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Acute myeloid leukemia (AML) refers to a heterogeneous group of hematopoietic
malignancies. The well-known European Leukemia Network (ELN) stratifies AML
patients into three risk groups, based primarily on the detection of cytogenetic
abnormalities. However, the prognosis of cytogenetically normal AML (CN-AML), which
is the largest AML subset, can be hard to define. Moreover, the clinical outcomes
associated with this subgroup are diverse. In this study, using transcriptome profiles
collected from CN-AML patients in the BeatAML cohort, we constructed a robust
prognostic Cox model named NEST (Nine-gEne SignaTure). The validity of NEST was
confirmed in four external independent cohorts. Moreover, the risk score predicted by the
NEST model remained an independent prognostic factor in multivariate analyses. Further
analysis revealed that the NEST model was suitable for bone marrow mononuclear cell
(BMMC) samples but not peripheral blood mononuclear cell (PBMC) samples, which
indirectly indicated subtle differences between BMMCs and PBMCs. Our data
demonstrated the robustness and accuracy of the NEST model and implied the
importance of the immune dysfunction in the leukemogenesis that occurs in CN-AML,
which shed new light on the further exploration of molecular mechanisms and treatment
guidance for CN-AML.

Keywords: cytogenetically normal acute myeloid leukemia, prognosis, biomarker, immune dysfunction,
bone marrow
INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic disorders with diverse
clinical outcomes (1). The initial recognition of this heterogeneity depends primarily on
morphology (2). The French-American-British (FAB) Cooperative Group developed a
classification system based on morphologic and cytochemical characteristics, which classified
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AML into eight subgroups (M0-M7) (3, 4). However, this
classification provides limited prognostic guidance for AML
patients (5).

Advances in sequencing technologies have contributed to an
increased understanding of AML biology. Based on genetic
abnormalities, the European Leukemia Network (ELN) risk
stratification system classifies AML patients into three risk
groups: favorable, intermediate, and adverse (Table S1) (6).
The cytogenetic abnormalities associated with AML are
recognized as being the most valuable prognostic factors (7).
However, cytogenetically normal AML (CN-AML) represents
the largest AML subset, comprising 45%–60% of all cases (8, 9).
The prognosis of CN-AML must be assessed basing on genetic
mutations alone due to the presentation of normal cytogenetic
features (Table S1). In addition, the clinical outcomes of patients
in this subgroup are also diverse and challenging to define (10).

According to the ELN recommendations, six genetic
mutations have been demonstrated to be of prognostic
significance among all AML patients, including mutations in
FLT3, NPM1, CEBPA, RUNX1, TP53, and ASXL1 (11). NPM1
mutations occur at a high frequency, ranging from 25% to 35% of
all AML patients and from 45.7% to 63.8% of all CN-AML
patients (9). FLT3 mutations were identified in approximately
20% of AML and 28%–34% of CN-AML patients (12). Aside
from mutations in NPM1 and FLT3, the mutation frequency of
other genes in CN-AML is relatively low (6). Therefore, genetic
mutations alone appear to be insufficient to provide a
comprehensive prognostic assessment of CN-AML.

Genetic mutations can result in either the loss or gain of
function and can subsequently influence the expression profiles
of downstream genes. Given the diversity and uncertainty of
prognoses among CN-AML patients, novel molecular markers
may be discovered through the performance of transcriptome
analyses that can be used to refine the risk stratification strategy
for CN-AML patients. In recent decades, studies have identified
that the expression of certain genes was correlated with poor
prognosis in CN-AML (13–16). However, these studies have
been associated with various limitations. For example, the
identified prognostic factors have lacked consistency among
different cohorts. And sample origins have been ignored when
PBMCs and BMMCs were always mixed for analyses, whereas
some studies have indicated that the proportions and properties
differ between PBMCs and BMMCs (17, 18).

In this study, we integrated multiple transcriptome datasets
[BeatAML (19), GSE71014 (20), GSE12417 (21), GSE6891 (22),
TARGET-AML (23), and TCGA-LAML (11)] and identified
nine prognostic markers in CN-AML BMMCs. We fitted a
multivariate Cox proportional hazards model and developed a
9-gene model, named NEST (Nine-gEne SignaTure). The NEST
model was able to provide a personalized prognostic value for
risk assessment in CN-AML patients. Notably, our study
suggested that the NEST model was applicable to BMMCs but
not to PBMCs, which implied subtle differences between PBMCs
and BMMCs in CN-AML patients. Our results pave the way for
further explorations of the molecular mechanisms and
prognostic markers associated with CN-AML.
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MATERIALS AND METHODS

Data Source and Preprocessing
We downloaded gene expression profiles (raw count) and clinical
information of de novo CN-AML patients from the BeatAML
cohort (http://www.vizome.org/aml) as a training dataset. The
cohort includes samples from both bone marrow and peripheral
blood. On the one hand, bone marrow samples were derived
from 105 patients with de novo CN-AML and 21 healthy donors.
There were 33 samples in total derived from healthy donors.
Among them, 19 samples were BMMCs, and the remaining 14
samples were CD34+ bone marrow (CD34+) cells. Notably, all
CD34+ cells were collected from three patients. CD34+ sample
from one patient was included in each sequencing batch (for a
total of 12 times sequencing this control RNA). On the other
hand, peripheral blood samples included 43 patients with de
novo CN-AML in BeatAML. Moreover, to validate our model, we
selected bone marrow data from four external validation datasets
of CN-AML. Of these, GSE71014 (n = 104) (20), GSE12417 (n =
73) (21) and GSE6891 (n = 88) (22) were microarray datasets
downloaded from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/), and TARGET-AML (23) were gene expression
profiles (https://ocg.cancer.gov/programs/target). Apart from
these datasets, we also download the TCGA-LAML (11)
dataset obtained from the TCGA data portal (https://gdc-
portal.nci.nih.gov/). The sample origin of the TCGA-LAML
was PBMCs. Due to the different treatment regimens and
favorable outcomes of AML-M3 patients, we excluded them
from all cohorts. Ensemble IDs from the BeatAML dataset
were conver t ed to gene symbol wi th a GTF fi l e
(Homo_sapiens.GRCh37.75.gtf) downloaded from GENCODE
(https://www.gencodegenes.org/). For microarray datasets, the
median value was regarded as the gene’s expression value for
multiple probe sets corresponding to the same gene. The overall
survival time and genetic mutation information were obtained
from publications and the GEO database. No specific ethical
approval is required for this study, as all datasets used were
publicly available.

