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Abstract: Toll-like receptors (TLRs), as important pattern recognition receptors, represent a significant
component of fish immune systems and play an important role in resisting the invasion of pathogenic
microorganisms. The TLR5 subfamily contains two types of TLR5, the membrane form of TLR5
(TLR5M) and the soluble form of TLR5 (TLR5S), whose detailed functions have not been completely
elucidated. In the present study, we first identified two genes, TLR5M (ToTLR5M) and TLR5S
(ToTLR5S), from golden pompano (Trachinotus ovatus). The full-length ToTLR5M and ToTLR5S
cDNA are 3644 bp and 2329 bp, respectively, comprising an open reading frame (ORF) of 2673 bp,
encoding 890 amino acids, and an ORF of 1935 bp, encoding 644 amino acids. Both the ToTLR5s
possess representative TLR domains; however, only ToTLR5M has transmembrane and intracellular
TIR domains. Moreover, the transcription of two ToTLR5s was significantly upregulated after
stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and flagellin
in both immune-related tissues (liver, intestine, blood, kidney, and skin) and nonimmune-related
tissue (muscle). Furthermore, the results of bioinformatic and promoter analysis show that the
transcription factors GATA-1 (GATA Binding Protein 1), C/EBPalpha (CCAAT Enhancer Binding
Protein Alpha), and ICSBP (Interferon (IFN) consensus sequence binding protein) may play a positive
role in moderating the expression of two ToTLR5s. Overexpression of ToTLR5M and ToTLR5S
notably increases NF-κB (nuclear factor kappa-B) activity. Additionally, the binding assay revealed
that two rToTLR5s can bind specifically to bacteria and pathogen-associated molecular patterns
(PAMPs) containing Vibrio harveyi, Vibrio anguillarum, Vibrio vulnificus, Escherichia coli, Photobacterium
damselae, Staphylococcus aureus, Aeromonas hydrophila, LPS, poly(I:C), flagellin, and peptidoglycan
(PGN). In conclusion, the present study may help to elucidate the function of ToTLR5M/S and clarify
their possible roles in the fish immune response to bacterial infection.
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1. Introduction

Toll-like receptors (TLRs) play an important role in host defense in both invertebrates and
vertebrates [1]. The TLR family, a key pathogen recognition receptor (PRR), primarily participates
in the innate immune and acquired immune systems. In higher vertebrates, the TLR family is
regarded as a pivotal mediator that activates innate immunity and develops antigen-specific acquired
immunity against invading microorganisms and pathogens, such as peptidoglycan, lipoprotein,
lipopolysaccharide (LPS), flagellin, and polyinosinic:polycytidylic acid (poly(I:C)) [2–4]. To date,
as TLRs are type I transmembrane proteins, 13 types of TLRs have been reported in mammals [5,6].
According to cellular localization, TLRs are classified into two major subfamilies: the cell surface
subfamily (TLRs 1, 2, 4, 5, 6, and 10) and the endolysosomal compartment subfamily (TLRs 3, 7, 8,
and 9) [4]. TLRs include three typical domains: the extracellular, transmembrane, and intracellular
domains [7]. The extracellular domain is composed of several N-terminal leucine-rich repeats (LRRs)
and is involved in recognition of pathogen-associated molecular patterns (PAMPs) [8]. Moreover,
the intracellular domain possesses a representative Toll/IL-1 (Interleukin-1) receptor (TIR) domain that
is analogous to the IL1R family intracellular domain [9] and plays a pivotal role in signal transduction.

As a TLR family member, TLR5 is a key PRR and can recognize PAMPs, such as the bacterial
flagellum protein, by touching their flagellin [10–13]. TLR5 is reasonable for flagellin-mediated
NF-κB activation by the MyD88-dependent pathway in the cellular membrane [14]. Two types of
TLR5 are found in teleosts: the membrane form of TLR5 (TLR5M) and the soluble form of TLR5
(TLR5S) [15–18]. In other fish species, only TLR5M in Cirrhinus mrigala, Danio rerio, Ctenopharyngodon
idelus, Oplegnathus fasciatus, Pangasianodon hypophthalmus, and Paralichthys olivaceus [13,19–23] or
TLR5S in Onchorhynchus mykiss, Salmo salar, Ictalurus punctatus, Cynoglossus semilaevis, and Miichthys
miiuy [16,24–27] have been isolated and reported. Furthermore, TLR5M is composed of the TIR domain
transmembrane region and the LRR domain, but TLR5S has no TIR domain or transmembrane region
by comparison. A recent study showed that TLR5M identified flagellin, and NF-кB was activated to
induce some immune response genes and TLR5S [16]. TLR5S was induced to recognize flagellin in the
fluid phase and later bound to TLR5M to amplify the signal cascade [17].

The golden pompano Trachinotus ovatus (Linnaeus 1758), Carangidae, Perciformes, is widely
distributed in the Asia–Pacific region. This fish is popular because of its fast growth and high-quality
flesh and is known as an important commercial fish in China [28,29]. However, in T. ovatus, a high
death rate is attributed to viral and bacterial infections [30]. To characterize the host immune defense
and host–pathogen relationships of TLR5 in T. ovatus (ToTLR5), we determined the role of ToTLR5
after stimulation with poly(I:C), LPS, and flagellin, and the genomic sequence, expression pattern,
and transcriptional regulation of ToTLR5 were also determined. Our results suggest that ToTLR5 may
play an important role as a PRR in the immune response to pathogen infections and may be involved
in the NF-кB activation pathway.

2. Results

2.1. Sequence Characterization of ToTLR5M and ToTLR5S

The cDNA sequence of ToTLR5M is 3644 bp, including 612 bp of the 5′ untranslated region
(5′-UTR); a 2673 bp open reading frame (ORF) encoding a polypeptide of 890 amino acids (GenBank
accession number: MT596697; Figure 1A); and a 359 bp 3′-UTR, with a predicted molecular weight
of 96.31 kDa and a theoretical isoelectric point of 5.94. The cDNA sequence of ToTLR5S is 2329 bp,
including 156 bp of the 5′ untranslated region (5′-UTR); a 1935 bp ORF encoding a polypeptide of
644 amino acids (GenBank accession number: MT596698; Figure 1B); and a 238 bp 3′-UTR, with a
predicted molecular weight of 72.21 kDa and a theoretical isoelectric point of 8.84. Moreover, the amino
acid sequence of ToTLR5M contains typical TLR protein domains, eight LRR domains (65–528 aa),
one LRR-CT domain (537–590 aa), one transmembrane domain (603–625 aa), and one intracellular TIR
domain (654–801 aa) (Figures 1A and 2A). The amino acid sequence of ToTLR5S includes 1 LRR-NT
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domain (19–50 aa), 14 LRR domains (45–583 aa), and 1 LRR-CT domain (592–644 aa) (Figures 1B and 2A).
Furthermore, in TLR5M, the result of amino acid sequence alignment of the TIR domain showed that
this region contains three conserved functional boxes (Box1, Box2, and Box3) (Figure 2B). Additionally,
comparison of the exon–intron organization of TLR5 shows that the genomic sequences of ToTLR5M
and ToTLR5S include four exons, three introns, two exons, and one intron, respectively (Figure S1).

