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Abstract

While prior work has demonstrated that fear-conditioning changes the neural representation of previously neutral stimuli,
it remains unknown to what extent this new representation abstracts away from specific fears and which brain areas are
involved therein. To investigate this question, we sought commonalities between experimentally-induced fear via electric
shocks and pre-existing phobia. Using functional MRI, we tested the effect of fear-conditioning pictures of dogs in 21 spider-
fearful participants across three phases: baseline, post-conditioning, and extinction. Considering phobic stimuli as a refer-
ence point for the state of fear allowed us to examine whether fear-conditioning renders information patterns of previously
neutral stimuli more similar to those of phobic stimuli. We trained a classification algorithm to discriminate information
patterns of neutral stimuli (rats) and phobic stimuli and then tested the algorithm on information patterns from the condi-
tioned stimuli (dogs). Performing this cross-decoding analysis at each experimental phase revealed brain regions in which
dogs were classified as rats during baseline, as spiders following conditioning, and again as rats after extinction. A follow-
up analysis showed that changes in visual perception information cannot explain the changing classification performance.
These results demonstrate a common neural representation for processing fear-eliciting information, either pre-existing or
acquired by classical conditioning.
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Introduction

Survival depends on an organism’s ability to avoid threats
through fear learning. The classic concept of Pavlovian fear con-
ditioning assumes that a previously neutral stimulus can elicit a
fear response from an organism if that stimulus has been associ-
ated with an aversive, unconditioned stimulus (US) (Fendt and
Fanselow, 1999; Watson and Rayner, 1920). A large body of stud-
ies that used functional magnetic resonance imaging (fMRI) has
discovered brain regions in which a conditioned stimulus (CSþ)
evokes a systematically stronger or weaker blood-oxygen-level
dependent (BOLD) signal than a neutral stimulus (NS) (Andreatta
et al., 2012; Bach et al., 2011; Büchel et al., 1998; Fullana et al., 2016;

Gross and Canteras, 2012; Holland and Bouton, 1999; LaBar et al.,
1998). More recently, pattern-based analyses of fear-conditioning
have shown that, after conditioning, representations of stimuli
that are fear-conditioned and belong to the same visual category
become more similar to each other (Dunsmoor et al., 2014), and
that fear-conditioned stimuli become more similar to the US
(Onat and Büchel, 2015). However, in such cases, the reference
point for fear has been a concrete aversive stimulus (i.e. the US),
such as an electric shock. Thus, discovering increased similarity
within a fear-conditioned category or between a CSþand the US
raises the question as to whether this similarity pertains to
abstract properties of fear or to the association with a concrete
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aversive stimulus (for example, an electric shock as the US would
be present in both the CSþ condition and the US condition).

Therefore, in order to study the state of fear independent of
the effect of a concrete US, we compared neural representations
of CSþ’s (which were experimentally paired with electric shocks)
to neural representations of pre-existing phobic fear of spiders
(which were not paired with electric shocks). To this aim, we
recruited 21 spider-fearful participants and used fMRI to measure
their BOLD response while they viewed pictures of spiders, dogs,
and rats. During the experiment, participants acquired a fear of
dogs (CSþ) by means of mild, unpleasant electric shocks (US) to
their wrist. Pictures of rats served as neutral control stimuli (NS).
By using neural patterns elicited by pictures of spiders as the
reference point for the state of fear, we combined a whole-brain
searchlight analysis (Kriegeskorte et al., 2006) with a linear dis-
criminant analysis classifier to discover how a classifier that
learned to discriminate the NS (rats) from the PS (spiders) would
classify the CSþ (dogs) in different experimental phases (i.e. prior
to fear-conditioning, after fear-conditioning, and following fear-
extinction). Brain areas that represent whether a participant fears
a stimulus should initially classify dogs (still NS) as rats (NS), i.e.,
as emotionally neutral. After fear conditioning, such areas should
classify the dogs (now CSþ) as spiders (PS), because now both ani-
mal classes induce fear. In the extinction phase, when partici-
pants do not fear dogs anymore, dogs should be classified in
these areas as rats (NS) again. In summary, areas that represent
the emotional content of a stimulus should show an inverted
quadratic timecourse of the probability of classifying dogs as spi-
ders (low, high, low) over the experimental phases baseline, con-
ditioned, and extinction (see Figure 1). We followed up this
primary analysis with two subsequent analyses whose aims were
to determine (i) whether similarity changes between CSþand PS
or between CSþand NS drove the classifier’s differential perform-
ance in the revealed regions (see Figure 2 and Material and
Methods: Similarity Analysis) and (ii) whether we could rule out
changes in similarity of visual perception information as a means
of explaining the primary results (see Materials and Methods:
Region of Interest Analysis).