Identification of Differentially
Expressed Genes
The raw gene expression of the BeatAML dataset was normalized
by the trimmed mean of M values (TMM) method with the
“edgeR” package in the R platform (24). The voom method
estimated the mean-variance relationship of the normalized data,
generated a precision weight for each observation and entered
the “limma” empirical Bayes analysis (25). Differences in gene
expression with an adjusted P-value < 0.01 and absolute log2 fold
change (log2FC) >= 2 were considered significant differences.

Functional Enrichment Analysis
We used the “clusterProfiler” R package to perform Gene
Ontology (GO) enrichment analysis (26). Moreover, DEGs
were uploaded into the Ingenuity Pathway Analysis (IPA)
system for core analysis (27). The ingenuity knowledge base
(genes only) was selected as the reference set. IPA was performed
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to identify the canonical pathways associated with common
DEGs. P-value < 0.01 was set as the threshold value.
Establishment of the Prognostic
Cox Model
The gene expression data (raw count) were normalized with the
TMM method. We got the normalized counts per million
mapped reads (CPM) value. A log-based transformation (log
(cpm+1)) value was used for subsequent survival analysis. Firstly,
we used univariate Cox regression analysis and the log-rank test
to detect prognosis-related DEGs. The cutoff value for univariate
Cox analysis was 0.20, and the cutoff P-value for the log-rank test
was 0.10. To ensure the biological significance of the identified
DEGs, filtered genes whose highest expression value (log(cpm
+1)) among CN-AML and healthy donors less than 1.0 were
removed. Then, the BeatAML dataset was used as the training
cohort to construct the prognostic Cox model. Least absolute
shrinkage and selection operator (LASSO) analysis and stepwise
algorithm were applied simultaneously to select the most
significant prognostic gene from the identified prognosis
−related DEGs. The optimal values of the penalty parameter l
were determined through ten folds cross-validation. The optimal
tuning parameter l was identified via the min criterion. A
prognostic Cox model was established based on a linear
combination of the gene expression level multiplied by a
regression coefficient (b). The risk score of the model was
calculated as follows: risk score = expression of gene1 × b1 +
expression of gene2 × b2 + … expression of genen × bn. We
tested the proportional hazards assumption based on the scaled
Schoenfeld residuals using the “survival” packages in the
R platform.
Validation of the Model
The risk score for each patient was calculated with constructed
Cox model. Using the median of the risk score as the cutoff value,
patients in each cohort were divided into high- and low-risk
group. We applied a log-rank test to compare the overall survival
difference between the high and low-risk group. Meanwhile, the
time-dependent receiver operating characteristic (ROC) analysis
was applied to calculate the area under the ROC curve (AUC)
value at 1-, 2-, 3-years of the model. The AUC value of more than
0.5 indicates a non-random effect, and 1 indicating a perfect
model (28). The GSE6891 included detailed genetic mutation
information but no follow-up information. Therefore, these
patients were classified into a favorable and adverse group
assessed by ELN recommendations (6). The patient was
defined to be favorable when FLT3-ITD is negative, and
NPM1 is positive, or CEBPA double mutant is available. The
patient was defined to be adverse if a sample has at least one of
the following: (a) FLT3-ITD is positive and NPM1 is negative as
well as CEBPA double mutant is not available. (b) EVI1
expression is positive. Risk scores were compared between two
groups, and a Wilcoxon test P < 0.05 was considered
statistically significant.
Frontiers in Oncology | www.frontiersin.org 3
Optimization of the Model With Three
Independent Cohorts
Firstly, we enumerated all possible combinations of 12 genes
included in the model. Specifically, we selected from 3 to 12 out
of 12 genes to construct a new multivariate Cox model. We got
4017 combinations in total. Next, for each combination we
constructed a new multivariate Cox model with selected genes
in BeatAML. Then, for each combination, the new model was
applied to predict risk scores for CN-AML patients in GSE12417,
TARGET and BeatAML, respectively. We calculated the 1-, 2-, 3-
years AUC value and the log-rank test’s P-value in these cohorts.
Combinations filtering was executed based on the following
criteria: 1) the minimum value of 1-, 2-, 3-years AUC value
should more than 0.60 (28); 2) the maximum AUC of 1-, 2-, 3-
years AUC value should more than 0.70; 3) the P-values from a
log-rank test should less than 0.05 (The cutoff for TARGET was
0.10). Subsequently, we got the combinations that passed our
filtering criteria. Then, we used a min-max normalization to scale
the original ROC. Each ROC value was replaced according to the
following formula.

Normalized AUCi =
 AUCi −Min AUCð Þ

Max AUCð Þ −Min AUCð Þ
We summed up all normalized AUC values in three

independent cohorts in each combination and selected the
combination with the largest AUC value. Finally, we
constructed a new Cox model with the genes included in the
combination with the largest AUC value.