Figure 1. The full-length cDNA and deduced amino acid sequences of ToTLR5M (A) and ToTLR5S
(B). The leucine-rich repeat (LRR) and LRR-NT domains are highlighted in light gray and by dotted
lines, respectively. The LRR-CT domains are underlined in ToTLR5S (B). The transmembrane region is
indicated by box and the Toll/IL-1 receptor (TIR) domain is marked with gray; termination codon is
indicated with “*”.
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Figure 2. The domain features of the membrane form of TLR5 (TLR5M) and the soluble form of TLR5 (TLR5S) among vertebrates. (A) Multiple alignment of TLR5 deduced 
amino acid sequences. LRR represents leucine-rich repeats, red represents low-complexity region, LRR-CT represents LRR C-terminal region, blue represents 
transmembrane region, TIR represents Toll/interleukin-I receptor domain. (B) The amino acid sequence alignment of TLR5 TIR domains in various species. The GenBank 
accession numbers are shown in Table S1. 

 

Figure 2. The domain features of the membrane form of TLR5 (TLR5M) and the soluble form of TLR5 (TLR5S) among vertebrates. (A) Multiple alignment of
TLR5 deduced amino acid sequences. LRR represents leucine-rich repeats, red represents low-complexity region, LRR-CT represents LRR C-terminal region,
blue represents transmembrane region, TIR represents Toll/interleukin-I receptor domain. (B) The amino acid sequence alignment of TLR5 TIR domains in various
species. The GenBank accession numbers are shown in Table S1.
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2.2. Tissue Expression of ToTLR5M and ToTLR5S

To confirm the role of ToTLR5M and ToTLR5S in healthy fish, we used qRT-PCR to detect the
mRNA expression levels in 10 tissues (Figure 3). Two ToTLRs were constitutively expressed in all tissues
analyzed, with varied expression levels being observed. ToTLR5M is highly expressed in the intestine,
kidney, and liver, followed by the blood, skin, gill, brain, and stomach, with lower expression levels
being observed in the spleen and white muscle (p < 0.05). However, ToTLR5S is highly expressed in the
blood, kidney, spleen, and skin, followed by the intestine, liver, brain, and white muscle, with lower
mRNA levels being observed in the gill and stomach (p < 0.05).
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Figure 3. The tissue expression of the ToTLR5M and ToTLR5S genes. The tissues included kidney, liver,
stomach, spleen, intestine, brain, skin, gill, muscle, and blood. Elongation factor 1 alpha (EF-1α) acted
as an internal reference to calibrate the cDNA templates. Mean ± standard error (SE) (n = 3) of each
mRNA quantity was shown for each tissue examined. Different uppercase or lowercase letters indicate
significant differences (p < 0.05).

To further investigate the role of ToTLR5M (Figure 4) and ToTLR5S (Figure 5) in the immune
response, we also used qRT-PCR to investigate gene expression in response to poly(I:C), LPS,
and flagellin challenges. In comparison to the control group, the mRNA levels of ToTLR5M
were markedly increased in response to poly(I:C), LPS, and flagellin challenges in the immune-
and nonimmune-related tissues, suggesting the possible role of ToTLR5M in defense against pathogenic
microbes. As shown in Figure 4, ToTLR5M transcription was more sensitive in the liver, blood,
and kidney than in the intestine, skin, and muscle, suggesting a dramatic increase of 7.92-fold, 8.73-fold,
and 9.07-fold in the liver, blood, and kidney after infection with LPS, respectively, compared to the
control. Nevertheless, there was a dramatic increase of 2.78-fold, 2.73-fold, and 2.55-fold in the intestine,
skin, and muscle after infection with poly(I:C), flagellin, and poly(I:C), respectively, compared to
the control.

In comparison to the control group, ToTLR5S expression was upregulated by poly(I:C), LPS, and
flagellin challenges in the immune- and nonimmune-related tissues (Figure 5). Notably, ToTLR5S
was more responsive in the liver, skin, intestine, and kidney than in the other two tissues, showing
remarkable increases of 213.64-fold, 93.08-fold, 38.16-fold, and 42.65-fold in the liver, skin, intestine,
and kidney after challenge with LPS, flagellin, flagellin, and flagellin, respectively, compared to the
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control. Nevertheless, compared to the control, there was a dramatic increase of 5.85-fold and 3.15-fold
in the blood and muscle after infection with flagellin and poly(I:C), respectively.Int. J. Mol. Sci. 2020, 20, x FOR PEER REVIEW 6 of 18 
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Figure 4. ToTLR5M expressions in different tissues (liver, kidney, intestine, skin, muscle, and blood)
after phosphate-buffered saline (PBS), flagellin, poly(I:C), and LPS challenge. EF-1α acted as an internal
control to calibrate the cDNA templates. All data are expressed as mean ± SE. Different letters show
significant differences (p < 0.05).
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Figure 5. ToTLR5S expressions in different tissues (liver, kidney, intestine, skin, muscle, and blood) after
PBS, flagellin, poly(I:C), and LPS challenge. EF-1α acted as an internal control to calibrate the cDNA
templates. All data are expressed as mean ± SE. Different letters show significant differences (p < 0.05).

2.3. Promoter Activity of Two ToTLR5s

The 5′-flanking fragment of two ToTLR5 genes lacked both the TATA box and CAAT box.
The transcription factor binding sites for C/EBPalpha, C/EBPbeta, Sp1, AP-1, NF-1, Oct-1, GATA-1,
NF-κB, ICSBP, c-Rel, and IRF-1 could be predicted in the 5’-flanking sequence of the ToTLR5M gene
(Figure S2A). Deletion of the sequences from −1827 to −1566 bp, −813 to −501 bp, −309 to −120 bp,
and −120 to +1 bp of ToTLR5M significantly decreased the relative luciferase activity, indicating that
transcription factors of NF-κB, GATA-1, C/EBPalpha, NF-1, Oct-1, and ICSBP played a positive role
in the regulatory effect. Furthermore, there was no significant difference after the deletion of the
sequences from −1566 to −813 bp. However, the relative luciferase activity was increased by deleting
the sequences of −501 to −309 bp (Figure 6A).
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NF-κB reporter vector and ToTLR5M-pcDNA3.1 or ToTLR5S-pcDNA3.1 individually or both 
ToTLR5M and ToTLR5S together. The results showed that overexpression of ToTLR5M or ToTLR5S 
can significantly enhance NF-кB activity (p < 0.01), and overexpression of both ToTLR5M and 
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Figure 6. Promoter activity analysis of ToTLR5M (A) and ToTLR5S (B). (A) Seven recombinant
plasmids, denoted as ProT5M-1 (−1827 to +565), ProT5M-2 (−1566 to +565), ProT5M-3 (−1131 to +565),
ProT5M-4 (−813 to +565), ProT5M-5 (−501 to +565), ProT5M-6 (−309 to +565), and ProT5M-7 (−120 to +565)
were constructed and transfected into Trachinotus ovatus snout tissue (GPS) cells. (B) Seven recombinant
plasmids, denoted ProT5S-1 (−1733 to +519), ProT5S-2 (−1358 to +519), ProT5S-3 (−1111 to +519),
ProT5S-4 (−802 to +519), ProT5S-5 (−490 to +519), ProT5S-6 (−298 to +519), and ProT5S-7 (−154 to +519)
were constructed and transfected into GPS cells. Different color boxes indicate binding sites located
in different truncation regions. All data are expressed as mean ± SE in the picture (n = 5). * indicates
significant differences (p < 0.05). ** indicates extremely significant differences (p < 0.01).

The transcription factor binding sites for C/EBPalpha, C/EBPbeta, C/EBPgamma, Sp1, AP-1, Oct-1,
GATA-1, IRF1, NF-κB, ICSBP, NF-1, Sox-2, SGF-3, CREB, and NF-κ could be predicted in the 5’-flanking
sequence of the ToTLR5M gene (Figure S2B). Deletion of the sequences from −1111 to −802 bp,
−490 to −298 bp, and −154 to +1 bp of ToTLR5S significantly decreased the relative luciferase activity,
indicating that the transcription factors ICSBP, IRF1, AP-1, GATA-1, C/EBPalpha, and C/EBPbeta played
positive roles in the transcriptional regulatory system. Moreover, there was no significant difference
after the deletion of the sequences from −1733 to −1358 bp and −802 to −490 bp. However, the relative
luciferase activity was increased by deleting the sequences of −1358 to −1111 bp and −298 to −154 bp
(Figure 6B).