Materials and methods
Participants and questionnaires

Potential participants were screened using a German online
questionnaire, which reflects the four central diagnostic criteria

for specific phobia in DSM-5 on a scale from 0 to 6 (Rinck et al.,
2002), and equivalently worded questionnaires for fear of dogs
and rats. Only participants with responses of greater than or
equal to 5 on the dimensions ‘fear’ and ‘arousal’ for spiders and
less than or equal to 3 on these dimensions for dogs and rats
were contacted via email. The second round of screening con-
sisted of responding to the German version (Rinck et al., 2002) of
the ‘Fear of Spiders Questionnaire’ (Szymanski and O’Donohue,
1995), in order to better quantify participants’ fear of spiders,
and two derivative questionnaires to additionally quantify their
fear of dogs and rats on 0 to 6 point scales. We invited partici-
pants to take part in the study if they scored greater than or
equal to 44 (i.e. average score of �3 per item) in the question-
naire and less than an average score of 3 per item on the rat and
dog questionnaires. Additional exclusion criteria were past/

present treatment for mental or neurological disorders, present
intake of psychotropic medication, pregnancy, and contraindi-
cations to MR scanning. Included participants (21 females, age
range¼ 19–30 years) yielded mean scores for spiders (median¼
3.78; IQR¼ 3.40–4.40) that were higher than that of dogs,
assessed with Wilcoxon signed-rank tests, (median¼ 0.13;
IQR¼ 0–0.28; W¼ 231, z¼ 4.0145, P< 5.957� 10�5) and of rats
(median¼ 0.75; IQR¼ 0.38–1.16; W¼ 231, z¼ 4.0148,
P< 5.9493� 10�5). A further participant took part in the experi-
ment but was excluded from all analyses after reporting having
not experienced the electroshocks as unpleasant. Experimental
procedures followed safety guidelines for MRI research at the
University of Regensburg, complied with the Declaration of
Helsinki, and were approved by the local ethics committee.

Stimuli

Experimental stimuli were images of dogs, spiders, and rats on
a uniform gray background. A set of 26 participants (19 females,
7 males; age range¼ 20–39 years) who did not take part in the
neuroimaging experiment rated the images for their valence
and arousal using a procedure derived from Bradley and Lang

(Bradley and Lang, 1994). Spider stimuli included in the main
experiment were those images with the greatest negative
valence and arousal values, while included dog and rat images
were those with the smallest cross-category Euclidean distance
in a 2 D valence-arousal coordinate plane.
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Fig. 1. Predicted results: regions whose underlying mechanisms pertain to general fear processing should influence a machine learning algorithm to classify a condi-

tioned stimulus (CSþ) as similar to a phobic stimulus (PS) after fear-conditioning (Co). However, during baseline (Bl) and following fear-extinction (Ex), the classifier

should consider the CSþ as similar to another neutral stimulus (NS). Using a quadratic regression (dark gray curves), we expect regions exhibiting these properties

to yield an inverted-U shape (quadratic coefficients that are less than zero), while regions that play no role should yield a flat profile (quadratic coefficients that

approach zero).
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Stimulus presentation

