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Editorial

Digitalization, clinical microbiology and infectious diseases
In recent years, digitalization and artificial intelligence have
made tremendous progress. In medicine, data-driven technologies
are especially applicable in areas with a high degree of automation
and standardization of data [1,2]. Substantial advances have as well
been reported in clinical microbiology, but their translation into
routine application remains a long process with several technical
and regulatory hurdles. Some of the low-hanging fruits for diagnos-
tics scenarios include (i) dashboards to interconnect and visualize
microbiology data [3,4], (ii) automated analysis of images such as
microscopy slides [5] or agar plates [6,7] and (iii) association of
genome sequences and proteomic profiles with pathogen pheno-
types [8,9]. Clinical applications require standardized data formats,
ontologies with an interoperable information technology environ-
ment [10], infrastructure with sufficient storage and computational
capacity, and technical expertise to address the needs of microbiol-
ogists and infectious diseases experts.

In the present themed issue, Luz et al. summarize machine
learning algorithms for the analysis of routine electronic health
records. The authors identified 52 studies covering various as-
pects of infectious disease management including sepsis,
hospital-acquired and surgical site infections, and microbiological
test results. The heterogeneity of machine learning algorithms
ranged from logistic regression, random forest, support vector
machines to artificial neural networks. A key gap is the lack of
essential information on data handling [11]. Pfeiffer-Smadja
et al. ask if the time has come for machine learning in routine
practice of clinical microbiology [12]. In 97 studies, the data sour-
ces used were highly diverse ranging from genomic data and
microscopic images to mass spectrometry. Almost 40% of studies
were from low- and middle-income countriesdhighlighting the
opportunities that digitalization and digital biomarkers have to
offer considering decreasing costs and cloud-based services [13].
However, digital biomarkers also require validation in clinical
studies to show their impact on relevant outcomes. Lacking stan-
dardized data and algorithms poses an important challenge for
reproduction and validation studies [14]. As a result of issues in
data handling, two prominent published coronavirus disease
2019 (COVID-19) articles were recently retracted [15,16]. Journals
clearly need standards for data and code sharing. The FAIR princi-
ples provide an excellent guidance [17]. Although software code
and tools are often shared on GitHub (github.com) [18], the details
provided are often limited with missing explanatory code books
or instructions. Proper data and code-handling policies should
be part of the new research quality standard and will allow inde-
pendent validation of machine learning algorithms and data sets.

Smith and Kirby report on applications in modern image anal-
ysis [19]. Machine-learning-based image analysis may
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revolutionize microscopy for classical Gram stains, ova and parasite
preparation, and histopathological slides. For example, a neural
network could categorize Gram stains from positive blood cultures
with remarkable precision into Gram positives/negatives and cocci/
rods [5]. Of note, state-of-the-art infrastructure to generate high-
quality images, data storage and processing may be required. How-
ever, smartphone devices can bridge the technology gaps [20,21].
Similarly, based on pattern recognition, single bacterial colonies
growing on agar plates can be categorized or even identified
[6,7]. Both applications, automated microscopy and agar plate in-
spection, are likely to radically change the workflow in modern
diagnostic laboratories [22]. Perhaps parallel to how we have
embraced matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) mass-spectrometry for identification, making
biochemical tests almost superfluous [23]. However, there may be
potential for extracting additional information from MALDI-TOF
spectra. Weis and colleagues look into this key technology [24]
and summarize algorithms to link spectral profiles to microbiolog-
ical phenotypes. In their review, 36 studies using machine learning
for species identification and antibiotic susceptibility testing were
identified. Most commonly used machine learning techniques
included support vector machines, genetic algorithms, artificial
neural networks and quick classifiers. Within the studies identified,
awide range of qualities were noted and only four studies validated
their findings [24].

All authors highlight the need for validated algorithms. Valida-
tion is also a key point in the regulatory process and impacts reim-
bursement. FromMay 2021, the medical device and in vitromedical
device regulations of Europe will steer software with a diagnostic,
monitoring or therapeutic purpose (http://ec.europa.eu/growth/
sectors/medical-devices/regulatory-framework/), forming the basis
for CE labelling including machine-learning-based algorithms in
clinical microbiology. Both academia and industry will benefit
from standards in data and code handling as this process will sup-
port validation and further build trust in computational models and
methods [25,26]. A process additionally fuelled by (i) well-designed
clinical studies and (ii) cross-validation to known and well-
established statistical approaches. Ethical and legal aspects should
also be raised if such algorithms are to be integrated into personal-
ized and public health medicine [27]. As illustrated, during the
COVID-19 crisis, multiple models have predicted different out-
comes [28,29] of, for example, fatality rates and impact of the lock-
down. In public health emergencies high-quality real-time data
must be available in machine-readable formats for the scientific
community. Such infrastructure for public health monitoring needs
to be further developed. If public health decisions rely on such
models, in return models should to be validated in a similar way
ublished by Elsevier Ltd. All rights reserved.
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to algorithms in personalized medicine because the impact for the
general population and economics is significant.

Clearly, an interesting and challenging time for clinical microbi-
ology and infectious disease is ahead. Standards in data and code
handling are a first step, which will allow us to use the opportu-
nities of digitalization andmachine learning to improve diagnostics
and patient care.
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