2.4. Effect of Overexpression of Two ToTLR5s on NF-κB Activity

To further confirm the interaction of the two ToTLR5s with NF-κB, we determined the influence
of ToTLR5M or ToTLR5S overexpression on NF-κB transcription. We performed a luciferase reporter
assay using golden pompano Trachinotus ovatus snout tissue (GPS) cells transiently cotransfected
with NF-κB reporter vector and ToTLR5M-pcDNA3.1 or ToTLR5S-pcDNA3.1 individually or both
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ToTLR5M and ToTLR5S together. The results showed that overexpression of ToTLR5M or ToTLR5S can
significantly enhance NF-кB activity (p < 0.01), and overexpression of both ToTLR5M and ToTLR5S
can also significantly enhance NF-кB activity (p < 0.01) (Figure 7). The relative luciferase activity of
NF-κB was highest with cotransfection of ToTLR5M.Int. J. Mol. Sci. 2020, 20, x FOR PEER REVIEW 9 of 18 
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2.5. Binding of Two rToTLR5s to Bacteria and PAMPs

The two rToTLR5 proteins were expressed in the pET-sumo vector in Escherichia coli (Rosetta DE3).
SDS-PAGE (Figure 8A) and Western blotting analysis (Figure 8B) showed that recombinant ToTLR5M
and ToTLR5S proteins were successfully expressed (Figure 8). The recombinant proteins were purified
using Ni-NTA resin. The observed molecular weights of rToTLR5M (≈76 kDa) and rToTLR5S (≈85 kDa)
were close to the predicted molecular weights of the proteins.
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The binding of purified two rToTLR5s to bacteria and PAMPs was analyzed by ELISA (Figure 9).
The binding activity of two rToTLR5s with Gram-negative bacteria and Gram-positive bacteria was
positive, and the binding index was positively correlated with the amount of protein. The binding
activity of two ToTLR5 extracellular recombinant proteins to four different PAMPs was positive.
rToTLR5M had strong binding activity to flagellin, poly(I:C), and PGN but weak binding activity to
LPS (Figure 9A). rToTLR5S had strong binding activity to flagellin and LPS but weak binding activity
to poly(I:C) and PGN (Figure 9B). Moreover, rToTLR5M had strong binding activity to Photobacterium
damselae but weak binding activity to Aeromonas hydrophila and Staphylococcus aureus (Figure 9C).
rToTLR5S had strong binding activity to Vibrio vulnificus and E. coli but weak binding activity to
Aeromonas hydrophila (Figure 9D).
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Figure 9. ELISA analysis of the interaction between rToTLR5M (A,C) and rToTLR5S (B,D) to
pathogen-associated molecular patterns (PAMPs) (A,B) and bacteria (C,D), respectively. The microtiter
plates were coated with PAMPs and bacteria, and then incubated with different concentrations of
recombinant protein. The interaction between protein and PAMPs/bacteria were detected by composite
anti-His polyclonal antiserum at 450 nm. Results were representative of an average of three experiments.

3. Discussion

The TLR family is highly evolutionarily conserved, and TLRs in most mammals are homologous to
those in fish [8]. TLR5 is believed to be the only TLR that binds to the protein PAMP known as bacterial
flagellin [11]. The synergistic role of the TLR5 membrane form (TLR5M) and TLR5 soluble form (TLR5S)
has been reported in a study on Onchorhynchus mikiss [16]. This system is regarded as a unique system
in teleost fish. In this study, we cloned both the membrane and soluble form of TLR5 from T. ovatus.
ToTLR5M, similar to mammalian TLR5, consists of extracellular LRRs, a transmembrane domain,
and an intracellular TIR domain. The lack of transmembrane and intracellular TIR domains in ToTLR5S
suggests that it can be secreted from cells, as well as other TLR5S proteins in teleost fish [17,18,21,27].
The structural characteristics of these two ToTLR5s were similar to those of the TLR5 gene in other
teleosts [27]. The extracellular LRR domain plays an important role in the recognition of pathogen
components on the surface of immune cells. The binding regions of LRR could form on the concave
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β-face of LRR by a combination of inserts and specific binding surfaces [31,32]. These LRRs seem to be
candidates for the flagellin-binding region in two ToTLR5s. The positions of LRR insertions are highly
conserved in metazoan (Figure 2A). Therefore, ToTLR5 might be functionally capable of responding to
the metazoan TLR5 agonist flagellin. Moreover, in the majority of species, the number of extracellular
leucine repeat sequences in TLR is different, which may be attributed to the diversity of species.
The intracellular TIR domain of TLR is mainly responsible for signal transmission, including three
highly conserved motifs, Box1, Box2 and Box3, in which Box1 and Box2 are associated with signal
transduction, whereas Box3 is associated with TLR localization in cells [33].

The tissue expression profile of ToTLR5M mRNA supports previous studies of TLR5M in other
fishes, including I. punctatus, Pelteobagrus fulvidraco, and O. fasciatus, which have generally shown
similar patterns of constitutive expression in most tissues, with higher expression being observed in the
liver [21,34,35]. However, TLR5M had the highest mRNA level in the skin followed by the spleen and
kidney in Epinephelus coioides [18]. Moreover, TLR5S expression was the highest in the liver followed
by the spleen in E. coioides, and the transcription of TIL5S was higher in the liver and head kidney than
in other tissues in M. miiuy [27] and Scophthalmus maximus [36], which was different from the results in
T. ovatus. Liver macrophages are present in the liver, and moreover the kidney and spleen are the main
lymphoid organs of fish. These three important tissue sites are involved in the immune response of the
body. The expression patterns of the TLR5 gene in various tissues suggested that it plays an important
role in the immune monitoring system of these fish, and different tissue expression patterns may be
related to species type, individual size, or stage of development.

Previous studies have demonstrated that poly(I:C), LPS, and flagellin can cause defense responses
against pathogens in pompano [37–41]. Many studies have found that these PAMPs can induce
the expression of TLR5M or TLR5S genes in immune-related tissues (liver, intestine, blood, kidney,
and skin) [17,20,21,36,42,43]. For example, poly(I:C) can increase the mRNA levels of Carassius auratus
TLR5 [42]; LPS can induce the expression of Pampus argenteus TLR5 [43] and S. maximus TLR5M [36];
and flagellin can upregulate the O. fasciatus, P. olivaceus, and C. idelus TLR5 expression [17,20,21].
After injections with poly(I:C), LPS, and flagellin, ToTLR5M and ToTLR5S expression levels were
upregulated in the tissues of the immune system, especially in the liver and kidney, which is consistent
with TLR5 expression patterns observed in other fish, such as O. fasciatus, P. olivaceus, C. idelus,
S. maximus, C. auratus, and P. argenteus [17,20,21,36,42,43].