Visual stimulation was carried out using A Simple Framework
(ASF) (Schwarzbach, 2011), built on the Psychophysics toolbox
(Brainard, 1997; Pelli, 1997), and MATLAB R2015b (The

Mathworks, Natick, USA). An LCD video projector (JVC DLA-G20,
Yokohama, Japan) cast visual stimuli behind participants in the
MR scanner onto a semitransparent screen at a frame rate of
60 Hz and a resolution of 1024� 768 pixels. Participants viewed
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angle hn, while measuring the similarity between the to-be-conditioned NS and the phobic stimulus (PS; blue vector) yields angle hp. After conditioning, the first model

(B) describes the scenario in which the conditioned stimulus (CSþ; dark-green vector) becomes more similar to the PS but does not change with respect to the NS,

which is depicted by the CSþmoving (dotted green line) toward the PS but in a circular trajectory around the NS (dotted red line), resulting in hp decreasing by some

non-zero quantity (e2) while hn remains the same. The second model (C) describes the converse scenario: the CSþbecomes less similar to the NS but does not change

with respect to the PS. This is depicted by the CSþmoving further away from the NS but in a circular trajectory around the PS (dotted blue line), resulting in hp remain-

ing the same while hn increases by some non-zero quantity (e1). The third model (D) describes the combined scenario: the CSþbecomes less similar to the NS and more

similar to the PS, in which case the CSþmoves away from the NS and toward the PS, resulting in hn increasing by e1 and hp decreasing by e2.
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stimuli, which subtended a visual angle of �13�, via a mirror
positioned on the head coil. Electric shocks (duration¼ 2 ms)
were delivered using an MR compatible DS7A current stimulator
(Digitimer Limited, Letchworth Garden City, UK), the timing of
which was controlled through ASF.

Experimental design

Prior to the main experimental session, participants engaged in
a threshold acquisition session, in which they shocked their
right wrists starting with low current stimulation (i.e. 1 mA),
increasing the amperage until they found an intensity that pro-
duced a near-painful sensation, which they deemed very
unpleasant but bearable. This individualized amperage
(range¼ 2–9 mA) was used in the main experiment during the
conditioning and conditioned runs.

The experiment followed a two-factorial design with
factors experimental phase [baseline, conditioned, extinc-
tion]� stimulus class [conditioned (CSþ), neutral (NS), phobia
(PS)]. Experimental sessions followed an event-related design
and were organized into 8 runs: 2 baseline runs, 1 conditioning
run, 3 conditioned runs, and 2 extinction runs. Neuroimaging
data acquired during the conditioning run were not used in any
further analyses. Each run (except the conditioning run) con-
tained 36 trials (i.e. two repetitions of six images per class) pseu-
dorandomized such that no condition appeared more than
twice in a row. A given trial contained a central, green fixation
dot of 2 s, followed by the presentation of an animal image for
1.5 s, followed by a temporally jittered intertrial interval of 6þX
s, with X�geom(0.3), truncated at 10 s, during which the fixation
dot was red. During 4 of the 12 CSþ trials (i.e. �33%) in each con-
ditioned run, a single electric shock was administered at the off-
set of the stimulus. Before the extinction phase, we removed
the electrostimulator from the participants’ wrist to accelerate
extinction.

The conditioning run, which did not include the presenta-
tion of stimuli from the phobia class (i.e. images of spiders),
contained 24 trials (i.e. two repetitions of six images per pre-
sented class) that followed the same timing scheme as those of
the other runs, with the exception that the interval was tempo-
rally jittered intertrial interval of 6þX s, with X�geom(0.3 s),
truncated at 8 s to save time. Moreover, during 6 of the
12 CSþ trials (i.e. 50%) in the conditioning run, electric shocks
were administered at the offset of the stimulus.