Comparison With Other Published
Predictive Models for
Prognostic Assessment
We screened publications from 2014 to 2020 on PubMed using
the following keyword terms: (“CN-AML”OR “cytogenetical”OR
“normal karyotype”) AND (“TCGA” OR “GEO” OR “biomarker”
OR “prognosis”OR “prognostic”). We got three published models
in total. The detailed model formulas were as follow: 1) MPG6
score = (0.0492 * CD52) - (0.0018 * CD96) + (0.0131 * EMP1) +
(0.2058 * TSPAN2) + (0.0234 * STAB1) - (0.3658 *MBTPS1) (13);
2) 3-genes model = (0.2016 * ROBO2) + (0.1274 * IL1R2) -
(0.5365 * SCNN1B) (14); 3) 7-genes model = (0.71900 * CD34) +
(0.61927 * MIR155HG) + (0.67258 * RHOC) + (0.66929 *
SCRN1) + (0.65925 * F2RL1) + (0.65777 * FAM92A1) +
(0.61491 * VWA8) (29). We applied these models to four
BMMCs datasets, which included BeatAML, TARGET,
GSE12417 and GSE71014, to compare the performance of these
models comprehensively.

Statistical Analysis
In our study, overall survival (OS) was defined as the time
interval between the date of diagnosis and the date of death or
lost to follow-up. We conducted univariate Cox analysis, and
factors with P-value <0.10 were incorporated into a multivariate
Cox analysis, which was used to construct a prognostic Cox
model and to identify independent prognostic factors. All
May 2021 | Volume 11 | Article 659201
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statistical analyses were performed with the R 3.6.1 software
(http://www.r-project.org/).
RESULTS

Clinical Information and Dataset
Quality Control
We downloaded RNA-sequencing data and clinical information
for de novo CN-AML patients from BeatAML (19), which
included 105 BMMCs samples obtained from CN-AML
patients (Figure 1A) and 33 samples from healthy donors (see
Methods). The ages of the CN-AML patients ranged from 2 to 84
years, a large proportion of which were older than 40 years
(88.57%). No significant difference in the sex composition was
observed. According to the ELN recommendations, 30% of
the patients in the BeatAML cohort had a good prognosis, 26%
had an intermediate prognosis, and 31% had an adverse
prognosis, which implied prognostic heterogeneity among the
CN-AML population. The spectrum of genetic mutations in
the BeatAML cohort was broad (Figure 1B), with 34.38% of
the CN-AML patients harboring an NPM1 mutation, which
formed the largest subgroup, consistent with previous studies
(6, 9, 30). Other common mutations included DNMT3A
mutations (32.29%), FLT3-TKD mutations (28.12%), and NRAS
mutations (15.62%). Among the 33 samples from healthy donors,
19 samples were BMMCs samples and 14 samples were bone
marrow CD34+ cells. All of CD34+ cells were collected from
three healthy donors. Notably, CD34+ sample from a single
donor was included in each sequencing batch, and this sample
(Control_CD34) was sequenced 12 times in total. Control_CD34
served as a quality check against intergroup batch effects. Few
batch effects were observed for the BeatAML dataset (Figure 1C).
We chose the 105 BMMC samples from CN-AML patients
and the 19 BMMC samples from healthy donors in the
BeatAML cohort for use in further downstream analyses. The
overall flowchart used for the bioinformatics analysis is shown in
Figure 1D.

Association Between CN-AML
Pathogenesis and Immune Dysfunction
To identify differences in the BMMC transcriptomic profiles
between CN-AML patients and healthy donors, we performed a
differential gene expression analysis with edgeR, which resulted
in the identification of 2,170 differential expressed genes (DEGs;
Table S2), including 1,956 downregulated and 214 upregulated
genes in CN-AML patients compared with healthy donors
(Figure 2A). The identified DEGs included several known
disease-linked genes, including cell cycle-related genes, HOX
family genes (31), andWT1 (32) (Figure 2D). To further explore
the biological functions of the identified DEGs, we performed
enrichment analyses. The IPA results suggested that the
canonical Wnt/b-catenin pathway was activated in CN-AML,
which agrees with previous reports (Figure 2B) (33, 34).
Particularly, these identified DEGs were enriched in immune-
related pathways, including primary immunodeficiency
Frontiers in Oncology | www.frontiersin.org 4
signaling, communications between innate and adaptive
immune cells, and T cell receptor signaling. Furthermore, GO
enrichment analysis revealed that the downregulated DEGs were
primarily associated with the activation of immune cells,
including neutrophils, leukocytes, and T cell (Figure 2C). We
then examined the expression of several classical T cell and
neutrophil activation-related genes in CN-AML (Figure 2D),
which included RAG2, IRF4 and CD8. The results revealed that
these genes were significantly downregulated in CN-AML
patients compared with healthy donors. These observations
indicated that immune dysfunction was associated with CN-
AML pathology.

Prognostic Cox Model Construction
To identify DEGs related to CN-AML prognosis, we performed
univariate Cox and Kaplan-Meier (KM) analyses (see Materials
and Methods). After the initial screening from all DEGs, we
identified 110 DEGs significantly associated with the clinical
outcome (Table S3). The prognostic impacts on AML of several
of the genes we identified have previously been validated in
previous studies, such as CD72 (35), ALOX12 (36), CD7 (37), and
BMP2 (38). Using these 110 prognosis-related DEGs, we
performed LASSO regression and stepwise regression analysis
to confirm whether any combination of these DEGs could be
used to accurately predict prognosis (Figures 3A, B). We
identified 12 genes, which we used to construct a prognostic
multivariate Cox model (Figure 3C). Because the proportional
hazards assumption is critical to the Cox regression (39), we
tested this assumption for our model. The proportional hazard
assumption is supported by the finding of a non-significant
relationship between residuals and time (40). And our results
suggested that the test was not significant for all 12 genes, and the
global test was also not statistically significant (Figure S1).
Therefore, we could assume that the model met the
proportional hazards assumption.

