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Abstract: Background: Sepsis is often associated with liver dysfunction, which is an indicator of
poor outcomes. Specific diagnostic tools that detect hepatic dysfunction in its early stages are
scarce. So far, the immune modulatory effects of hemoadsorption with CytoSorb® on liver function
are unclear. Method: We assessed the hepatic function by using the dynamic LiMAx® test and
biochemical parameters in 21 patients with sepsis or septic shock receiving CytoSorb® in a prospective,
observational study. Points of measurement: T1: diagnosis of sepsis or septic shock; T2 and T3: 24 h
and 48 h after the start of CytoSorb®; T4: 24 h after termination of CytoSorb®. Results: The hepatic
biotransformation capacity measured by LiMAx® was severely impaired in up to 95 % of patients.
Despite a rapid shock reversal under CytoSorb®, a significant improvement in LiMAx® values
appeared from T3 to T4. This decline and recovery of liver function were not reflected by common
parameters of hepatic metabolism that remained mostly within the normal range. Conclusions:
Hepatic dysfunction can effectively and safely be diagnosed with LiMAx® in ventilated ICU patients
under CytoSorb®. Various static liver parameters are of limited use since they do not adequately
reflect hepatic dysfunction and impaired hepatic metabolism.

Keywords: CytoSorb®; hemoadsorption; septic shock; sepsis; hepatic dysfunction; sepsis-associated
liver dysfunction; LiMAx®; static liver parameters; dynamic liver function test; Interleukin-6

1. Introduction

Sepsis is not only one of the most common diseases worldwide, but it is also a leading
cause of death [1]. It is associated with about one out of five deaths globally [1,2]. Despite
multiple diagnostic and therapeutic efforts in the last years, the 90-day-mortality in septic
shock remains almost unchanged at a high rate of close to 40% in Europe [3]. In critically
ill patients, hepatic insufficiency or liver failure is an indicator of poorer outcomes [4,5].
Especially early liver impairment is associated with an increased hospital mortality rate
and occurred in 11% of seriously ill patients [6]. Even mild hyperbilirubinemia has been
identified as an independent predictor of mortality in patients with sepsis [7–9].
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Sepsis and septic shock are frequently accompanied by sepsis-associated liver dys-
function (SALD). However, determining the incidence of SALD is difficult due to the lack
of a uniformly accepted definition. As a result, a comprehensive registry is missing and the
exact incidence is unknown [10–12].

The liver is strongly implicated in the development and amplification of the multiple
organ dysfunction syndrome (MODS). The massive hepatic release of cytokines and activa-
tion of multiple immunological pathways further compromise the clinical situation [13–16].
Clinically, hyperbilirubinemia is one expression of complex hepatic dysfunction and it
depends on various factors, e.g., immunological functional status, current liver perfusion,
individual factors, or metabolic situation [17–22].

To assess liver function in sepsis, paraclinical static parameters are mostly used, such
as elevated serum concentrations of bilirubin, alkaline phosphatase, or aminotransferases.
Using these parameters is currently the best approach because a gold standard or a generally
available specific test is missing [9,10,12,23].

The maximum liver function capacity test (LiMAx®) is a non-invasive procedure and
a good predictor of mortality in patients with sepsis [24]. This dynamic diagnostic tool
can detect septic-related liver dysfunctions at an early stage [24,25]. The compromised
hepatic biotransformation capacity correlates with Endothelin-1 and IL-6 in severely ill
patients [24,26]. Additionally, the LiMAx® test has been successfully used in the ICU for
monitoring antibiotics and for dosing antimycotics [27–29]. It seems to be superior to static
liver parameters [24,30,31].

The LiMAx® test monitors liver function based on a 13C-breath test. Intravenously
administered 13C-labeled methacetin is metabolized exclusively via the hepatic microsomal
localized hemoprotein enzyme 1A2 (CYP1A2) of the cytochrome P450 group [32–34].
Metabolites of methacetin are paracetamol at subtherapeutic concentrations and pulmonary
eliminable 13CO2. The LiMAx® value is calculated based on the maximal change in the
isotope ratio of 13CO2 and 12CO2 compared to the individual baseline (delta over baseline
(DOB)). With an elevation of hepatic metabolic efficiency, more 13CO2 is exhaled. As a result,
DOB and LiMAx® values increase [25,34].

