in terms of OS (HR, 2.8; 95%
CI, 1.95 to 4.02; p-value < 0.0001; Fig. 3b, top panel). The
time-dependent ROC analysis suggested the AUC was
0.715, 0.738, and 0.739 at 1-, 3- and 5-year for this cohort
(Fig. 3b, bottom panel). Likewise, validation on the exter-
nal validation set (n = 347) showed consistent result that
high-risk group patients (n = 104) had poorer OS com-
pared to low-risk group patients (n = 243) (HR, 3.32; 95%
CI, 2.11 to 5.21; p-value < 0.0001; Fig. 3c, top panel). The
AUC was 0.822, 0.714, 0.753 at 1-, 3- and 5-year (Fig. 3c,
bottom panel).
The distribution of the risk score, survival status, and

expression patterns of the 16-gene classifier in two external
sets also showed consistent results with the TCGA LUAD
cohort. Higher risk score patients had poor survival than
lower risk score patients, and the former tended to have
over-expression of IGF2BP1, UPK1B, SRGAP1, SATB2,
C1QTNF6, RHOV, IER5L, STYX, HMMR, PLEK2, RGS20
and lower expression of PEBP1, SFTA3, GNG7, ENPP5
and ZNF14 (Fig. 4b and c).
On the other hand, in order to further demonstrate that

this predictive signature also works on other cohorts, we
further included another independent LUAD cohort (n =
386) from GSE72094 dataset. In this independent cohort,
the predictive tool is also able to classify LUAD patients

into high- and low-risk groups with different survival out-
comes (Additional file 1: Figure S6, p-value < 0.0001). Both
univariate (HR: 2.617; 95%CI: 1.785–3.833; C-index: 0.663;
p-value < 0.0001) and multivariate (HR: 2.360; 95% CI:
1.603–3.472; p-value < 0.0001) Cox regression analyses of
the risk-score model on this cohort showed that this tool
is also an independent prognostic indicator.
To determine whether the prognostic value of the

predictive signature was independent of other clinico-
pathological variables of the patients with LUAD, both
univariate and multivariate Cox regression analysis were
performed. Selected variables included age, gender,
stage, smoking, and our risk model. The results of uni-
variate and multivariate Cox regression analysis from
TCGA and GEO patient datasets demonstrated that this
predictive risk model was an independent prognostic
factor for LUAD patients after adjusted by these clinical
variables (Table 2). Besides, age and stage were also
found significant in both LUAD patient datasets. In
order to further validate whether this model could apply
to different groups of LUAD patients in terms of clinical
variables (clinical stage, gender, and age), we also did a
stratification analysis on TCGA LUAD cohort and entire
GEO LUAD cohort, respectively. The stratification ana-
lysis was first carried out in tumor stage, which stratified
patients into the stage I group and stage II group. For
patients within stage I group, both TCGA and GEO
patient cohorts witnessed significant differences of OS
between high- and low-risk group (Fig. 5). As to the

Fig. 4 The distribution of risk scores, patients’ survival status and the heatmap of gene expression profiles in the TCGA cohort, external testing,
and external validation sets. a TCGA LUAD cohort. b External testing set. c External validation set
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stage II group, OS was also significantly different be-
tween the two risk groups. Since the number of stage III
patients in the GEO cohort and IV patients in both
cohorts were limited, the stratification analyses on these
subgroups were not conducted (Additional file 1: Figure S4).
Stratification analyses on gender, age, and smoking also
showed consistent results that in different groups of
LUAD patients, this predictive signature was still capable
of classifying patients into high- and low-risk groups,
which were significantly different in terms of OS. Taken
together, the results of Cox regression and stratification
analysis suggested that the predictive signature is inde-
pendent of other clinical features for prognosis prediction
of LUAD patients.
Apart from predicting OS, this predictive signature was

also able to predict recurrence in LUAD patients. We ob-
served that high-risk group patients had shorter recurrence-
free survival (RFS) compared to low-risk group patients in
both TCGA (HR, 2.38; 95% CI, 1.13 to 5.01; p-value = 0.001)
and GEO (HR, 2.94; 95% CI, 2.06 to 4.2; p-value < 0.0001)
LUAD patients (Additional file 1: Figure S5).
After evaluating the prediction accuracy and inde-

pendence of this model, we focused on whether the ap-
plication of these model plus common in-use clinical
parameters could benefit LUAD patients in clinical prac-
tice. We did DCA on our prediction model to assess the
net benefit that patients could receive. As is shown in
Fig. 6, for both TCGA LUAD patients and GEO LUAD
patients, they could gain more benefits when we com-
bined our prediction model to age, gender and stage in
predicting prognosis (Fig. 6).
These results indicated that our 16-gene-based predic-

tion model performed well and was capable of distin-
guishing different populations of LUAD patients with
high or low risk of survival.