To confirm the association between these 12 genes and the
clinical outcomes of CN-AML, we performed KM analyses for all
12 genes using the BeatAML cohort. We noticed that 10 of the 12
genes were significantly associated with prognosis (log-rank test
P < 0.05, Figure S2). We then assessed the performance of the
model, primarily focusing on two indicators: the P-value of the
KM analysis (log-rank test) was used to evaluate a model’s ability
to distinguish between patients with favorable and adverse
prognoses, and the AUC value was used to evaluate the
accuracy of the model. An AUC value above 0.5 indicates a
non-random effect, with a value of 1 indicating a perfect model
(28). In the KM analysis, low-risk patients had significantly
improved overall survival (OS) compared with those in the
high-risk group (log-rank test, P < 0.05, Figure 3D). The 1, 2,
and 3-year AUC values for this model were 0.918, 0.973, and
0.915, respectively (Figure 3E). When we divided the CN-AML
patients from the BeatAML cohort into favorable and adverse
groups, based on ELN recommendations (6), the predicted risk
score was able to clearly distinguish between the favorable and
adverse groups (Wilcoxon test, P < 0.01, Figure 3F), which
suggested that our model was generally consistent with clinical
May 2021 | Volume 11 | Article 659201
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FIGURE 1 | Clinical characteristics of CN-AML in the BeatAML cohort and analysis strategy. (A) The age distribution (left panel) and the clinical characteristics (right
panel) of CN-AML patients in the BeatAML cohort. (B) Genetic mutation pattern in BeatAML CN-AML patients. (C) Multidimensional scaling (MDS) plot of all samples
in the BeatAML dataset. (D) The overall flow chart of the bioinformatic analyses applied to this study.
Frontiers in Oncology | www.frontiersin.org May 2021 | Volume 11 | Article 6592015
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FIGURE 2 | Immune dysfunction plays a vital role in CN-AML pathogenesis. (A) Volcano plot showing differentially expressed genes (DEGs) in bone marrow
mononuclear cells (BMMCs) between CN-AML patients and healthy control. Upregulated genes in CN-AML are highlighted in red, and downregulated genes are
highlighted in blue. (B) Canonical pathways enriched by Ingenuity Pathway Analysis (IPA) analysis. The orange bar indicates that the pathway in CN-AML is activated
with a positive z-score. The blue bar indicates that the pathway is suppressed with a negative z-score. The gray bars indicate pathways for which no predictions can
be made. (C) Enriched gene ontology (GO) terms for the upregulated and downregulated genes in CN-AML patients compared with healthy controls. (D) The
expression of T cell and neutrophil activation-related genes and several well-known leukemia-related genes in CN-AML patients and healthy controls.
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guidelines. All of these results implied that the 12-gene model
could reliably predict the prognosis of CN-AML patients.

External Validation of the 12-Gene Model
in Four Independent Cohorts
To further examine the performance of the 12-gene model, we
applied the model to four external independent cohorts,
including GSE12417 (n = 73), GSE71014 (n = 104), GSE6891
(n = 88), and TARGET (n = 26). The detailed demographic data
for these cohorts are listed in Table 1. Similar to the outcome for
the BeatAML cohort, the low-risk group had a significantly
longer OS than the high-risk group for both the GSE12417 and
GSE71014 cohorts (log-rank test, P < 0.05, Figures 4A, B). The
AUC values at 1, 2, and 3 years for GSE12417 were 0.686, 0.709,
and 0.685 (Figure 4D), and AUC values for GSE71014 were
0.599, 0.652, and 0.690 (Figure 4E). The AUC values for both the
GSE12417 and GSE71014 cohorts approached 0.70, which
suggested that the 12-gene model performed well in these two
external independent cohorts. The survival analysis in the
TARGET cohort indicated no significant difference between
Frontiers in Oncology | www.frontiersin.org 7
low- and high-risk groups (log-rank test, P > 0.05, Figure 4C).
We speculated that the small cohort size and younger patients of
the TARGET cohort contributed to this observation.
Nevertheless, AUC values for the TARGET cohort at 1, 2, and
3 years were 0.521, 0.733, and 0.715, respectively (Figure 4F),
which indicated that the model could be acceptable for the
prediction of short-term clinical outcomes for pediatric
patients. Moreover, we divided CN-AML patients from the
GSE6891 cohort into favorable and adverse groups according
to the ELN recommendations (see Methods). The predicted risk
score was able to significantly distinguish favorable and adverse
groups (Wilcoxon test P < 0.01, Figure 4G). The above results
further validated the performance of the 12-genes model.

Enhancing the Robustness of the
12-Gene Model
The 12 genes used in our model were determined by machine
learning algorithms based only on the BeatAML cohort. Because we
noted differences between the various cohorts, such as the age and
sex distributions, we decided to optimize the model based on
A

C E F

B D

FIGURE 3 | Construction of the 12-gene model and internal cohort validation. (A) LASSO coefficient profiles for the 110 prognosis-related differentially expressed
genes. (B) Tenfold cross-validation for tuning parameter selection in the LASSO model. The solid vertical lines represent partial likelihood deviance ± standard error
(SE) values. The dotted vertical lines are drawn at the optimal values according to the minimum criteria (left) and 1-SE criteria (right). (C) A forest plot showing the risk
associated with gene expression for the genes included in the Cox model. Hazard ratio (HR) < 1 indicates that the gene is protective. Otherwise, it is a risk gene. P <
0.05 indicates that this gene is an independent prognostic factor (P-value significant codes: 0≤***<0.001≤**<0.01≤*<0.05). (D) Kaplan-Meier curves for overall
survival based on the predicted risk score. The P-value for Kaplan-Meier curves is calculated by the log-rank test. (E) Time-dependent ROC curves for overall
survival at 1, 2, and 3 years based on the 12-gene model. (F) The distribution of predicted risk scores in patients with favorable and adverse clinical outcomes, as
assessed by European Leukemia Net (ELN) recommendations in the BeatAML cohort (n = 95).
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multiple cohorts simultaneously to improve the robustness of the
model. The median age of the TARGET cohort was 13 years, which
was quite different from those of the other examined cohorts. The
distribution of FAB subtypes in the TARGET cohort also differed
significantly from those in the BeatAML and GSE12417 cohorts.
Moreover, the detailed demographic information for the GSE71014
cohort was unknown (Table 1). Therefore, we selected the
GSE12417, TARGET, and BeatAML datasets to optimize the
model, whereas GSE71014 functioned as an external validation
dataset (Figure 5A). Specifically, we enumerated all possible
combinations of the 12 identified genes, resulting in 4,017 total
combinations (Figure 5B). We set strict criteria to filter the
candidate combinations (see Methods). After filtering, we obtained
20 candidate combinations. We then calculated a normalized AUC
value to determine the optimal combination (seeMethods), and we
selected the combination highlighted by the red box, which
presented with the largest normalized AUC value (Figure 5C).
Finally, based on nine selected genes, we developed a new Cox
model (Figure 5D). The nine-gene model met the global
assumptions of proportional hazards (Figure S3). We termed this
nine-gene model NEST (Nine-gEne SignaTure).