Values > 315 µg/kg/h define the normal range. Between 314 µg/kg/h and 140 µg/kg/h,
the hepatic metabolic activity is impaired. A LiMAx® value <140 µg/kg/h is associ-
ated with a severely impaired hepatic function [35,36]. An increase in LiMAx® levels
may indicate the early recovery of liver function before the static liver parameters start
to normalize [30,37].

CytoSorb® is a high-tech polymer adsorber with a surface area >45,000 m2. It has
a strong binding capacity for a variety of predominantly hydrophobic molecules with
a molecular weight <55 kDa, such as pro- and anti-inflammatory mediators, immune
response-inducing damage-associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs), and pharmacological substances (e.g., anticoagulants and
psychotropic drugs) [38–44].

Previous research addressed the possible effects of adsorption of various DAMPs,
PAMPs, pro- and anti-inflammatory cytokines. Hemoadsorption with CytoSorb® equally
reduces equally elevated levels of pro- and anti-inflammatory cytokines in sepsis in
a concentration-dependent manner. Thereover this therapeutic principle does not affect
a specific pathway of the immunological network [42,45]. The goals are to rebalance the
immunological system [46], to downregulate the excessive, life-threatening hyperinflamma-
tion (“cytokine storm”) [42,45,47,48], and to alleviate capillary leakage and vasoplegia [49].
CytoSorb® can potentially decrease mortality [49–52]. In case of a liver failure, additional
removal of bilirubin or bile acids could be an important therapeutic option [38,41,53–55].

This prospective clinical investigation evaluated dynamic and static liver function
in patients with sepsis or septic shock, who received hemoadsorption with CytoSorb®

to mitigate or accommodate exaggerated and dysregulated immunological responses
(“shock reversal”).
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2. Materials and Methods
2.1. Ethics

The ethics review board of the medical faculty of the Ruhr University Bochum, located
in Bad Oeynhausen, approved the study protocol (file number 2019-440). The research
project is called “Change of microcirculation and liver function under CytoSorb® in patients
with sepsis and septic shock” (MiHaS-Study). The study is listed in the German Clinical
Trials Registry (DRKS00017211). Before including the participants in the study, the patients,
the respective caregivers or independent consultants gave their written informed consent.

2.2. Study Design

In this prospective, monocentered, investigator-initiated, observational study, patients
with sepsis or septic shock [56] and an indication for renal replacement therapy with adju-
vant hemoadsorption with CytoSorb® were included between March 2020 and March 2021
(Figure 1). Exclusion criteria were pregnancy, breastfeeding, age < 18 years, allergy to ac-
etaminophen or methacetin, intravenous drug abuse, advanced liver disease (e.g., chronic
hepatitis, hepatocellular carcinoma, liver metastases, severe cirrhosis (Child–Pugh C)),
prior organ transplantation, and HIV infection. A surgically uncontrollable focus or lack
of informed consent also led to exclusion. Furthermore, patients with concurrent use
of substances metabolized by cytochrome P450 1A2, e.g., mexiletine, propafenone [57]
ciprofloxacin [58,59], imipramine and amitriptyline [60], were excluded. Patients receiving
inhaled sedation with isoflurane were not considered due to suspected interference with
the LiMAx® measurement [61].

2.3. Study Protocol

All patients received individualized standard sepsis therapy according to current
guidelines [62] and renal replacement therapy (continuous venovenous hemodialysis
(CVVHD)) combined with hemoadsorption according to internal departmental specifica-
tions. The duration of CytoSorb® therapy was terminated after the individually calculated
amount of blood purified (ABP) was reached [52]. On admission to the ICU, the Acute
Physiology and Chronic Health Evaluation II score (APACHE II) was determined [63]. The
dynamic liver test LiMAx® was performed at four defined points of time:

1. T1: Preadsorber: (−4 h) before connection to hemoadsorption with CytoSorb®.
2. T2: 24 h after the start of CytoSorb® therapy.
3. T3: 48 h after the start of CytoSorb® therapy.
4. T4: Postadsorber: 24 h after completion of CytoSorb® therapy.