Neuroimaging data acquisition

Data acquisition was carried out using a 3 T Allegra head scanner
(Siemens, Erlangen, Germany). Functional images were acquired
with a T2*-weighted EPI sequence [34 slices per volume in
ascending interleaved order, Field of view (FOV)¼ 64 � 64 mm2,
voxel resolution (VR)¼ 3 mm3 isotropic, repetition time
(TR)¼ 2000 ms, echo time (TE)¼ 30 ms, flip angle (FA)¼ 90�, gap-
size¼ 16%, pixel bandwidth (BW)¼ 2790 Mhz].

For coregistration of the functional images to high-
resolution anatomical images, we acquired 160 axial slices of a
T1-weighted scan using a Turboflash MPRAGE sequence
(FOV¼ 240 � 256 mm2, VR¼ 1 mm3 isotropic, TR¼ 2500 ms,
TE¼ 2.6 ms, FA¼ 9�, pixel BW¼ 900 Mhz) for each participant.

Neuroimaging data analysis

Analysis of the acquired neuroimaging data was carried out
with the FMRIB Software Library (FSL) (Smith et al., 2004) and the
CoSMoMVPA toolbox (Oosterhof et al., 2016) for MATLAB.

Pre-processing

At the beginning of each functional scan, we acquired three
dummy volumes to account for signal saturation. Pre-process-
ing of the functional data included slice time correction, motion
correction with respect to the middle volume of each run (using
6 degrees of freedom and trilinear interpolation), and high-pass
filtering (cutoff¼ 100 s). For each participant, functional data
were then co-registered to the corresponding high-resolution
structural scan in native space using 7 degrees of freedom
(Jenkinson et al., 2002). In order to visualize group-level statis-
tics, an additional co-registration to a standard MNI structural
scan was performed using 12 degrees of freedom. For technical
reasons, we were unable to obtain a structural scan from one
participant; her functional data were co-registered directly to
the standard MNI structural scan.

Multivariate pattern analysis

To answer our first question of whether conditioned stimuli
inherit properties of phobic stimuli, we performed multivariate
pattern analysis (MVPA) (Haxby et al., 2001), a technique for
revealing information spread across multiple voxels rather than
looking at each voxel individually. We carried out a whole-brain
searchlight (Kriegeskorte et al., 2006), which, voxel-by-voxel,
restricts the analysis to local patterns surrounding the current
searchlight’s central voxel.

The inputs to the classifier were t-score maps resulting from
single-trial general linear models (GLM; from the beta-weights
resulting from the GLM). Hemodynamic response functions
(HRFs) were modeled by convolving regressors of interest,
which were all combinations of the experimental phase and
stimulus class with gamma functions using FSL’s default
parameters (u¼ 0 s, r¼ 3 s, mean lag¼ 6 s). Motion correction
parameters for six dimensions (3 translations, 3 rotations) were
modeled as regressors of non-interest. No spatial smoothing
was applied to the functional data. Trials in which participants
received electric shocks (i.e. �33% of trials during conditioned
runs) were modeled separately from the CSþ trials in which no
electric shocks were administered.

Within our whole-brain maps, we ran a 50-voxel volumetric
searchlight analysis (Kriegeskorte et al., 2006), in which a linear
discriminant analysis classifier (LDAC) learned to distinguish
patterns of t-scores of the NS condition from those of the PS
condition (pooled from all phases of the experiment); we then
tested the LDAC on patterns of t-scores from the CSþ condition
(independently for each phase of the experiment). The train/
test scheme followed a leave-one-run-out cross-validation pro-
cedure, such that, e.g., if test samples were from run 1, then
training samples were from runs 2 through 7, etc. This way, no
run-based effects influenced the classifier’s performance. The
resulting value of a given voxel was the average of that voxel
from all folds of the given experimental phase and indicated the
probability of the LDAC classifying a test sample of the CSþas
the phobia class.