As shown in Figures 6A, B, the survival analysis inferred
significant differences between the low- and high-risk group in
Frontiers in Oncology | www.frontiersin.org 8
the GSE12417 and BeatAML cohorts (log-rank test, P < 0.05).
Although the log-rank test for the TARGET cohort was not
significant, the performance of the NEST model was enhanced
compared with that of the 12-gene model (Figure 6C). In
addition, the AUC value for the BeatAML cohort slightly
declined (Figure 6D), indicating no overfitting in the training
data. The AUC value for NEST, when applied to GSE12417,
appeared to be comparable to those obtained using the 12-gene
model (Figure 6E). Notably, the AUC values for TARGET
increased clearly (Figure 6F). According to the ELN
recommendations, we divided the BeatAML cohort into
favorable and adverse groups, and the predicted risk scores
were able to significantly distinguish between these two groups
(Wilcoxon test, P < 0.01, Figure 7A). These results indicated that
the NEST model was more robust than the 12-gene model and
performed well in both pediatric and adult CN-AML patients.

To further validate the generality of the NEST model, we used
two additional external independent datasets, GSE71014 and
GSE6891 (Table 1), to validate the model. The survival analysis
showed significant differences between the low- and high-risk
groups in the GSE71014 cohort (log-rank test, P < 0.05, Figure
7B). The AUC values for GSE71014 at 1, 2, and 3 years were 0.631,
0.697, and 0.744, respectively (Figure 7C), which was significantly
TABLE 1 | Clinical characteristics of patients from multiple cohorts.

Characteristics Bone marrow Peripheral blood

BeatAML (n = 95) GSE12417 (n = 73) GSE71014 (n = 104) GSE6891 (n = 88) TARGET (n = 26) BeatAML (n = 43) TCGA (n = 60)

Age
Median (yr) 60 62 NA 46 13 62 56
<60 yr 47

(49.5%)
31

(42.5%)
NA 83

(94.3%)
26

(100%)
18

(41.9%)
34

(56.7%)
>=60 yr 48

(50.5%)
42

(57.5%)
NA 5

(5.7%)
0 25

(58.1%)
26

(43.3%)
Sex
Male 52

(54.7%)
NA NA 45

(51.2%)
17

(65.4%)
23

(53.5%)
30

(50.0%)
Female 43

(45.3%)
NA NA 43

(48.9%)
9

(34.6%)
20

(46.5%)
30

(50.0%)
FAB
M0 4

(4.2%)
1

(1.4%)
NA 0 0 0 3

(5.0%)
M1 5

(5.3%)
21

(28.8%)
NA 23

(26.1%)
6

(23.1%)
1

(2.3%)
19

(31.7%)
M2 2

(2.1%)
33

(45.21%)
NA 12

(13.6%)
7

(26.9%)
1

(2.3%)
17

(28.33%)
M4 11

(11.6%)
9

(12.3%)
NA 18

(20. 5%)
6

(23.1%)
1

(2.3%)
11

(18.3%)
M5 15

(15.8%)
6

(8.2%)
NA 29

(33.0%)
3

(11.5%)
2

(4.7%)
9

(15.0%)
M6 0 3

(4.1%)
NA 2

(2.3%)
0 0 0

M7 0 0 NA 0 1
(3.9%)

0 1
(1.7%)

Unknown 58
(61.1%)

0 NA 4
(4.6%)

3
(11.5%)

38
(88.4%)

0

OS state
Alive 56

(59.0%)
31

(42.5%)
68

(65.38%)
NA 16

(61.5%)
18

(41.9%)
18

(30%)
Death 39

(41.1%)
42

(57.5%)
36

(34.62%)
NA 10

(38.5%)
25

(58.1%)
42

(70%)
Ma
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OS, overall survival; NA, not available.
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enhanced compared with the 12-gene model. Additionally, the
results in GSE6891 showed a high level of agreement with the ELN
recommendations (Wilcoxon test, P < 0.01, Figure 7D). Because
not every CN-AML patient harbors genetic mutations with
prognostic significance (Figure 1), these CN-AML patients
cannot be assessed by ELN guidance. Importantly, we were able
to apply our model to these patients using nine gene expression
levels to evaluate their prognosis. The performance of the NEST
model for CN-AML patients who could not be assessed by ELN
guidance was outstanding. The survival analysis inferred
significant differences between the low- and high-risk groups
(log-rank test, P < 0.05, Figure 7E), and the AUC values at 1
Frontiers in Oncology | www.frontiersin.org 9
and 2 years were 0.863 and 1.000, respectively (Figure 7F). Even
using fewer genes, these results indicated that the NESTmodel was
more robust and performed better than the 12-gene model and
worked well for patients who could not be assessed by ELN
clinical guidance.