In addition, the following parameters were collected at T1 to T4 as part of routine
clinical practice: sequential organ failure assessment score (SOFA) [64], blood gas analysis,
inflammatory and liver parameters, hemodynamic and respiratory parameters, and current
medication. These datasets were recorded using the patient information system (Integrated
Care Manager, Draeger, Lübeck, Germany).
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2.4. LiMAx® Test

By using the Flip® Analyzer (Humedics GmbH, Berlin, Germany) the LiMAx® test
was performed. Then, 2 mg/kg body weight of 13C-labeled methacetin was injected
intravenously and metabolized to paracetamol and 13CO2. The DOB was measured and
quantified over 60 min [25,34]. Expiratory gas from mechanically ventilated patients was
delivered to the 13CO2 detector via a special adapter. To avoid interactions (recirculation,
altered kinetics) and to create stable measurement conditions, renal replacement therapy
with hemoadsorption was interrupted during measurements. In addition, the infusion
regime, ventilation parameters, and inspiratory oxygen concentration (FiO2) [65] were kept
nearly stable during the measurements. Due to pharmacokinetic reasons, the time interval
between two LiMAx® tests was at least 24 h.
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2.5. CytoSorb®

Renal replacement therapy was always indicated as CVVHD based on relevant
guidelines [66]. The multifiltrate Ci-Ca® (Fresenius AG, Bad Homburg, Germany) was
used. For an adjunctive hemoadsorption, a CytoSorb® adsorber was integrated into the
pre-filter position according to individual indication by the intensivist, in accordance with
manufacturer recommendations and internal hospital standards. The adsorber was re-
placed after 8–24 h, depending on the clinical course of the disease (vasopressor dose,
stabilization, inflammation parameters). Following current recommendations, the dialy-
sis dose was between 20 and 30 mL/kg/h [49,66,67]. To maximize the CytoSorb® dose
(ABP) a maximum blood flow rate of 200 mL/h under citrate anticoagulation was al-
ways targeted, depending on the volume status of the patient and pressure conditions of
the CVVHD [52,68].

2.6. Definition of Outcomes

The primary endpoints were LiMAx® values during the observation period from T1
to T4. The secondary endpoints included the course of various static liver parameters, IL-6
levels, and the dose of norepinephrine.

2.7. Statistical Analysis

Data were collected electronically using Microsoft Excel (version 16.53; Microsoft
Corp. Redmont, WA, USA). All statistical analyses were performed with the program R,
version4.0.5 (https://www.r-project.org (accessed on 5 April 2021)).

Data were tested for normal distribution with the Shapiro–Wilk test and presented as
mean ± standard deviation plus interquartile range (25th and 75th percentiles) or median
plus interquartile range (25th and 75th percentiles), whichever was appropriate.

Group differences (sepsis vs. septic shock) were evaluated with appropriate tests
depending on the scale and data distribution: Fisher’s exact test (categorical data), T-test
for unrelated samples (normal distribution in all 4 points of measurement in both groups),
or Mann–Whitney test. The p-values were corrected according to Bonferroni. A two-sided
p-value < 0.0125 was statistically significant.

Subgroups (sepsis or septic shock) were analyzed by using Fisher’s exact test (categor-
ical data), paired-samples T-test (normal distribution in all 4 points of measurement), or
Wilcoxon signed-rank test. A sliding baseline was chosen for the four points of measure-
ment, comparison T1–2, T2–3, and T3–4. A two-sided p-value < 0.0167 after α-adjustment by
using the Bonferroni correction was set as the statistical threshold.

3. Results
3.1. Demographic Values

A total of 21 patients (12 female and 9 male) were recruited between March 2020 and
March 2021 (Figure 1). The median age was 74 years. BMI was 26.05 ± 6.46. The septic
foci were mainly abdominal (n = 15) with 71%, pulmonary (n = 3), or other parts (n = 3).
No significant differences in baseline characteristics between sepsis and septic shock were
found, except for lactate, which was significantly lower in sepsis (p = 0.00002) (Table 1).