Building a nomogram for individual patient’s prognosis
prediction
To develop a clinically applicable method that could pre-
dict an individual’s OS probability, we used a nomogram
to build a predictive model. The nomogram was gener-
ated on the basis of the multivariate analysis (p-value <
0.05) of OS in the TCGA LUAD patients (Fig. 7a). The
calibration plots for the 1-, 3-, 5-year OS rate were pre-
dicted well in entire LUAD patients (C-index: 0.695 for
1-year, 0.694 for 3-year and 0.695 for 5-year; Fig. 7b).

Identification of gene signature-related biological
functions using GSEA
In order to gain more insights into the biological functions
of the risk prediction signature, we applied GSEA to iden-
tify associated biological pathways from gene expression
profiles of LUAD patients in the high-risk and low-risk
groups classified by the gene signature. The high-risk group
patients were associated with multiple up-regulated gene
sets, mainly involved in activation of the pre-replicative
complex, cyclin A/B1 associated events during G2/M tran-
sition, deposition of new CENPA-containing nucleosomes
at the centromere and unwinding of DNA. On the other
hand, the low-risk group patients were associated with up-
regulation of acyl chain remodeling of PG, chylomicron-
mediated lipid transport, phosphorylation of CD3 and TCR
zeta chains and Ras activation upon Ca2+ influx through
NMDA receptor (Fig. 8 and Additional file 8: Table S7, p-
value < 0.05).

Discussion
Previous studies have demonstrated many different sin-
gle prognostic biomarkers for LUAD. SOX30 can inhibit
tumor-metastasis by directly binding to CTNNB1 pro-
moter and result in a favorable prognosis [27]. Elevated

Table 2 Univariate and multivariate analyses of clinicopathological factors and risk model in TCGA and GEO LUAD cohorts
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expression of lncRNA-ATB suggests a poor prognosis of
NSCLC and leads to cell proliferation and metastasis in
NSCLC [28]. Besides, MicroRNA-30e-5p is found to be
over-expressed in LUAD, associating with tumor size
and tumor progression [29]. However, these biomarkers
cannot separate high-risk patients from low-risk patients
with LUAD. On the basis of single prognostic biomarkers,
integrating multiple biomarkers into a single prediction
model would practically promote prognostic value com-
pared with a single biomarker [12, 30, 31]. However,
several limitations of early studies with integrated models

cannot be neglected. (1) There were insufficient number
of patients, which could lead to model overfitting [32]. (2)
Models were not validated in independent cohorts [33,
34]. In this study, we used a novel combination strategy
that incorporated genes from three distinct algorithms
(i.e., two novel machine learning methods: sigFeature and
random forest, and a traditional univariate Cox regression)
to minimize the possibility of losing or ignoring important
survival-related biomarkers [35]. The FEA of the genes
selected from the three distinct algorithms demonstrated
that these genes could activate tumor progression-related

Fig. 5 Kaplan-Meier survival analysis for all TCGA LUAD patients and GEO LUAD patients according to the 16-gene-based model stratified by
clinical stage, gender, age, and smoking status. a TCGA LUAD patients. b GEO LUAD patients
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Fig. 6 Decision curve analysis for the risk prediction model. a TCGA LUAD patients. b GEO LUAD patients. Black line: assume no patient is at
high-risk. Grey line: assume all patients are at high-risk. These two lines serve as a reference. Light green line: adding the 16-gene-based model to
clinicopathological risk factors can provide more net benefits for LUAD patients’ survival prediction

Fig. 7 Nomogram to predict OS for individual LUAD patient. a Nomogram predicting 1-, 3-, 5-year OS rate. b Calibration curves showing
predicted OS rate vs. observed OS rate. The gold line represents the ideal OS rate, and the red line represents the observed OS rate
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biological processes such as proliferation of cells, cell
proliferation of tumor cell lines, cell survival, cell move-
ment of tumor cell lines, migration of tumor cell lines and
cell movement of blood cells and leukocytes, and down-
regulate biological processes including morbidity or mor-
tality, organism death, necrosis and apoptosis of tumor
cell lines. Increased activities of proliferation, movement,
and migration of tumor cells and decreased activities of
apoptosis can lead to tumor recurrence, progression, and
metastasis [36]. Immune infiltrations in the blood are also
associated with recurrence and tumor progression [37].
Fatty acid synthesis exhibited multifaceted roles in cancer
[38]. Tumor cells must overcome these various forms of

cell death to metastasize. Therefore, the results from FEA
have confirmed the feasibility of our combination strategy.
Integrating multiple studies of a particular disease

can significantly increase the number of samples and
has been shown to improve the detecting power [39,
40]. In this study, we integrated the expression pro-
files of LUAD from TCGA and GEO data repositor-
ies. A total of 1463 patients with LUAD were
enrolled. Using the LASSO method, we established a
16-gene-based prediction model for LUAD. This novel
prognostic signature was successfully validated in the
internal testing set, the entire TCGA cohort, two ex-
ternal cohorts and an independent cohort, which
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indicated the stability and robust discriminative power
of this signature in terms of classifying LUAD pa-
tients into high- and low-risk subgroups.
Using this prognostic signature, LUAD patients could