Comparison of the NEST Model With
Published Predictive Models for
Prognostic Assessment
To further evaluate the performance of the NEST model, we
compared our NEST model with other CN-AML prognostic
models that were published from 2014 to 2020. These models
A B C

D

G

E F 

FIGURE 4 | Validation of the 12-gene model in external cohorts. Kaplan-Meier curves for overall survival in different external independent cohorts, (A) GSE12417 (n =
73); (B) GSE71014 (n = 104); (C) TARGET (n = 26). The P-value for Kaplan-Meier curves is calculated by the log-rank test. Time-dependent ROC curves for overall
survival at 1, 2 and 3 years in different external independent cohorts based on the 12-gene model, (D) GSE12417 (n = 73); (E) GSE71014 (n = 104); (F) TARGET (n =
26). (G) The distribution of predicted risk scores in patients with favorable and adverse clinical outcomes, assessed by European Leukemia Net (ELN)
recommendations in GSE6891 (n = 88).
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included the MPG6 model (13), the 3-gene model (14), and the 7-
gene model (29). We obtained each model’s formula from the
corresponding literature (see Methods) and compared the
performance using the BMMC datasets, including GSE12417,
GSE71014, TARGET, and BeatAML. For these comparisons, we
Frontiers in Oncology | www.frontiersin.org 10
focused on two indicators: the P-value of the KM analysis (log-rank
test), to evaluate each model’s ability to distinguish between patients
with favorable and adverse prognoses, and the AUC value of each
model, to reflect the accuracy. The AUC value of more than 0.5
indicates a non-random effect, and 1 indicating a perfect model.
A B

D

C

FIGURE 5 | The strategy for enhancing the robustness of the model. (A) The overall flow chart for enhancing the robustness of the model. * indicates the cohort
was used as a training dataset. The cutoff P-value for the log-rank test in the TARGET cohort was 0.10 (#). (B) The heatmap represents all combinations of 12
genes. Each column represents a gene, and each row represents a gene combination. In the heatmap, red rectangles denote selected genes, and blue rectangles
denote unselected genes. The dot plot represents the area under the ROC curve (AUC) value for overall survival at 1 (red), 2 (green), and 3 years (blue) in various
external independent cohorts based on the new model. (C) Combinations that passed the filtering criteria. The formula used to normalize the AUC can be found in
Methods. The combinations highlighted with a red rectangle represent the combinate with the highest normalized AUC value. (D) A forest plot of the risk associated
with the expression of each gene is included in the Cox model (P-value significant codes: 0≤***<0.001≤**<0.01≤*<0.05).
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The survival analysis showed that the risk score predicted by
our model was significantly correlated with the survival of the
patients in three out of four cohorts (log-rank test, P < 0.05,
Figure S4). Although the P-value was higher than 0.05 for the
TARGET cohort (log-rank test, P = 0.068), the difference
between the high- and the low-risk group was clear. In
contrast, other published predictive models could only
distinguish between the low- and high-risk groups in at most
two of the four cohorts (log-rank test, P > 0.05, Figure S4). The
performance of the NEST model was stable in multiple cohorts,
as reflected by the consistent high AUC values (Table 2). The
MPG6 model exhibited excellent performance only for the
TARGET cohort, which might suggest that this model is better
suited for pediatric patients. The small size of the TARGET
cohort may also account for this result. In the BeatAML and
GSE12417 cohorts, the AUC values of the NEST model were
consistently higher than those for the previously published
models. At 1 year, although the AUC of the NEST model was
lower than those for the MPG6 and 7-gene models for the
GSE71014 cohort, the AUC values were higher than all models
Frontiers in Oncology | www.frontiersin.org 11
for the 2- and 3-year survival assessments. These results
indicated that the performance of the NEST model was better
and more robust than the performance of the other models
across various cohorts.

Independence of the Predicted Risk Score
Certain clinical characteristics and known genetic mutations
could affect the prognosis of CN-AML patients; therefore, we
next examined whether the risk score predicted by the NEST
model could function as an independent prognostic factor that
was not affected by other factors. First, we applied a univariate
Cox analysis to common clinical factors and genetic mutations
identified in the BeatAML cohort (Table S4). We found the
NEST predicted risk score, age, TP53mutation, ZRSR2mutation,
TET2 mutation, FLT3-ITD, and U2AF1 mutations were risk
factors for a poor prognosis (Figure 8A), as reported by
previous studies (6, 19, 41–44). In addition, the result
suggested that PTPN11 mutation was a protective factor for
CN-AML, which appeared to contrast with previous reports (45).
We believe that the low PTPN11 mutation frequency among the
A B C

D E F

FIGURE 6 | The enhanced performance of the NEST model in various cohorts. Kaplan-Meier curves for overall survival in different external independent cohorts, (A)
BeatAML (n = 95); (B) GSE12417 (n = 73); (C) TARGET (n = 26). The P-value for the Kaplan-Meier curves was calculated by the log-rank test. Time-dependent ROC
curves for overall survival at 1, 2, and 3 years in different external independent cohorts based on the 12-gene model, (D) BeatAML (n = 95); (E) GSE12417 (n = 73);
(F) TARGET (n = 26).
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BeatAML cohort could explain this discrepancy. Secondly, we
selected those factors with P-values less than 0.1 in the univariate
Cox analysis for inclusion in the multivariate Cox analysis. The
result indicated that ZRSR2 mutation was an independent risk
factor (Figure 8B), which agreed with previous reports (42–44).
Notably, the NEST predicted risk score was also an independent
risk factor for poor clinical outcomes, which was not affected by
age or the presence of other gene mutations. These results
suggested that the NEST predicted risk score could serve as an
independent prognostic factor in CN-AML.