A total of 67% (n = 14) of patients developed a septic shock. APACHE-II and SOFA
scores at T1 were: 31.19 ± 4.19 and 14, respectively, p = 0.5 and p = 0.28. Patients with septic
shock had a 15% higher SOFA score than patients with sepsis. A total of 95% (n = 20) of pa-
tients were mechanically ventilated. Parameters of hemoadsorption showed no differences.
The achieved ABP was 13.23 ± 1.71 L/kg for the total cohort (sepsis: 13.52 ± 1.05 L/kg;
septic shock: 13.08 ± 1.98 L/kg).

https://www.r-project.org
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Table 1. Baseline of demographic and clinical characteristics.

Parameter Total Cohort Sepsis Septic Shock p-Value *

Age (years) 74
(58–80)

60
(54–79.5)

76.5
(60–80.75) 0.28

Gender n (%)
female
male

12 (57%)
9 (43%)

6 (86%)
1 (14%)

6 (42%)
8 (58%) 0.16

Weight (kg) 72.52 ± 19.40 71.14 ± 25.29 73.21 ± 16.80 0.85
Height (cm) 166.57 ± 9.61 163.57 ± 10.00 168.07 ± 9.41 0.34
BMI (kg/m2) 26.05 ± 6.46 26.45 ± 9.07 25.85 ± 5.10 0.87
APACHE II score 31.19 ± 4.19 30.43 ± 2.7 31.57 ± 4.82 0.5
Predicted mortality APACHE II (%) 83.73 ± 7.94 83.17 ± 5.72 84.02 ± 9.03 0.8

SOFA score 14
(12–15)

13
(12–14.5)

15
(13.25–15) 0.28

LOS in ICU (days)
28 d observed mortality n (%)
ICU observed mortality n (%)
90 d observed mortality n (%)

24.38 ± 15.67
7 (33%)
8 (38%)
8 (38%)

22.29 ± 17.73
0 (0%)
0 (0%)
0 (0%)

25.43 ± 15.13
7 (50%)
8 (57%)
8 (57%)

0.70
0.032
0.018
0.018

Septic focus n (%)
Abdominal
Others:

pulmonary
pelvinal
lower extremity

15 (71%)
6 (29%)
3 (14%)
2 (10%)
1 (5%)

6 (86%)
1 (14%)
1 (14%)

0
0

9 (65%)
5 (35%)
2 (14%)
2 (14%)
1 (7%)

0.34

Duration of CytoSorb® application/patient (h) 82.51 ± 18.02 80.74 ± 24.56 83.39 ± 14.79 0.8
Number of CytoSorb® adsorbers/patient (n) 5.10 ± 2.17 4.14 ± 2.12 5.57 ± 2.10 0.17
ABP (L/kg) 13.23 ± 1.71 13.52 ± 1.05 13.08 ± 1.98 0.52
Level of sepsis (Sepsis-3)

Sepsis
Septic shock

7 (33%)
14 (67%)

0
14

7
0

Lactate mmol/L 2.27
(1.79–3.99)

1.39
(1.29–1.71)

3.75
(2.4–4.28) 0.00002 #

Legend: Age, height, weight, APACHE II, SOFA, LOS in ICU, Duration of CytoSorb® application and number of CytoSorb® adsorbers: Mean ± SD or median, ( ): IQR, all other values:
Absolute number and percentage share, *: Statistical comparison between sepsis and septic shock, #: significant p-value: p < 0.05.
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LOS in ICU was 24.38 ± 15.67 days (range 5 to 59 days). All patients with sepsis
survived 90 days. A total of 57% (n = 8) of patients with septic shock did not survive
the ICU stay, 50% (n = 7) of them died between the 10th and 19th day, and 57% (n = 8)
died within 90 days. The observed 28-day- and 90-day-mortality for the total cohort was
33% (n = 7) and 38% (n = 8), respectively, p = 0.032 and p = 0.018. ICU mortality was equal
to 90-day-mortality. In summary, every patient, who had been transferred from the ICU to
periphery wards, survived.