The ToTLR5M promoter region was located in the -1733 bp to +519 bp region, which included several
transcription factor binding sites, such as C/EBP, Sp1, AP-1, Oct-1, NF-кB, c-Rel, and IRF1. The cis-acting
elements may be located between−1827 to−1566 bp, −813 to−501 bp, and−309 to +1 bp, which contain
NF-кB, GATA-1, C/EBPalpha, NF-1, Oct-1, and ICSBP. This region was similar to that of O. fasciatus [21],
while the binding sites of AP-1, SP1, SP3, and NF-кB existed in the human TLR5M promoter region,
and SP1/3 binding sites significantly enhanced TLR5 promoter activity [44]. Moreover, in ToTLR5S,
the cis-acting elements may be located between −1111 to −802 bp, −490 to −298 bp, and −154 to +1,
which contain ICSBP, IRF1, AP-1, GATA-1, C/EBPalpha, and C/EBPbeta. In Paralichyths olivaceus,
the TLR5S promoter region contained binding sites for such factors as CEBP, AP-1, and NF-кB, and Ap-1
and NF-кB binding sites significantly enhanced TLR5S promoter activity [45]. The transcriptional
regulatory mechanisms of TLR5M between Trachinotus ovatus and mammals exhibited both similarities
and differences, while the TLR5S gene specific to fish had similar activity and was regulated by a variety
of transcriptional elements. Future experiments require further analysis of specific transcriptional
binding sites.

NF-кB plays an important role in the TLR signaling pathway, and overexpression of C. idelus TLR18
and TLR5 has been shown to significantly increase NF-кB activity [42,46]. Furthermore, the TLR5M
signaling in response to flagellin abduction in Onchorhynchus mikiss is magnified through interaction
with the TLR5S in a positive loop feedback [8]. In the present study, overexpression of ToTLR5M
significantly activated NF-кB expression followed by overexpression of ToTLR5S or ToTLR5M and
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ToTLR5S. It is possible that ToTLR5M and ToTLR5S have antagonistic effects on the activation of the
NF-кB signaling pathway, suggesting that the interactions of TLR5M and TLR5S were species-specific.

ELISA was used to detect the binding activity of purified protein with bacteria, and it was found
that the ToTLR5M and ToTLR5S recombinant proteins containing LRR domains had notable binding
activity to Gram-positive/negative bacteria. These results suggest that ToTLR5M and ToTLR5S might
recognize and combine pathogenic molecular patterns of some bacteria and play an important role in
preventing the infection of Gram-positive/negative bacteria.

The ToTLR5M recombinant protein primarily recognizes the bacterial components peptidoglycan
and flagellin and the viral equivalent poly(I:C), while the ToTLR5S recombinant protein primarily
recognizes the bacterial components flagellin and liposaccharide. TLR5, located on cell membranes
in mammals, primarily recognizes bacterial flagellin [11,47]. Pathogenic bacteria could be identified
by TLR5 proteins from fishes such as E. coioides [18], M. miiuy [27], and I. punctatus [34]. The two
recombinant proteins have different degrees of binding activity to Gram-negative bacteria and
Gram-positive bacteria, indicating that ToTLR5M and ToTLR5S play an important role in antibacterial
immune reactions. Moreover, the binding activity of different PAMPs indicated that the extracellular
recombinant proteins could participate in the TLR ligand recognition process of pompano. The main
ligands recognized by different proteins are different, but the specific binding and mechanism of action
warrant further study.

In summary, we identified a membrane form and a soluble form of ToTLR5. Both genes displayed
conserved sequence characteristics with those of other fish. The expression analysis of ToTLR5M and
ToTLR5S after stimulation with PAMP containing LPS, poly(I:C), and flagellin indicated that the two
ToTLR5s played a role in antibacterial immunity. Furthermore, we demonstrated clear associations
between NF-кB and the two ToTLR5s promoters, as well as the positive regulatory functions of the
two ToTLR5s in NF-кB transcription. ToTLR5M and ToTLR5S were displayed as PRRs that ensured
specific binding to various PAMPs and bacteria. The results of the present study indicate that these
two ToTLR5s are involved in the immune response to pathogen invasion.

4. Materials and Methods

4.1. Ethics Statement

In the present study, all trials were approved by the Animal Care and Use Committee of South
China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (no. SCSFRI96-253,
approval date: 11 March 2019) and performed according to the guidelines and regulations established
by this committee.

4.2. Fish and Challenge Experiments

Juvenile fish (average weight of 40 g) were purchased from Linshui Marine Fish Farm
(Hainan, China). The fish were maintained in fresh seawater at approximately 28 ◦C with 35%
salinity and in dissolved oxygen >6 mg/L and were raised 1 week before the trial. Tissue samples
(stomach, intestine, kidney, liver, spleen, brain, skin, gill, white muscle, and blood) were collected from
six healthy pompano, promptly frozen in liquid nitrogen, and then stored at −80 ◦C until use.

The stimulation groups were intraperitoneally injected with poly(I:C) (200 µg/mL, 200 µL),
flagellin (1 µg/mL, 200 µL), or LPS (50 µg/mL, 200 µL), and the control group was injected with
phosphate-buffered saline (PBS, 200 µL). The induction experimental program was described in
previous studies [37]. Pompano were anaesthetized using MS222 (0.1 g·L−1; Sigma, Alcobendas, Spain)
in all groups before tissue sampling. Six tissues (liver, intestine, blood, kidney, skin, and muscle) were
harvested from five fish per group at 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 72 h, and 96 h after the challenge,
immediately frozen in liquid nitrogen, and then stored at −80 ◦C until use.
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4.3. RNA Extraction and Gene Cloning

Pompano kidney tissues were used to isolate total RNAs (1 µg) by the HiPure Fibrous RNA Plus
Kit (Magen, Guangzhou, China). Total RNA was treated with RNase-free DNase I at 37 ◦C for 30 min
and then used to synthesize cDNA by random hexamer primers (Cloned AMV First-Strand cDNA
Synthesis Kit, Invitrogen, Carlsbad, CA, USA). The quantity and quality of the extracted RNA were
determined by a NanoDrop 2000 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and 1%
agarose gels. The predicted sequences of ToTLR5M and ToTLR5S were acquired from pompano genomic
data [48]. Moreover, gene-specific primers were designed to amplify the cDNA and genome sequences
of two genes that were assembled by SeqMan software of the LaserGene package (DNASTAR, Inc.,
Madison, WI, USA) (Table 1).

4.4. Bioinformatics

Amino acids of two ToTLR5s were used as queries to seek orthologous genes in the NCBI database
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). All available TLR5 structures and sequences were provided
by Genome Browser (http://genome.ucsc.edu/cgi-bin/hgBlat) and Ensembl (http://asia.ensembl.org/).
ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to blast different TLR5 mature peptide
sequences. Compute pI/Mw software (http://web.expasy.org/protparam/) was used to calculate the
theoretical isoelectric points and molecular weights.

4.5. Cloning of the 5′-flanking Sequence and Its Promoter Activity

Total genomic DNA was extracted from the muscle tissue of pompano according to
Sun et al. (2013) [49] and used for cloning of the candidate promoter. To define the core promoter
region within the cloned 5′-flanking sequence of ToTLR5M and ToTLR5S, we amplified seven different
promoter regions from ToTLR5M and ToTLR5S by specific primers with Hind III and Kpn I restriction sites,
respectively (Table 1). Subsequently, the seven truncated fragments of ToTLR5M (denoted as ProT5M-1
(−1827 to +565), ProT5M-2 (−1566 to +565), ProT5M-3 (−1131 to +565), ProT5M-4 (−813 to +565),
ProT5M-5 (−501 to +565), ProT5M-6 (−309 to +565), and ProT5M-7 (−120 to +565)) were subcloned into
the pGL3-basic luciferase reporter plasmid (Promega, WI, USA). Moreover, the seven truncated fragments
of ToTLR5S (denoted as ProT5S-1 (−1733 to +519), ProT5S-2 (−1358 to +519), ProT5S-3 (−1111 to +519),
ProT5S-4 (−802 to +519), ProT5S-5 (−490 to +519), ProT5S-6 (−298 to +519), and ProT5S-7 (−154 to +519))
were also subcloned with the same method. Then, the plasmids of ToTLR5M or ToTLR5S were transfected
into GPS cells.