Applicability of the Model
Our reported results demonstrated the good results of the model
among BMMC datasets. For clinical convenience, we next
examined whether our model could apply to PBMC datasets.
We selected the PBMC data (n = 43) from the BeatAML dataset.
Meanwhile, we downloaded the TCGA-LAML (n = 151) from
the TCGA data portal (https://gdc-portal.nci.nih.gov/), which is
Frontiers in Oncology | www.frontiersin.org 12
also a PBMC dataset. We selected CN-AML (n = 60) from the
TCGA-LAML. Time-dependent ROC and KM analyses were
applied to both datasets. No difference between the low- and
high-risk groups was observed for either cohort (log-rank test, P >
0.05, Figures 8C, D). The AUC values were also not acceptable
for these cohorts (Figures 8E, F). The above results illustrated
that our model was only suitable for BMMCs, not for PBMCs,
which implied subtle differences between PBMCs and BMMCs.

To further verify the differences between BMMCs and
PBMCs in CN-AML patients, we first adjusted for
confounding variables, including the percentage of blasts and
tissue sources in the multivariate Cox analysis. We obtained the
percentage of blasts in BMMCs and PBMCs from clinical records
to perform the test. Moreover, we calculated risk scores for
patients with the BMMC and PBMC samples. To correct for the
effects of blast percentages and tissue sources, we included the
risk scores and the percentages of blasts in the multivariate Cox
analysis. The results suggested that the risk score predicted by
A B C

D E F

FIGURE 7 | The excellent performance of the NEST model among external cohorts. The distribution of predicted risk scores among patients with favorable and
adverse clinical outcomes as assessed by European Leukemia Net (ELN) recommendations in the (A) BeatAML and (D) GSE6891 cohorts. Kaplan-Meier curves for
overall survival based on the predicted risk scores for individuals in the (B) GSE71014 (n = 104) and (E) BeatAML (n = 25) cohorts who were unable to be assessed
by ELN. The P-value for Kaplan-Meier curves was calculated by the log-rank test. Time-dependent ROC curves for overall survival at 1, 2 and 3 years in (C)
GSE71014 (n = 104) and (F) BeatAML (n = 25) patients who were unable to be assessed by ELN.
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our model was independent of the percentages of blasts and
tissue sources (Figure S5A, P<0.01), indicating our previous
results were driven primarily by the model rather than
differences in the percentages of blasts and tissue sources.
Furthermore, we found that the PBMC samples were more
likely to cluster separately from the BMMC samples during
Frontiers in Oncology | www.frontiersin.org 13
unsupervised clustering when including all genes. As shown in
Figure S5B, we divided all samples into three groups, named A,
B, and C. To test the statistical significance of PBMC sample
enrichment in these three groups, we performed a
hypergeometric test. The results indicated that PBMC samples
were not significantly enriched in group A (P = 0.907) and group
TABLE 2 | The AUC values of the ROC analyses in various cohorts using different predictive models.

3-gene model MPG6 model 7-gene model NEST model

BeatAML Year1
Year2
Year3

0.665
0.578
0.528

0.633
0.602
0.425

0.638
0.742
0.662

0.874
0.959
0.911

GSE12417 Year1
Year2
Year3

0.551
0.605
0.592

0.563
0.566
0.601

NA
NA
NA

0.671
0.720
0.672

TARGET Year1
Year2
Year3

0.667
0.505
0.535

0.729
0.795
0.765

0.771
0.554
0.498

0.625
0.763
0.728

GSE71014 Year1
Year2
Year3

0.628
0.636
0.595

0.698
0.674
0.680

0.712
0.680
0.742

0.631
0.697
0.744
May 2021 | Volume 11 |
NA, not available.
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D E F

FIGURE 8 | The risk score predicted based on bone marrow mononuclear cells is an independent risk factor. (A) Univariable Cox regression analysis of the
relationship between the predicted risk score and common clinical outcomes. (B) Multivariable Cox regression analysis of the relationship between the significant
factors in univariable Cox regression analysis (P < 0.10) and clinical outcomes. Kaplan-Meier curves for overall survival based on the predicted risk scores in the (C)
BeatAML and (E) TCGA cohorts. The P-value for Kaplan-Meier curves was calculated by the log-rank test. Time-dependent ROC curves for overall survival at 1, 2,
and 3 years in the (D) BeatAML and (F) TCGA cohorts.
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B (P = 0.987). Notably, PBMC samples were significantly
enriched in group C (P = 0.004). The unsupervised clustering
results implied that PBMC samples were more likely to cluster
separately from BMMC samples, which might account for the
differences in the model application between these
two populations.
DISCUSSION

Although specific genetic mutations have been associated with
prognosis in CN-AML patients (6, 11, 46), the specific
relationships between aberrant gene expression and clinical
outcomes in CN-AML remain largely unknown. Novel
biomarkers uncovered from transcriptome analysis that can
provide prognosis assessment and potential targets for
precision therapy strategies in CN-AML are urgently necessary.
In this study, we integrated multiple cohorts to construct a
multivariate Cox model, which we named the NEST model, to
refine the risk stratification strategy in CN-AML patients.

The NEST model exhibited excellent robustness in five
independent cohorts. The predictive capability of the NEST
model for survival outcomes was validated by examining AUC
values, which were greater than 0.70 in all cohorts (Table 2).
Moreover, we also discovered that among CN-AML patients who
could not be assessed by ELN recommendations, the
performance of the NEST model remained outstanding
(Figures 7E, F). However, the survival analysis of the NEST
model in the TARGET cohort indicated no significant difference
between the low- and high-risk group (log-rank test, P > 0.05,
Figure 6). We believe that the small size of the TARGET cohort
(n = 26) may explain this lack of significance. However,
compared with the 12-gene model, the significance of the
survival analysis and the AUC values were enhanced obviously
by NEST for the TARGET cohort, which suggested that the
NEST model was not only suitable for adult CN-AML patients
but was also suitable for pediatric patients. Furthermore, the risk
score predicted by the NEST model could function as an
independent risk factor for CN-AML survival that was not
affected by common clinical factors and genetic mutations
(Figure 8B). Some limitations remain in this study that should
be considered. In addition to the limited sizes of the CN-AML
cohorts used to establish the NEST model, we only validated the
NEST model on two external cohorts. Thus, the performance of
the NEST model should be validated in further prospective
studies to guide clinicians in the assessment of prognostic
outcomes among CN-AML patients.