3.2. Hepatic Dysfunction

3.2.1. Dynamic Liver Test: LiMAx®

Dynamic liver function was significantly impaired at T1 for both groups (p = 0.276).
There were no differences between sepsis and septic shock (Tables 2 and 3, Figure 2). Preadsor-
ber (T1), 38% (n = 8) of all patients had limited liver injury, another 57% (n = 12) had a severe
liver injury and 5% (n = 1) had a normal liver function according to LiMAx® (Table 3).

Table 2. LiMAx® values and parameters of hepatocellular damage, cholestasis and synthesis in sepsis
and septic shock.

Parameter Point of Measurement Sepsis Septic Shock
Sepsis vs.

Septic Shock
p-Value

Sepsis
p-Value

Septic Shock
p-Value

Preadsorber T1
166.43 ± 99.53 *

(97.5–224)
117.36 ± 73.76 *

(60–176) 0.276

T2
109.43 ± 43.95 *

(84.5–126)
64.86 ± 40.62 *
(29.75–102.75) 0.046 0.148 0.003 #Hemoadsorption

(CytoSorb®) T3
130.86 ± 66.12 *

(92.5–167.5)
98.14 ± 68.66 *
(52.25–129.75) 0.311 0.261 0.025

LiMAx®

(µg/kg/h)

Postadsorber T4
221.43 ± 40.95 *

(207–240.5)
188.36 ± 120.09 *
(125.25–274.25) 0.366 0.003 # 0.001 #

Preadsorber T1
34 *

(16.5–53)
33.5

(15.25–161) 0.502

T2
25 *

(19–33)
48

(14.25–403.25) 0.412 0.208 0.195Hemoadsorption
(CytoSorb®) T3

21 *
(16–28)

58.5
(16.75–246.75) 0.117 0.025 0.03

ALT (U/L)
(Reference
range < 50)

Postadsorber T4
21 *

(16.5–30.5)
34

(13.25–181.25) 0.654 0.593 0.055

Preadsorber T1
64

(50–66)
101 *

(65.5–145) 0.073

T2
59

(54.5–64.5)
88

(70.25–110.5) 0.062 1 0.124Hemoadsorption
(CytoSorb®) T3

76 *
(59–97)

109 *
(73.75–141.5) 0.156 0.059 0.028

Alkaline
Phosphatase

(U/L)
(Reference

range: 40–129)
Postadsorber T4

121 *
(81.5–166.5)

147.5
(80.25–202) 0.765 0.034 0.019

Preadsorber T1
0.43 *

(0.35–0.87)
0.51

(0.47–0.63) 0.737

T2
0.48 *

(0.25–0.64)
0.45

(0.37–0.94) 0.391 0.02 0.326Hemoadsorption
(CytoSorb®) T3

0.36 *
(0.24–0.42)

0.56 *
(0.42–0.69) 0.015 0.248 0.51

Bilirubin
(mg/dL)

(Reference
range: <1.2)

Postadsorber T4
0.37 *

(0.29–0.42)
0.62 *

(0.46–1.04) 0.037 0.537 0.091

Preadsorber T1
1.24 *

(1.21–1.32)
1.28

(1.19–1.45) 0.55

T2
1.38 *

(1.33–1.48)
1.61 *

(1.45–1.72) 0.062 0.0002 # 0.006#Hemoadsorption
(CytoSorb®) T3

1.40 *
(1.25–1.44)

1.37 *
(1.24–1.57) 0.654 0.203 0.03

INR

Postadsorber T4
1.04 *

(1.00–1.08)
1.22 *

(1.07–1.29) 0.04 0.002 0.018

Sepsis vs. Septic Shock: Data presented as median (IQR), exception LiMAx®: Mean ± SD (normal distribution
at all times of measurement),*: Normal distribution; #: Significant p-value: p < 0.0125. Sepsis and Septic Shock:
Sliding baseline (comparison T1–2; T2–3 and T3–4); Data presented as median (IQR), exception LiMAx®: Mean ± SD
(normal distribution at all times of measurement),*: Normal distribution; #: Significant p-value: p < 0.0167.
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Table 3. Hepatic impairment or liver failure in sepsis and septic shock.