Furthermore, the ORF of ToTLR5M and ToTLR5S was cloned into the Nhe I and Kpn I sites
of the pCDNA3.1 vector (Invitrogen, USA). The Renilla luciferase plasmid pRL-TK (Promega, WI,
USA) was used as an internal control. The TransGen Plasmid Mini Kit (Beijing, China) was used to
isolate recombinant plasmids. GPS culture and transfection experiments were performed according
to the methods described by Yu et al. (2016) [50]. Additionally, to further investigate the regulatory
relationships between two ToTLR5s and ToNF-кB, we also cloned the promoter of ToNF-кB into the
Kpn I and Xho I site of the pGL3-basic vector (Invitrogen, USA) (Table 1). Then, ToTLR5M or ToTLR5S
or both ToTLR5M and ToTLR5S were transfected into GPS cells together with ToNF-кB.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://genome.ucsc.edu/cgi-bin/hgBlat
http://asia.ensembl.org/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://web.expasy.org/protparam/
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Table 1. Primers used for sequence cloning, deletion mutant construction, mRNA construction,
and qRT-PCR.

Subject and Primers Nucleotide Sequence

Primers for cDNA sequence cloning
TLR5M-F GCTAGCATGAGGACGCCGGCCCTTCACT
TLR5M-R GGTACCTCACATAGCAATTGTTGGGATG
TLR5S-F GCTAGCATGTGGCTGCTGGGTCTCCAGG
TLR5S-R GGTACCTTACTGCTGTGTGAGCTGAGCA

TLR5M-GSP1 GACACCAAGGTGAAAAAGATTG
TLR5M-GSP2 GACCAAAAGTAGTGTATTCATA
TLR5S-GSP1 ACCAATGTCACCTTCTTGAGTC
TLR5S-GSP2 ACGTATGTCATGTTGATTTGGG

Primers for DNA sequence cloning
TLR5M-F1 CAACAGCAAAGTTAGATTTACCAAT
TLR5M-R1 CAATTTGAGGTTTAATTGTGTGAAC
TLR5M-F2 AGAGACTCCATACTGACGGAAAGC
TLR5M-R2 AGGAACATGCTATATATCAGCTGT
TLR5M-F3 AAATATGAAGCTACAGCCAGACGC
TLR5M-R3 TGTGAGATTTTGTTTTAATTCTTA
TLR5S-F1 GTTTGTGCTGCACAATCACAGTAATG
TLR5S-R1 CCGTTGTAGGATAGGTCGAGTTTCTG
TLR5S-F2 TCAATTTCCTAAACTTGAACTCTG
TLR5S-R2 GCCCATTTCAGGGGATTTTTTTAT

Deletion mutant construction
Pro-TLR5M-F1 AAGCTTACCTGCGGTATGGAAGAATGCCCTG
Pro-TLR5M-F2 AAGCTTACCCTCGCACATCACTTCCTTAACC
Pro-TLR5M-F3 AAGCTTACCTAGCTACGGAGGACAGGACTG
Pro-TLR5M-F4 AAGCTTACCAGGTCGGCCGCCCAGAAACC
Pro-TLR5M-F5 AAGCTTACCGACTATGGAAAAGTTACAAG
Pro-TLR5M-F6 AAGCTTACCTACAAGTTAAAGAGCAGAGAG
Pro-TLR5M-F7 AAGCTTACCGAAATGCTCCAGGCGGGTCA
Pro-TLR5M-R GGTACCTTAGCTGTCCTCGTCCCACCAAGGCG
Pro-TLR5S-F1 AAGCTTACCGGTCTTTCACTGACTTCCCTAC
Pro-TLR5S-F2 AAGCTTACCTCCAGTGGTGAAAAAGCAGCTG
Pro-TLR5S-F3 AAGCTTACCACCACTCTCTTTAATTATTTACAG
Pro-TLR5S-F4 AAGCTTACCCATTGGGCGCTCAGAAATCACTTG
Pro-TLR5S-F5 AAGCTTACCCTCCTACTCCTAAAAGTACAATA
Pro-TLR5S-F6 AAGCTTACCGTCTTAATATCTGAAAGAGGAA
Pro-TLR5S-F7 AAGCTTACCGATGCTGTTTTCTGTACTACTGAC
Pro-TLR5S-R GGTACCTTACCTCACACTGCTTGGTATAATCC
Pro-NF-кB-F GGTACCGTAAGATCATGTGAACTACC
Pro-NF-кB-R CTCGAGGTATGAAGGTAGTGGTCGTC

Primers for qRT-PCR
qTLR5M-F TTCAGTCACTCATCTTCCTCAG
qTLR5M -R TCTCGTTCAGCCACTTCAG
qTLR5S-F TCAACCTCTCCAACAACTTCA
qTLR5S-R CGGTCATCCAAGCCAGAA

EF1α-F AAGCCAGGTATGGTTGTCAACTTT
EF1α-R CGTGGTGCATCTCCACAGACT

Primers for recombinant expression
TLR5M-ED-F GGATCCGAATTCCGGACTATGCTGGAGCCAAGGGCATTTGC
TLR5M-ED-R GTGGTGCTCGAGTGCGGCCTTATTAATCCTCTTTACATGGTTCGATG
TLR5S-ED-F GGATCCGAATTCCGGACTATGTCATGCCTCATAACGGGCTC
TLR5S-ED-R GTGGTGCTCGAGTGCGGCCTTATTACTGCTGTGTGAGCTGAGCAG

Primers for eukaryotic recombinant vector construction
TLR5M-F TGGACTAGTGGATCCATGAGGACGCCGGCCCTT
TLR5M-R TTTAAACTTAAGCTTCATAGCAATTGTTGGGAT
TLR5S-F TGGACTAGTGGATCCATGTGGCTGCTGGGTCTC
TLR5S-R TTTAAACTTAAGCTTCTGCTGTGTGAGCTGAGC

The underline indicates restriction enzyme cutting sites.
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4.6. Quantitative Real-time PCR and Statistical Analysis

The transcription of ToTLR5M and ToTLR5S was determined by quantitative real-time polymerase
chain reaction (qRT-PCR) in 10 healthy tissues and 6 infected tissues in pompano. Total RNA was
extracted as described previously. The specific primers of two ToTLR5s and the reference gene
elongation factor 1 alpha (EF-1α) are shown in Table 1. qRT-PCR was performed as previously
described [51]. Relative expression was calculated by the 2−∆∆CT method [52]. SPSS 19.0 software
(IBM, NC, USA) was used to analyze the data in the present study. The data were analyzed using the
Duncan test by one-way ANOVA from different groups and tissues. Data are presented as the means
of three replicates ± standard error (SE), and p < 0.05 or p < 0.01 indicated significance.

4.7. Expression and Purification of Recombinant Two ToTLR5s

The ToTLR5M functional domain encoding the LRR region and the ORF of ToTLR5S were amplified
by PCR with specific primers (Table 1). The corresponding fragments were ligated into the pET-sumo
plasmid and transformed into the E. coli Rosseta (DE3) strain. Moreover, positive clones were sequenced
and confirmed. To abduct the expression of the recombinant proteins of two ToTLR5s, we supplied
isopropyl-β-D-thiogalactoside (IPTG, 1 mM) at the 0.6 value that the OD600 of primary culture had
attained. Bacterial solution (1 mL) was collected for analysis after induction at 37 ◦C and 220 rpm
for 8 h. Furthermore, the control groups were managed analogously without IPTG. According to
the His-bind Purification Kit instructions (Novagen), we purified the recombinant proteins of two
ToTLR5s and renatured them by Ni-NTA affinity chromatography with chelated nickel ions on the
resin. The recombinant proteins were isolated from culture supernatant and separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; 12% separating gel and 5% stacking
gel), observed by staining with Coomassie brilliant blue R250, and detected by Western blotting (WT)
analysis. A Modified BCA Protein Assay Kit (Sangon Biotech, Shanghai, China) was used to measure
the concentration of the ToTLR5M and ToTLR5S proteins.