be stratified into high- and low-risk subgroups. Generally
speaking, high-risk patients should receive more frequent
clinical surveillance and corresponding measures to pre-
vent disease recurrence and progression [41]. In our study,
we observed that high-risk subgroup had higher risks of
recurrence and poor clinical outcomes compared to the
low-risk subgroup. Therefore, our predictive signature
may help identify high-risk LUAD patients and make ap-
propriate clinical follow-up plans accordingly.
The conventional indicators for predicting prognosis

and making additional adjuvant treatment decisions for
LUAD patients after surgical resection include tumor
stage, tumor size, lymph node status, age, and so on [42].
To assess the independence of the predictive signature in
prognosis prediction, we performed both univariate and
multivariate Cox regression analysis. In both TCGA and
GEO LUAD patients, the predictive signature maintained
an independent correlation with OS after adjusting for
age, gender, stage, and smoking. In the stratification ana-
lysis, the predictive signature classified patients within the
same age stratum, the same gender, the same stage, and
the smoking status into high- and low-risk subgroups.
The results showed that patients in the high-risk group
tended to have shorter OS than those in the low-risk
group across these stratified patient datasets, indicating
the age-, gender-, stage-, and smoking-independent value
of the predictive signature.
In order to evaluate the prediction accuracy of the

predictive signature, we did the time-dependent ROC
analysis and calculated AUCs at different cut-off times.
The AUCs received 0.753, 0.726 and 0,656 at 1-, 3- and
5-year in the TCGA cohort, 0.715, 0.738 and 0.739 at 1-,
3- and 5-year in the external test set and 0.822, 0.714,
0.753 at 1-, 3- and 5-year in the external validation set,
suggesting relatively ideal predictive accuracy. However,
the AUC focuses merely on the predictive accuracy of
the signature. As such, it does not tell us whether the
model is worth using at all. DCA is a statistical method
that incorporate consequences and, thus, can inform the
decision of whether to use this model [24]. By applying
the method to our predictive signature along with clin-
ical factors, age, gender, and stage on both TCGA and
GEO patients, we found that LUAD patients benefitted
more when combining the predictive signature with the
above clinical factors to predict prognosis. In addition,
we also built a nomogram including stage and our risk
model to predict individual prognosis. The performance
of the nomogram was validated in the entire cohort.
Thus, this nomogram may provide an accurate prognosis
prediction for LUAD.

As to the prediction model itself, we found patients with
high-risk scores tended to have higher expression of
IGF2BP1, UPK1B, SRGAP1, SATB2, C1QTNF6, RHOV,
IER5L, STYX, HMMR, PLEK2, and RGS20, and low-risk
scores patients tended to be positively correlated with
PEBP1, SFTA3, GNG7, ENPP5, and ZNF14. IGF2BP1 is an
RNA-binding protein predominantly involving in tumor
progression, and its expression is associated with poor
prognosis in cancers [43, 44]. SATB2 is involved in the pro-
gression of breast cancer, head and neck squamous cell car-
cinomas, and osteosarcoma [45]. PEBP1, an RAF kinase
inhibitory protein, is involved in lipid death signals, and
negatively regulates starvation-induced autophagy [46, 47].
However, the roles of UPK1B, SRGAP1, C1QTNF6,
RHOV, IER5L, STYX, HMMR, PLEK2, RGS20, SFTA3,
GNG7, ENPP5, and ZNF14 in LUAD initiation and pro-
gression are still not well understood.
In eukaryotes, DNA replication is mediated by the

assembly of the pre-replicative complex (pre- RC) on rep-
lication origins [48]. Cyclin A/B1 during G2/M transition
is also a critical regulator of proper DNA replication.
CENPA is a critical factor for the assembly of a macro-
molecular protein complex at the kinetochore [49]. Can-
cer cell proliferation requires the rapid synthesis of lipids
for the generation of biological membranes [50]. In our
present study, GSEA found that high-risk group patients
were mainly involved in activation of the pre-replicative
complex, cyclin A/B1, and CENPA at the centromere and
unwinding of DNA. The low-risk group patients were
associated with chylomicron-mediated lipid transport,
phosphorylation of CD3 and TCR zeta chains and Ras
activation upon Ca2+ influx through NMDA receptor.

Conclusion
In summary, we integrated the expression profiles of
LUAD from multiple centers based on TCGA and GEO
data repositories, and thereby, our results could avoid in-
herent biases of such a study format. We used a novel
combination strategy that incorporated genes from three
distinct methods to identify survival-related genes. We de-
veloped a 16-gene-based risk model for LUAD prognosis
prediction through a comprehensive analysis of different
populations of LUAD patients. Moreover, our study
showed that this predictive model is effective to classify
patients with LUAD into high- and low-risk group. Thus,
this predictive tool may help facilitate the development of
individualized treatment for LUAD patients.
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