In order to statistically demonstrate changes in the classi-
fier’s performance across the three experimental phases, we
carried out a quadratic regression at each voxel for each partici-
pant yielding whole-brain maps of quadratic coefficients
(see Figure 1). We tested coefficients for non-normality by ran-
domly sampling (without replacement) 10 000 voxels from the
group-concatenated dataset and applying an Anderson-Darling
test to each vector of coefficients, which failed to find depar-
tures from normality in 94.9% of voxels. One-sample t-tests
against zero (one-tailed, as our alternative hypothesis predicted
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negative quadratic coefficients) were performed on these coeffi-
cients, and the resulting t-score maps were corrected for multi-
ple comparisons using 10 000 iterations of a Monte Carlo
resampling procedure, in which, on a given iteration, we drew,
without replacement, a random number of participants, flipped
the sign of those participants coefficient maps (Nichols and
Holmes, 2002), recomputed the t-score across participants, cal-
culated the threshold-free cluster enhancement (TFCE) (Smith
and Nichols, 2009) scores (using default parameters: E¼ 0.5,
H¼ 2, dh¼ 0.1) from the t-map, and stored the map’s largest
TFCE scores (to correct for the family-wise error rate), to create a
null distribution for hypothesis testing of the TFCE score
observed from our original t-score map. Empirical P-values were
derived from the null distribution by computing the sum of the
null TFCE scores that were greater than or equal to our observed
TFCE score divided by the number of resampling iterations (and
adding 1 to both the numerator and denominator).

The resulting multiple-comparisons-corrected statistical
map was thresholded at z¼ 2.5758 (P< 0.005, family-wise error
rate corrected, for improved spatial specificity of cluster defini-
tion), from which contiguous voxels containing surviving
t-scores yielded clusters whose anatomical labels were deter-
mined by the location of each cluster’s peak value within the
Harvard–Oxford cortical and subcortical structural atlases
(Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 2007;
Makris et al., 2006).

Similarity analysis

In areas in which the classifier’s performance changed as a
function of fear-conditioning and fear-extinction, the similarity
of activity patterns between NS, CSþ, and PS classes must have
changed. In order to understand which changes in the represen-
tational space were potentially underlying the LDAC’s perform-
ance (see Figure 2), we calculated the similarity based on the
angle between different conditions’ vector representations
(Kriegeskorte et al., 2008). The reason for using the similarity
analysis as a follow-up, rather than as the primary analysis,
was to allow the machine learning algorithm to determine
when an effect size was sufficiently large to classify CSþas PS
rather than as NS. Using only inferential statistics based on sim-
ilarity analyses could lead to extremely small effect sizes (that
nevertheless survive statistical thresholds; e.g. consistent
changes of 1� in the angle between baseline vectors and post-
conditioning vectors), which would be rather difficult to inter-
pret within the context of our hypotheses. From the spherical
neighborhoods around the peak voxels of the previously discov-
ered regions, we obtained the average patterns of the NS and PS
conditions (again, pooled across experimental phases) and the
average pattern of the CSþ condition at each experimental
phase. Then we detrended the patterns and measured the
cosine between each CSþaverage and the other conditions’
averages, which is defined as

cos h ¼
~u �~v

k~uk � k~vk

where u and v are vectors (denoted by the arrows), kuk indicates
the magnitude of vector u, and � represents the dot product of
two vectors. The cosine’s output is the interval [–1, 1], where 1
indicates similarity, 0 indicates independence, and –1 indicates
opposition.

Correlation analysis

In order to quantify which of the changing similarities were
possibly driving the LDAC’s differential performance, we Fisher
transformed the resulting values from the similarity analysis
and the decoding analysis [after rescaling to (�1, 1)] before
using Pearson’s r to correlate the cos(/NS, CSþ) results and the
cos(/PS, CSþ) results with the LDAC results.