WT analysis was performed after the purified recombinant ToTLR5M (rToTLR5M) and ToTLR5S
(rToTLR5S) was separated by 12% SDS-PAGE. The outcomes were transferred onto nitrocellulose
membrane, washed with PBST (phosphate buffer solution Tween; 0.1 M) thrice, and blocked with a
suspension of 5% skim milk powder for 2 h. Subsequently, PBST was used to wash the membrane
and it was then incubated with His-Tag horseradish peroxidase (HRP) (1:2000) conjugated mouse
monoclonal antibody at 37 ◦C for 1 h. Enhanced HRP-DAB substrate color development kit was used
to develop the immune reactive bands.

4.8. Assay for the Binding of Bacteria and PAMPs

To investigate the binding ability of recombinant ToTLR5M (rToTLR5M) and ToTLR5S (rToTLR5S)
protein with bacteria and PAMPs, we determined six types of bacteria (Vibrio harveyi, Vibrio vulnificus,
Vibrio anguillarum, Staphylococcus aureus, Escherichia coli, Aeromonas hydrophila, Photobacterium damselae)
and four types of PAMPs (poly(I:C), LPS, flagellin, and peptidoglycan (PGN); Sigma-Aldrich, USA)
by enzyme-linked immunosorbent assay (ELISA). The bacteria were harvested by centrifugation at
12,000× g for 5 min after cultivation, washed with PBS three times, and suspended to approximately
1 × 108 cfu/mL with PBS. Bacterium and PAMPs were added to each well of a microtiter plate and
maintained at 4 ◦C for 24 h. The plates were washed three times and then 100 µL of various
concentrations of recombinant protein or BSA (as a negative control) was added to the wells.
Monoclonal His-Tag antibody (1:1000 dilution) was added to each well and incubated at 37 ◦C
for 1 h. The detailed procedure was described as reported previously [53]. The binding activity of
rToTLR5M and rToTLR5S to bacteria or PAMPs was calculated by the OD450 ratio of the treatment
and control groups. Positive readings were defined as at least twice that of the control. All assays were
implemented in triplicate.
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Abbreviations

TLRs Toll-like receptors
ORF open reading frame
poly(I:C) polyinosinic:polycytidylic acid
LPS lipopolysaccharide
PAMPs pathogen-associated molecular patterns
PGN peptidoglycan
PRR pathogen recognition receptor
LRRs leucine-rich repeats
GPS Trachinotus ovatus snout tissue
qRT-PCR quantitative real-time polymerase chain reaction
WT Western blotting
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
ELISA enzyme-linked immunosorbent assay

References

1. Purcell, M.K.; Smith, K.D.; Hood, L.; Winton, J.R.; Roach, J.C. Conservation of Toll-like receptor signaling
pathways in teleost fish. Comp. Biochem. Physiol. Part D Genom. Proteom. 2006, 1, 77–88.

2. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [CrossRef] [PubMed]
3. Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol. 2003, 21, 335–376. [CrossRef] [PubMed]
4. Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [CrossRef]
5. Janeway, C.A.; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [CrossRef]
6. Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124,

783–801. [CrossRef]
7. Kawai, T.; Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009, 21,

317–337. [CrossRef]
8. Palti, Y. Toll-like receptors in bony fish: From genomics to function. Dev. Comp. Immunol. 2011, 35,

1263–1272. [CrossRef]
9. Means, T.K.; Golenbock, D.T.; Fenton, M.J. Structure and function of Toll-like receptor proteins. Life Sci. 2000,

68, 241–258. [CrossRef]
10. Gewirtz, A.T.; Navas, T.A.; Lyons, S.; Godowski, P.J.; Madara, J.L. Cutting edge: Bacterial flagellin activates

basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 2001, 167,
1882–1885. [CrossRef]

11. Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.;
Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001,
410, 1099–1103. [CrossRef] [PubMed]

12. Didierlaurent, A.; Ferrero, I.; Otten, L.A.; Dubois, B.; Reinhardt, M.; Carlsen, H.; Blomhoff, R.; Akira, S.;
Kraehenbuhl, J.P.; Sirard, J.C. Flagellin promotes myeloid differentiation factor 88-dependent development
of Th2-type response. J. Immunol. 2004, 172, 6922–6930. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/21/16/5916/s1
http://www.mdpi.com/1422-0067/21/16/5916/s1
http://dx.doi.org/10.1038/35100529
http://www.ncbi.nlm.nih.gov/pubmed/11905821
http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126
http://www.ncbi.nlm.nih.gov/pubmed/12524386
http://dx.doi.org/10.1038/nri1391
http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359
http://dx.doi.org/10.1016/j.cell.2006.02.015
http://dx.doi.org/10.1093/intimm/dxp017
http://dx.doi.org/10.1016/j.dci.2011.03.006
http://dx.doi.org/10.1016/S0024-3205(00)00939-5
http://dx.doi.org/10.4049/jimmunol.167.4.1882
http://dx.doi.org/10.1038/35074106
http://www.ncbi.nlm.nih.gov/pubmed/11323673
http://dx.doi.org/10.4049/jimmunol.172.11.6922
http://www.ncbi.nlm.nih.gov/pubmed/15153511


Int. J. Mol. Sci. 2020, 21, 5916 17 of 19

13. Basu, M.; Swain, B.; Maiti, N.K.; Routray, P.; Samantaa, M. Inductive expression of toll-like receptor 5 (TLR5)
and associated downstream signaling molecules following ligand exposure and bacterial infection in the
Indian major carp, mrigal (Cirrhinus mrigala). Fish Shellfish Immunol. 2012, 32, 121–131. [CrossRef] [PubMed]

14. Mizel, S.B.; Honko, A.N.; Moors, M.A.; Smith, P.S.; West, A.P. Induction of macrophage nitric oxide
production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like
receptor 4 complexes. J. Immunol. 2003, 170, 6217–6223. [CrossRef] [PubMed]

15. Oshiumi, H.; Tsujita, T.; Shida, K.; Matsumoto, M.; Ikeo, K.; Seya, T. Prediction of the prototype of the
human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 2003, 54,
791–800. [CrossRef]

16. Tsujita, T.; Tsukada, H.; Nakao, M.; Oshiumi, H.; Matsumoto, M.; Seya, T. Sensing bacterial flagellin by
membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Onchorhynchus mikiss). J. Biol. Chem.
2004, 279, 48588–48597. [CrossRef]

17. Hwang, S.D.; Asahi, T.; Kondo, H.; Hirono, I.; Aoki, T. Molecular cloning and expression study on
Toll-like receptor 5 paralogs in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2010, 29,
630–638. [CrossRef]

18. Bai, J.; Li, Y.; Deng, Y.; Huang, Y.Q.; He, S.H.; Dai, J.; Zhao, S.Z.; Dan, X.M.; Luo, X.C. Molecular identification
and expression analysis of TLR5M and TLR5S from orange-spotted grouper (Epinephelus coioides).
Fish Shellfish Immunol. 2017, 63, 97–102. [CrossRef]