Parameter Point of Measurement Sepsis Septic Shock
LiMAx® Preadsorber T1 3 (43%) 5 (36%)
Impaired liver function T2 1 (14%) 0 (0%)
(314–140 µg/kg/h)

Hemoadsorption
(CytoSorb®) T3 2 (28%) 3 (21%)
Postadsorber T4 7 (100%) 5 (36%)

LiMAx® Preadsorber T1 3 (43%) 9 (64%)
Severe liver damage T2 6 (86%) 14 (100%)
(0–139 µg/kg/h)

Hemoadsorption
(CytoSorb®) T3 5 (71%) 11 (79%)
Postadsorber T4 0 (0%) 7 (50%)

Elevated ALT Preadsorber T1 2 (29%) 6 (43%)
(≥50 U/L) T2 1 (14%) 7 (50%)Hemoadsorption

(CytoSorb®) T3 0 (0%) 7 (50%)
Postadsorber T4 1 (14%) 5 (36%)

Elevated alkaline phosphatase Preadsorber T1 1 (14%) 5 (36%)
(≥129 U/L) T2 1 (14%) 3 (21%)Hemoadsorption

(CytoSorb®) T3 1 (14%) 4 (29%)
Postadsorber T4 3 (43%) 8 (57%)

Hyperbilirubinemia Preadsorber T1 0 (0%) 3 (21%)
(≥1.2 mg/dL) T2 0 (0%) 3 (21%)Hemoadsorption

(CytoSorb®) T3 0 (0%) 0 (0%)
Postadsorber T4 0 (0%) 3 (21%)
Preadsorber T1 0 (0%) 3 (21%)

T2 2 (29%) 10 (71%)Hemoadsorption
(CytoSorb®) T3 1 (14%) 6 (43%)

INR
(≥1.5)

Postadsorber T4 0 (0%) 2 (14%)
Legend: total number and percentage (%) of patients.

The following results refer to the cohort with sepsis (Tables 2 and 3, Figure 2):
A total of 43% (n = 3) of participants showed a severe liver damage and 43% (n = 3)

an impaired hepatic function according to LiMAx® (Table 3). The mean values of LiMAx®

decreased from T1 to T2 by 34% (p = 0.148) and tended to recover slowly but not significantly
after 48 h of hemoadsorption (T3: 130.86 ± 66.12 µg/kg/h; p = 0.261). From T3 to T4 the
mean values of LiMAx® recovered significantly by 69% (p = 0.003) and exceeded the starting
point (T1).

The following results refer to the cohort of septic shock (Tables 2 and 3, Figure 2):
A total of 64% (n = 9) of patients had a severely impaired liver function and 36% (n = 5)

had an impaired liver function. There was a significant deterioration in the mean value
of LiMAx® from T1 to T2 by 45% (p = 0.003). After 48 h under hemoadsorption (T3), the
dynamic liver function tended to improve from T2 to T3 (p = 0.025). This mean value
recovered significantly from T3 to T4 by 92% (p = 0.001) 24 h after the end of CytoSorb®

therapy. T4 had the highest LiMAx® results (T4: 188.36 µg/kg/h).
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3.2.2. Static Liver Parameters

There were no significant differences in static liver parameters observed between
sepsis and septic shock at the four points of time (Table 2). The cumulative incidence of
liver dysfunction varied depending on the different definitions. According to the third
international Consensus definition (“Sepsis-3”) [56], liver dysfunction is based only on
serum bilirubin concentration and hyperbilirubinemia starts >1.2 mg [56]. Related to the
“Sepsis-3”, in the overall cohort, 14% (n = 3) of patients showed hepatic insufficiency
(Table 3). When referring to ALT only 38% (n = 8) of all patients had impaired liver function
at T1, and elevated ALT levels were still observed in six patients at T4 (Table 3).

The following results refer to the cohort with sepsis (Tables 2 and 3): INR increased
significantly from T1 (1.24) to T2 (1.38) by 11% (p = 0.0002), followed by a non-significant
decrease to T4 (1.04). There were no significant changes in other static liver parameters.
The median of ALT were below the pathological reference range (<50 U/L) and constantly
declined over time from T1 to T4 by 38%. Bilirubin levels decreased (T1: 0.43 mg/dL;
T4: 0.37 mg/dL) during and after CytoSorb® therapy (T3; T4).