Region of interest analysis

Because the similarity between the CSþand the PS was the
underlying driver of the classifier’s performance in the regions
we revealed (see Results), we wanted to know whether the infor-
mation between these two stimulus classes also changed in
higher-level visual areas. To this aim, we wanted to determine
whether the resultant classification changes were linked to
changes in visual perception information regarding the stimu-
lus categories. Thus, we ran an additional classification and
similarity analysis on two regions of interest: the lateral occipi-
tal complex and the posterior fusiform gyrus, as prior work has
shown that these regions contain category-level information
pertaining to animals (Connolly et al., 2012; Dunsmoor et al.,
2014). Voxels belonging to these regions in standard MNI space
were obtained from the Harvard–Oxford cortical atlas (using
75% probability as a cutoff), and then transformed into subject-
space before running the analysis. The training and testing of
the LDAC on t-score patterns for CSþvs. PS followed a leave-
one-run-out cross-validation scheme at each experimental
phase. The cosine analysis was similar, with the exception that
all patterns for a given stimulus class in a given experimental
phase were averaged together [as only one overall pattern per
category is necessary for the computation of representational
similarity analysis (Kriegeskorte et al., 2008), see also Similarity
Analysis] before computing the cosine of the stimulus class vec-
tor pairs. Values from both analyses were Fisher-transformed
before performing group-level statistics.

Results

Our main question concerned whether patterns of CSþbecame
more similar to patterns of PS after fear conditioning. Using a
whole-brain searchlight analysis, we tested this question by
observing whether the LDAC categorized patterns of CSþ as NS
during the baseline and extinction phases while categorizing
patterns of CSþas PS during the conditioned phase. We
assessed the LDAC’s performance across all experimental
phases at once with a quadratic regression (seeking regions
whose quadratic coefficients of the classifier’s outcome yielded
an inverted-U, Figure 1, left panel) and a threshold-free cluster
enhancement (Smith and Nichols, 2009) resampling procedure
for statistical corrections. This procedure identified five regions
(Figure 3A, Supplementary Tables S1 and S2) whose decoding
performance matched those predictions: the left thalamus
[t(20)¼�7.985, pFWER¼ 0.011, z(p)¼ 3.062], right caudate nucleus
[t(20)¼ �9.257, pFWER¼ 0.002, z(p)¼ 3.540], right temporal pole
[t(20)¼ �7.817, pFWER¼ 0.0027, z(p)¼ 2.782], brain stem [t(20)¼
�6.136, pFWER¼ 0.0038, z(p)¼ 2.669], and posterior cingulate cor-
tex [t(20)¼ �6.253, pFWER¼ 0.0038, z(p)¼ 2.669] (Figure 3B).

Such results could explain the effect of fear conditioning by
one of three potential models. With respect to the similarity
between CSþ, NS, and PS information during baseline
(Figure 2A), the similarity between CSþ information and PS
information could increase (Figure 2B), the similarity between
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CSþ information and NS information could decrease (Figure 2C),
or both (Figure 2D). In order to determine which of these possi-
bilities potentially drove the classifier’s differential perform-
ance, we analyzed the similarity (Kriegeskorte et al., 2008) of the
categories’ average patterns by measuring the cosine of the
internal angle of their vectors from the searchlight surrounding
the peak voxel of each region of interest. This analysis yielded
higher cosine-values for the angle between the PS and
CSþvectors, cos(/PS, CSþ), but not between the NS and
CSþvectors, cos(/NS, CSþ), across the three experimental phases
(Figure 4, Supplementary Table S3), which demonstrated that,
at first glance, the model from Figure 2B best fits the data that
the classifier’s performance was driven by changing similarity
between CSþand PS, rather than between CSþand NS.