19. Meijer, A.H.; Gabby, K.S.F.; Medina, R.I.A.; He, S.; Bitter, W.; Ewa, S.J.B.; Spaink, H.P. Expression analysis of the
Toll-like receptor and TIR domain adaptor families of zebrafish. Mol. Immunol. 2004, 40, 773–783. [CrossRef]

20. Jiang, Y.; He, L.; Ju, C.; Pei, Y.; Ji, M.; Li, Y.; Liao, L.J.; Jang, S.H.; Zhu, Z.Y.; Wang, Y.P. Isolation and expression
of grass carp toll-like receptor 5a (CiTLR5a) and 5b (CiTLR5b) gene involved in the response to flagellin
stimulation and grass carp reovirus infection. Fish Shellfish Immunol. 2015, 44, 88–99. [CrossRef]

21. Umasuthan, N.; Bathige, S.; Thulasitha, W.S.; Jayasooriya, R.G.P.T.; Younhee, S.; Lee, J. Identification of a
gene encoding a membrane-anchored toll-like receptor 5 (TLR5M) in Oplegnathus fasciatus that responds to
flagellin challenge and activates NF-κB [J]. Fish Shellfish Immunol. 2017, 62, 276–290. [CrossRef] [PubMed]

22. Jayaramu, P.K.; Tripathi, G.; Kumar, A.P.; Keezhedath, J.; Pathan, M.K.; Kurcheti, P.P. Studies on
expression pattern of toll-like receptor 5 (TLR5) in Edwardsiella tarda infected Pangasianodon hypophthalmus.
Fish Shellfish Immunol. 2017, 63, 68–73. [CrossRef] [PubMed]

23. Morimoto, N.; Kondo, M.; Kono, T.; Sakai, M.; Hikima, J.I. Nonconservation of TLR5 activation site in
Edwardsiella tarda flagellin decreases expression of interleukin-1β and NF-κB genes in Japanese flounder,
Paralichthys olivaceus. Fish Shellfish Immunol. 2019, 87, 765–771. [CrossRef] [PubMed]

24. Tsoi, S.; Park, K.C.; Kay, H.H.; O’Brien, T.J.; Podor, E.; Sun, G.; Douglas, S.E.; Brown, L.L.; Johnson, S.C.
Identification of a transcript encoding a soluble form of toll-like receptor 5 (TLR5) in Atlantic salmon during
Aeromonas salmonicida infection. Vet. Immunol. Immunop. 2006, 109, 183–187. [CrossRef]

25. Baoprasertkul, P.; Xu, P.; Peatman, E.; Kucuktas, H.; Liu, Z. Divergent Toll-like receptors in catfish,
Ictalurus punctatus: TLR5S, TLR20, TLR21. Fish Shellfish Immunol. 2007, 23, 1218–1230. [CrossRef]

26. Zhang, W.T.; Xiang, J.S.; Li, H.L.; Zhang, N.; Dong, Z.D.; Gao, F.T.; Chen, S.L. Molecular cloning,
characterization, and expression of three TLR5S splicing variants in half-smooth tongue sole. J. Fish.
Sci. China 2016, 23, 10–20.

27. Huo, R.; Zhao, X.; Han, J.; Xu, T.J. Genomic organization, evolution and functional characterization of
soluble toll-like receptor 5 (TLR5S) in miiuy croaker (Miichthys miiuy). Fish Shellfish Immunol. 2018, 80,
109–114. [CrossRef]

28. Sun, L.Y.; Guo, H.Y.; Zhu, C.Y.; Ma, Z.H.; Jiang, S.G.; Zhang, D.C. Genetic polymorphism of breeding
populations of golden pompano (Trachinotus ovatus). South China Fish Sci. 2014, 10, 67–71.

29. Zhen, P.L.; Ma, Z.H.; Guo, H.Y.; Jiang, S.G.; Zhang, D.C. Ontogenetic development of caudal skeletons in
Trachinotus ovatus larvae, South China. Fish Sci. 2014, 10, 45–50.

30. Su, Y.L.; Feng, J.; Guo, Z.X.; Xu, L.W.; Wang, J.Y. Histopathological analysis of golden pompano
Trachinotus ovatus infected with Photobacterium damselae subsp. piscicida. Mar. Sci. 2012, 36, 75–81.

31. Bell, J.K.; Mullen, G.E.; Leifer, C.A.; Mazzoni, A.; Davies, D.R.; Segal, D.M. Leucine-rich repeats and pathogen
recognition in Toll-like receptors. Trends Immunol. 2003, 24, 528–533. [CrossRef]

http://dx.doi.org/10.1016/j.fsi.2011.10.031
http://www.ncbi.nlm.nih.gov/pubmed/22085689
http://dx.doi.org/10.4049/jimmunol.170.12.6217
http://www.ncbi.nlm.nih.gov/pubmed/12794153
http://dx.doi.org/10.1007/s00251-002-0519-8
http://dx.doi.org/10.1074/jbc.M407634200
http://dx.doi.org/10.1016/j.fsi.2010.06.011
http://dx.doi.org/10.1016/j.fsi.2017.01.037
http://dx.doi.org/10.1016/j.molimm.2003.10.003
http://dx.doi.org/10.1016/j.fsi.2015.01.024
http://dx.doi.org/10.1016/j.fsi.2017.01.020
http://www.ncbi.nlm.nih.gov/pubmed/28111358
http://dx.doi.org/10.1016/j.fsi.2017.01.041
http://www.ncbi.nlm.nih.gov/pubmed/28159691
http://dx.doi.org/10.1016/j.fsi.2019.02.024
http://www.ncbi.nlm.nih.gov/pubmed/30776541
http://dx.doi.org/10.1016/j.vetimm.2005.05.013
http://dx.doi.org/10.1016/j.fsi.2007.06.002
http://dx.doi.org/10.1016/j.fsi.2018.05.048
http://dx.doi.org/10.1016/S1471-4906(03)00242-4


Int. J. Mol. Sci. 2020, 21, 5916 18 of 19

32. Bell, J.K.; Botos, I.; Hall, P.R.; Askins, J.; Shiloach, J.; Segal, D.M.; Davies, D.R. The molecular structure
of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 2005, 102, 10976–10980.
[CrossRef] [PubMed]

33. Slack, J.L.; Schooley, K.; Bonnert, T.P.; Mitcham, J.L.; Qwarnstrom, E.E.; Sims, J.E.; Dower, S.K. Identification
of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to
pro-inflammatory signaling pathways. J. Biol. Chem. 2000, 275, 4670–4678. [CrossRef]

34. Bilodeau, A.L.; Waldbieser, G.C. Activation of TLR3 and TLR5 in channel catfish exposed to virulent
Edwardsiella ictaluri. Dev. Comp. Immunol. 2005, 29, 713–721. [CrossRef]

35. Zhang, X.T.; Zhang, G.R.; Shi, Z.C.; Yuan, Y.J.; Zheng, H.; Lin, L.; Wei, K.J.; Ji, W. Expression analysis of nine
Toll-like receptors in yellow catfish (Pelteobagrus fulvidraco) responding to Aeromonas hydrophila challenge.
Fish Shellfish Immunol. 2017, 63, 384–393. [CrossRef] [PubMed]

36. Liu, D.; Chen, J.; Li, S.; Hu, G.B. Molecular cloning and expression study on Toll-like receptor 5M in turbot,
Scophthalmus maximus. Dev. Comp. Immunol. 2018, 85, 44–50. [CrossRef] [PubMed]

37. Wu, M.; Guo, L.; Zhu, K.C.; Guo, H.Y.; Liu, B.; Jiang, S.G.; Zhang, D.C. Genomic structure and molecular
characterization of Toll-like receptors 1 and 2 from golden pompano Trachinotus ovatus (Linnaeus, 1758) and
their expression response to three types of pathogen associated molecular patterns. Dev. Comp. Immunol.
2018, 86, 34–40. [CrossRef]