The following results relate to patients with septic shock (Tables 2 and 3):
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From T1 to T2, the INR increased significantly by 26% (p = 0.006), followed by a slow
decrease up to T4. No significant changes were observed over time for ALT, Bilirubin,
and AP. At the starting point (T1) ALT was not pathologically elevated based on median
(T1: 33.5 U/L). ALT had an upward (T2, T3) followed by a downward (T4) course during
the observation period. The median value at T4 was slightly above the normal range, and
the 75th percentile was significantly elevated from T1 to T4. A total of 43% (n = 6) of the
patients had pathologically elevated ALT levels at T1 and 36% (n = 5) at T4. Bilirubin was
within the normal range related to the median and IQR at all points of time. A total of
21% (n = 3) of the patients had hyperbilirubinemia before the start and after the end of
hemoadsorption. AP showed an unremarkable course in the normal range from T1 to
T3 and increased after hemoadsorption with CytoSorb® from T3 to T4 by about 35% in
the median.

3.3. Shock Reversal

At T2 norepinephrine dose was 133% higher in patients with septic shock than in
patients with sepsis (p = 0.007) (Table 4). Norepinephrine doses in both groups converged
during the course. Vasopressor support decreased continuously from T2 to T4. The median
level of IL-6 was pathologically elevated in both groups at all points of time. The IL-6
concentration tended to be higher in patients with septic shock at all points of measurement
(Table 4 and Figure 3).

The following results relate to the group of sepsis (Table 4, Figure 3):
A significant IL-6 reduction was detecTable 24 h after initiation of CytoSorb® from T1

to T2 by about 73% (p = 0.016) and after T2 the values dropped continuously. All participants
in this group received norepinephrine therapy and norepinephrine initially increased until
T2. A significant decrease became apparent after 48 h hemoadsorption from T2 to T3 by
73% (p = 0.016).

The following results relate to the cohort with septic shock (Table 4, Figure 3):
There was a reduction in IL-6 from T1 to T2 by 90% (p = 0.0004). Initially, the

norepinephrine requirement increased significantly (T1 to T2) by 154% (p = 0.005). After
T2 a consistent and significant reduction in norepinephrine could be observed (T2–T3:
p = 0.0001; T3–T4: p = 0.0006). After the end of hemoadsorption, the dose decreased from
T3 to T4 by 69%.

Table 4. Parameter of inflammation and shock reversal in sepsis and septic shock.

Parameter Point of Measurement Sepsis Septic Shock
Sepsis vs.

Septic Shock
p-Value

Sepsis
p-Value

Septic Shock
p-Value

Preadsorber T1
1402

(727.75–5317)
4713

(1089.5–11717.5) 0.443

T2
374.20

(175.15–553.2)
448.35

(135.75–2593.25) 0.743 0.016 # 0.0004 #Hemoadsorption
(CytoSorb®)

T3
210.4 *

(97.15–263.90))
329.4

(107.68–668.33) 0.287 0.156 0.091

Interleukin-6
(pg/mL)
(Reference
range: <7)

Postadsorber T4
68.30

(27.35–139.80)
128.75

(57.58–446.38) 0.094 0.375 0.042

Preadsorber T1
0.09 *

(0.07–0.19)
0.22 *

(0.11–0.65) 0.19

T2
0.24 *

(0.14–0.37)
0.56 *

(0.43–0.73) 0.007 # 0.09 0.005 #Hemoadsorption
(CytoSorb®)

T3
0.09 *

(0.05–0.10)
0.16

(0.11–0.19) 0.038 0.016 # 0.0001 #

Norepinephrine
dose
(µg/kg/min)

Postadsorber T4
0.05 *

(0.02–0.09)
0.05

(0.02–0.08) 0.97 0.721 0.0006 #

Sepsis vs. Septic Shock: data presented as median (IQR), *: normal distribution; #: significant p-value p < 0.0125
Sepsis and Septic Shock: sliding baseline (comparison T1–2; T2–3 and T3–4); data presented as median (IQR);
*: normal distribution; #: significant p-value: p < 0.0167.
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4. Discussion

Sepsis can lead to micro- and macrocirculatory vasculopathy [13,69–71]. The rever-
sal of septic shock, i.e., improved microcirculation by control of inflammation [72] with
a decrease in different surrogate parameters, such as catecholamine dose or lactate concen-
tration, is the most important goal of septic shock treatment [62,73].