However, to quantify this link between the changing similarity
and the categorization of the CSþ’s, we correlated the resulting
cosine-values with the classifier’s performance (Figure 5), which
revealed, after correcting for multiple comparisons, cos(/PS, CSþ)
changes correlated with classifier performance in the thalamus
(r¼ 0.382, P< 0.002) and the temporal pole (r¼ 0.604,
P< 1.58� 10�7) but not in the caudate (r¼ 0.297, P< 0.018), poste-
rior cingulate (r¼ 0.289, P< 0.021), or brain stem (r¼�0.183,
P< 0.150). Conversely, cos(/NS, CSþ) changes did not correlate
with classifier performance in any of the regions [thalamus:
r¼ 0.079, P< 0.553; caudate: r¼�0.146, P< 0.253; temporal pole:
r¼�0.097, P< 0.450; cingulate: r¼�0.079, P< 0.540; brain stem:
(r¼ 0.192, P< 0.021)]. All P-values reported in this paragraph,
including the FWER threshold of P< 0.005, are two-tailed.
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Fig. 3. Revealed brain regions and their respective classification performances (A) The five brain regions whose classification profiles showed the predicted inverted-U

(see Figure 1). Depicted clusters survived a TFCE-based resampling procedure (see Materials and Methods) and are visualized at z�2.5758 (P<0.005, FWER) on a stand-

ard 1 mm MNI152 brain. For the peak voxel of each of these regions: (B) A visualization of the probability of the classifier categorizing CSþ information as PS informa-

tion across the three experimental phases (Bl, Co, and Ex) underlying each of the regions in Figure 3A. Note that for all regions, the classifier considered the CSþas PS

in the conditioned phase, but not in the baseline and extinction phases. Error bars represent SEM.

Fig. 4. From the peak voxels of the regions of Figure 3A: the cosine of the angle between average stimulus-class vectors across the three experimental phases, repre-

senting their similarity, which increased for the CSþand the PS in most of the regions after conditioning (see Figure 2B). Error bars represent SEM.
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To discern whether these results reflect changes in
abstract fear information or altered perceptual information,
we asked whether, as a function of fear-conditioning (and
fear-extinction), CSþ information and PS information also
become more (and then less) similar to each other in higher-
level visual areas. To this end, we performed region-of-interest
(ROI) analyses on the lateral occipital complex (LOC) and the

fusiform gyrus. The classification analysis of CSþpatterns vs.
PS patterns revealed that the LDAC decoded the classes better-
than-chance at all experimental phases in both the fusiform (Bl:
t(20)¼ 5.03, P< 0.00003; Co: t(20)¼ 5.54, P< 0.000009; Ex: t(20)¼ 3.13,
P< 0.0026) and the LOC (Bl: t(20)¼ 2.88, P< 0.0046; Co: t(20)¼ 4.29,
P< 0.0002; Ex: t(20)¼ 1.88, P< 0.037; Figure 6A, Supplementary
Table S4). The fact that (i) the classifier successfully discrimi-
nated between the CSþand PS at each experimental phase and
(ii) we failed to find evidence for either overall differential clas-
sifier performance or angular differences across experimental
phases (F(2, 40)¼ 2.22, P< 0.122 and F(2, 40)¼ 1.47, P< 0.242, respec-
tively) or specific to one of the two regions (F(2, 40)¼ 0.78,
P< 0.464 and F(2, 40)¼ 1.09, P< 0.347, respectively) indicates that
there were no conditioning-induced changes in perceptual
information that could have driven the results in the main
analysis.

Following up the LDAC’s successful decoding performance,
we wanted to see if there were any underlying changes in the
similarity between CSþand PS patterns. Computing the cosine
of the averaged stimulus-class vectors from the baseline, post-
conditioning, and extinction phases (Figure 6B, Supplementary
Table S4), we did not find evidence that the angle between
CSþpatterns and PS patterns differed between the baseline and
conditioned phases (fusiform: t(20)¼ 1.297, P< 0.21; LOC:
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t(20)¼ 0.82, P< 0.42) or between the conditioned and the extinc-
tion phases (fusiform: t(20)¼ 1.294, P< 0.21; LOC: t(20)¼ �0.37,
P< 0.71).