38. Zhu, K.C.; Guo, H.Y.; Zhang, N.; Liu, B.S.; Guo, L.; Jiang, S.G.; Zhang, D.C. Functional characterization
of IRF8 regulation of type II IFN in golden pompano (Trachinotus ovatus). Fish Shellfish Immunol. 2019, 94,
1–9. [CrossRef]

39. Zhu, K.C.; Liu, B.S.; Zhang, N.; Guo, H.Y.; Guo, L.; Jiang, S.G.; Zhang, D.C. Interferon regulatory factor 2
plays a positive role in interferon gamma expression in golden pompano, Trachinotus ovatus (Linnaeus 1758).
Fish Shellfish Immunol. 2020, 96, 107–113. [CrossRef]

40. Zhu, K.C.; Zhang, N.; Liu, B.S.; Guo, L.; Guo, H.Y.; Jiang, S.G.; Zhang, D.C. Functional analysis of IRF1 reveals
its role in the activation of the Type I IFN pathway in golden pompano, Trachinotus ovatus (Linnaeus 1758).
Int. J. Mol. Sci. 2020, 21, 2652. [CrossRef]

41. Zhu, K.C.; Guo, H.Y.; Zhang, N.; Guo, L.; Liu, B.S.; Jiang, S.G.; Zhang, D.C. Structural and expression analysis
of golden pompano Trachinotus ovatus IRF5 and its role in regulation of type I IFN. Fish Shellfish Immunol.
2020, 97, 313–321. [CrossRef] [PubMed]

42. Zhang, J. Cloning, expression and functional analysis of tlr5/tlr22 and associated downstream signaling
molecules in qihe crucian carp (Carassius auratus). Ph.D. Thesis, The Henan Normal University, Xinxiang,
China, July 2016.

43. Gao, Q.X.; Yue, Y.F.; Min, M.H.; Peng, S.M.; Shi, Z.H.; Sheng, W.Q.; Zhang, T. Characterization of TLR5 and
TLR9 from silver pomfret (Pampus argenteus) and expression profiling in response to bacterial components.
Fish Shellfish Immunol. 2018, 80, 241–249. [CrossRef] [PubMed]

44. Thakur, B.K.; Dasgupta, N.; Ta, A.; Das, S. Physiological TLR5 expression in the intestine is regulated by
differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation
by two different PKC isoforms. Nucleic Acids Res. 2016, 12, 5658–5672. [CrossRef] [PubMed]

45. Moon, J.Y.; Nam, B.H.; Kong, H.J.; Kim, Y.O.; Kim, W.J.; Kim, B.S.; Kim, K.K.; Lee, S.J. Maximal transcriptional
activation of piscine soluble Toll-like receptor 5 by the NF-κB subunit p65 and flagellin. Fish Shellfish Immunol.
2011, 6, 881–886. [CrossRef] [PubMed]

46. Huang, W.; Shen, Y.; Xu, X.; Hu, M.Y.; Li, J.L. Identification and characterization of the TLR18 gene in grass
carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 2, 681–688. [CrossRef] [PubMed]

47. Matsumoto, M.; Seya, T. TLR3: Interferon induction by double-stranded RNA including poly (I: C). Adv. Drug
Deliver. Rev. 2008, 7, 805–812. [CrossRef]

48. Zhang, D.C.; Guo, L.; Guo, H.Y.; Zhu, K.C.; Li, S.Q.; Zhang, Y.; Zhang, N.; Liu, B.S.; Jiang, S.G.; Li, J.T.
Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae.
Sci. Data 2019, 6, 216. [CrossRef]

49. Sun, L.Y.; Zhang, D.C.; Jiang, S.G.; Guo, H.Y.; Zhu, C.Y. Isolation and characterization of 21 polymorphic
microstatellites in golden pompano Trachinotus ovatus. Conserv. Genet. Resour. 2013, 5, 1107–1109. [CrossRef]

50. Yu, Y.; Wei, S.; Wang, Z.; Huang, X.; Huang, Y.; Cai, J.; Li, C.; Qin, Q. Establishment of a new cell line from
the snout tissue of golden pompano Trachinotus ovatus, and its application in virus susceptibility. Fish Biol.
2016, 88, 2251–2262. [CrossRef]

http://dx.doi.org/10.1073/pnas.0505077102
http://www.ncbi.nlm.nih.gov/pubmed/16043704
http://dx.doi.org/10.1074/jbc.275.7.4670
http://dx.doi.org/10.1016/j.dci.2004.12.002
http://dx.doi.org/10.1016/j.fsi.2017.02.021
http://www.ncbi.nlm.nih.gov/pubmed/28223111
http://dx.doi.org/10.1016/j.dci.2018.03.020
http://www.ncbi.nlm.nih.gov/pubmed/29621530
http://dx.doi.org/10.1016/j.dci.2018.04.022
http://dx.doi.org/10.1016/j.fsi.2019.08.060
http://dx.doi.org/10.1016/j.fsi.2019.12.006
http://dx.doi.org/10.3390/ijms21072652
http://dx.doi.org/10.1016/j.fsi.2019.12.058
http://www.ncbi.nlm.nih.gov/pubmed/31866451
http://dx.doi.org/10.1016/j.fsi.2018.06.014
http://www.ncbi.nlm.nih.gov/pubmed/29890218
http://dx.doi.org/10.1093/nar/gkw189
http://www.ncbi.nlm.nih.gov/pubmed/27060138
http://dx.doi.org/10.1016/j.fsi.2011.08.002
http://www.ncbi.nlm.nih.gov/pubmed/21867757
http://dx.doi.org/10.1016/j.fsi.2015.09.052
http://www.ncbi.nlm.nih.gov/pubmed/26439414
http://dx.doi.org/10.1016/j.addr.2007.11.005
http://dx.doi.org/10.1038/s41597-019-0238-8
http://dx.doi.org/10.1007/s12686-013-9942-4
http://dx.doi.org/10.1111/jfb.12986


Int. J. Mol. Sci. 2020, 21, 5916 19 of 19

51. Zhu, K.C.; Song, L.; Guo, H.Y.; Guo, L.; Zhang, N.; Liu, B.S.; Jiang, S.G.; Zhang, D.C. Elovl4a participates in
LC-PUFA biosynthesis and is regulated by PPARαβ in golden pompano Trachinotus ovatus (Linnaeus 1758).
Sci. Rep. 2019, 9, 4684. [CrossRef]

52. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and
the 2−∆∆CT method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

53. Wang, T.; Sun, L. CsSAP, a teleost serum amyloid P component, interacts with bacteria, promotes phagocytosis,
and enhances host resistance against bacterial and viral infection. Dev. Comp. Immunol. 2016, 55, 12–20.
[CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-019-41288-w
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1016/j.dci.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26454233
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Sequence Characterization of ToTLR5M and ToTLR5S 
	Tissue Expression of ToTLR5M and ToTLR5S 
	Promoter Activity of Two ToTLR5s 
	Effect of Overexpression of Two ToTLR5s on NF-B Activity 
	Binding of Two rToTLR5s to Bacteria and PAMPs 

	Discussion 
	Materials and Methods 
	Ethics Statement 
	Fish and Challenge Experiments 
	RNA Extraction and Gene Cloning 
	Bioinformatics 
	Cloning of the 5'-flanking Sequence and Its Promoter Activity 
	Quantitative Real-time PCR and Statistical Analysis 
	Expression and Purification of Recombinant Two ToTLR5s 
	Assay for the Binding of Bacteria and PAMPs 

	References