Despite these limitations, our NEST model showed more
robust performance than three other models, which were
published from 2014 to 2020, when tested in four independent
cohorts (Figure S5 and Table 2), which showed stable
performance for both the survival and ROC analyses. In
addition, our results revealed that the NEST model was only
suitable for BMMCs, and could not be applied to PBMCs in CN-
AML, indicating the existence of variability between BMMCs
and PBMCs, which were not due to differences in the percentages
Frontiers in Oncology | www.frontiersin.org 14
of blasts (Figure S5A). The results of the unsupervised clustering
further supported our conclusion (Figure S5B). Previous studies
have provided insufficient evidence to support a lack of
significant differences between BM and PB samples (21, 47,
48). Metzeler et al. (21) cited two pieces of literature (47, 48)
to support the applicability of their model to both PB and BM
samples. In the first cited study, Bullinger et al. (48) found that
the expression profiles of three paired samples of PB and BM
obtained from three patients were positively correlated according
to unsupervised hierarchical cluster analysis. However, this result
was not significant (n = 3), and this result could be interpreted as
the patient heterogeneity was more significant than tissue source
heterogeneity. In the second cited study, Sakhinia et al. (47)
reported no significant differences in expression between BM
and PB for 15 AML indicator genes. However, not only was the
number of tested genes limited (n = 15) but also 5 of the 15 tested
genes, representing one-third of the tested pool, showed
significant differences. These findings argue against the
interpretations represented by their conclusion. Moreover,
differences have been found in the cell cycle phases between
blasts from BM and PB (49–51), and recent studies have also
indicated an increase in CD3+CD56+ T cells in the PB but not the
BM of AML patients (52). Therefore, we believe that subtle
differences do exist between PBMCs and BMMCs in CN-AML,
and future studies should consider the sample origins
more strictly.

Except for ALOX15B and SLC44A4, all of the genes included
in our NEST model have previously been associated with
leukemia [FGF13 (53) and DNTT (54)] or other cancer types
[C1orf116 (55), FRMD6 (56), TFCP2L1 (57), ITPR3 (58), and
PCOLCE2 (59)]. Princy et al. (55) found that C1orf116 was
associated with the epithelial to mesenchymal transition (EMT),
which could represent a critical early event that occurs during
tumor metastasis in multiple cancers. Furthermore, they
demonstrated that the decreased expression of C1orf116 was
associated with poor prognosis in lung and prostate cancer
patients, which is consistent with our results in CN-AML.
DNTT has been reported to play important functional roles in
VDJ recombination and T cell receptor (TCR) (60) and B cell
receptor (BCR) (61) signaling, which might indicate an
association between immune dysfunction and CN-AML
pathogenesis. FRMD6 has been associated with clinical
outcomes in prostate cancer (56). Interestingly, FRMD6 also
plays a vital role in the Hippo pathway, which was originally
identified as an evolutionarily conserved signaling pathway that
controls organ size. An increasing amount of recent evidence has
connected this pathway to the regulation of innate and adaptive
immune responses (62–64). In addition, TFCP2L1 has been
reported to serve as a protective factor in clear cell renal cell
carcinoma (57). However, our study suggested that TFCP2L1
serves as a risk factor in CN-AML patients (Figure 5D), which
could be explained by differences between tissue types. Notably,
TFCP2L1 has also been found to play an important role in stem
cells as a component of a complicated transcriptional network
that includes other key transcription factors, such as Nanog,
Oct4, and Sox2, and maintains the pluripotency of mouse
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embryonic stem cells (mESCs) (65). Moreover, TFCP2L1 is a
downstream target of the leukemia inhibitory factor (LIF)/signal
transducer and activator of transcription (STAT3) pathway,
which mediates self-renewal (66). As a result, TFCP2L1 might
represent a potential target for anti-leukemogenic drug design.

Current dogma holds a “2-hit” model for leukemogenesis,
which suggests that the development of AML is associated with
dual dysfunction in cell proliferation and hematopoietic
differentiation. Class I mutations, such as FLT3-ITD and N- or
K-RASmutations, confer a proliferative advantage to cells. Class II
mutations serve primarily to block hematopoietic differentiation.
As a result, aberrations in several canonical pathways associated
with cell proliferation and differentiation, such as the STAT5,
RAS/MAPK, PI3K/AKT, Notch, and Wnt pathways, have been
associated with leukemogenesis (67). Given the particularity of
cytogenetics in CN-AML, the specific leukemogenesis for CN-
AML remains unclear. The current “2-hit” model only interprets
the observed alterations that occur in blast cells. According to the
NEST model, several immune cell-related genes may also be
associated with CN-AML pathogenesis. In addition to DNTT
and FRMD6, ALOX15B is constitutively expressed in human
monocyte-derived macrophages. Although the function of
ALOX15B in macrophages remains unclear (68), these immune-
related genes suggest that immune dysfunction might also play a
vital role in the pathogenesis of CN-AML. To summarize, we
speculate that the development of CN-AML might be related to
the dysfunction of immune cells in the BM microenvironment,
which broadens our understand of the “2-hit” leukemogenesis
model. However, more evidence remains necessary to confirm this
idea in future studies.

In conclusion, this study identified nine prognosis-related
genes in CN-AML and constructed an accurate and robust
predictive Cox regression model that is suitable for BMMCs.
The predicted risk score could serve as a powerful prognostic
indicator, independent of other risk factors. Furthermore, our
results shed new light on the pathogenesis of CN-AML and a
new potential therapeutic target.
Frontiers in Oncology | www.frontiersin.org 15
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