Discussion

In this experiment, we sought to investigate patterns of brain
activity that reflect abstract information pertinent to the state
of fear. By incorporating both a fear-conditioned stimulus and a
phobic stimulus into the same experiment, we were able to
detect brain regions whose underlying representations reflect
commonalities between both types of fear. By pitting three
models against each other (Figure 2), our results support the
hypothesis depicted in Figure 2B, demonstrating that aversive
conditioning leads to a change in the pattern of brain activity
such that viewing neutral images of non-threatening animals
(e.g. dogs) evokes patterns of brain activity that are more similar
to the activity evoked by previously feared stimuli (e.g. spiders),
which had not been paired with the aversive stimulus. We
show that this change in informational content underlies activ-
ity in the left thalamus and the right temporal pole, whereby
fear conditioning moves a previously neutral stimulus through
the representational space towards a phobic stimulus, and that
this movement (and thus similarity of such fear information)
can be evaluated via the angle between the local patterns that
represent the stimuli.

Our results demonstrate a level of commonality between
experimentally induced fear and phobic fear, which is in line
with the notion of shared mechanisms for encoding fear memo-
ries across fear types (Gross and Canteras, 2012). Such
fear-related processes have been linked to the thalamus, for
example for context learning in threatening situations (Krout
and Loewy, 2000; Carvalho-Netto et al., 2010) or for regulating
fear processing in related circuits (Penzo et al., 2015), while the
anterior temporal lobe has been associated with emotional
memory (Strange and Dolan, 2006), observing actions that
express fear (Grèzes et al., 2007), learning emotion information
(Todorov and Olson, 2008), and binding higher level emotional
and social information (Olson et al., 2007). Our findings encom-
pass both the thalamus and temporal pole, suggesting that fear-
related mechanisms (though not necessarily with the same
function), which abstract away from specific sources of fear,
may underlie information processing in these regions.
Additionally, building off the idea that fear is a central state
with certain internal representations for motivating specific
behavior (Adolphs, 2013), one might posit that our results repre-
sent a common aspect of the state of fear. Moreover, our follow-
up analysis demonstrated that these changes cannot be attrib-
uted to alterations in visual perception information.

Other recent fear-learning studies that employed MVPA
have shown that fear conditioning of particular stimuli of
a category increases the entire within-category similarity
(Dunsmoor et al., 2014) and that patterns of information pertain-
ing to a CSþare similar to those pertaining to the US (Onat and
Büchel, 2015), suggesting that the US guides the generalization
of learned fear information and pulls exemplars of a given cate-
gory closer to one another in the representational space. By
using phobic stimuli as reference points for the state of fear
(rather than only using a US), we show that informational
changes from momentarily acquired fear (to dogs) share com-
monalities with a more deeply engrained phobic fear (to spi-
ders), which had not been paired with the US. Furthermore, if
different types of fear, pre-existing vs. momentarily condi-
tioned, were restricted to entirely different processes, then

we would not expect to find brain regions in which
CSþ information is categorized as similar to phobia information.
Additionally, if fear conditioning resulted from increased visual
similarity, then we would have expected patterns of informa-
tion in visual regions to be more similar to one another and
thus indistinguishable. As such, this shifting of a stimulus’ rep-
resentation toward the representation of a non-conditioned-
but-already-fearful category allows us to postulate that the
aforementioned brain regions carry common representations,
or operate generic mechanisms, for processing information per-
tinent to the abstract state of fear. This is bolstered by the
results from our similarity analysis, which supported the model
in which CSþ information became more similar to PS informa-
tion but did not change with respect to NS information (see
Figure 2B).

This perspective sheds new light on the extent to which fear
conditioning and extinction change the informational
content—pertaining to an abstract state of fear—within a stim-
ulus’ mental representation, thus justifying fear-conditioning
as a model for phobic disorders and extinction as a model for
exposure therapy. Future directions will involve determining
whether this effect generalizes to other types of phobias, estab-
lishing where along the information-processing stream this
commonality occurs, and examining how medication and psy-
chotherapy alter the underlying mechanisms.
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