Under hemoadsorption with CytoSorb®, hemodynamic stabilization has already been
demonstrated by several research projects [74–79]. However, an immune modulatory effect
of hemoadsorption with CytoSorb® on dynamic and static liver function in sepsis has not
yet been investigated in a comparable setting.

Typical forms of SALD include hypoxic hepatitis, also known as “shock liver” [80–82],
cholestatic dysfunction [22,83–86], secondary sclerosing cholangitis and can be caused by
hepatotoxic drugs [10,87–89].

4.1. Aspects of Feasibility

In the present prospective study, LiMAx® proved to be safe, feasible and reliable under
mechanical ventilation. It also had the target of exploring its diagnostic potential during
hemoadsorption with CytoSorb®. As shown in our study, this dynamic test is a practical,
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bedside, noninvasive tool [33] to determine the metabolic capacity of the liver during
CytoSorb® in critically ill patients.

Pausing renal replacement therapy during the whole 60 min of the LiMAx® measure-
ment cycle to exclude any possible interaction or recirculation via CRRT and CytoSorb®

represents a significant strength of this study contributing to robust data quality. In contrast,
previous investigations had used much shorter interruptions of dialysis (60 s) [25,26].

LiMAx® achieved promising results for the assessment of hepatic function in liver
resection, in liver transplantation [25,34,90,91], in monitoring antibiotics [27,29,92] and
during sepsis [24,28]. The scope of applications may extend to monitor hepatic function
during hemoadsorption with CytoSorb®.

4.2. Decrease in Plasma IL-6 Levels and Shock Reversal

We observed initially high IL-6 levels followed by a rapid decrease after the initiation
of CytoSorb® therapy. A hemodynamic stabilization and the reduction in norepinephrine
dose occurred 48 h after the start of CytoSorb®, especially in septic shock. According to
these results, rapid control of inflammation and rapid shock reversal can be assumed in
both groups. This is one of the primary therapeutic goals of hemoadsorption by CytoSorb®.
Other objectives are the prevention or limitation of (multi-) organ failure, improvement
of endothelial integrity and reduction in leakages through immunomodulation [76,93–95].
Our findings regarding hemodynamic stabilization, the decrease in norepinephrine and
IL-6 are in common with other studies [49,74,78,96–99]. A highly significant parameter
for clinical stabilization in sepsis and septic shock is potentially the required dosage of
vasopressor, primarily norepinephrine [62,73].

IL-6 levels correlate with liver dysfunction [26] and influence hepatic biosynthesis via
genetic processes with up- or downregulation of different components of the proteome,
e.g., acute phase proteins [100]. Inflammation and high concentrations of cytokines such as
IL-6 cause hepatic dysfunction such as hepatic inflammation, activation of proapoptotic
signaling cascades, or disruption of hepatobiliary transport [13,86,101–104].

Furthermore, high IL-6 levels can potentially be used as a criterion of indication for
a successful treatment with hemoadsorption [41,94,98,105,106]. Nevertheless, the use of
IL-6 as a parameter for indication, follow-up and therapeutic success of hemoadsorp-
tion is controversially discussed [74,96,98,107]. The recently presented scoring system
could be another option for the indication of CytoSorb® [108]. Primarily, our data demon-
strated a rapid hemodynamic stabilization and a quick shock reversal, similarly to other
studies [49,74,78,97,98]. A rapid achievement of this specific therapy objective might have
a liver-protective effect, which is discussed in Section 4.3.

4.3. LiMAx® under Hemoadsorption with CytoSorb®: Progression and Clinical Benefits

The study has shown very low pathological LiMAx® values at the onset of sepsis
and septic shock in the vast majority of patients. Furthermore, our results show maximal
impairment of CYP1A2 activity measured with LiMAx® 24 h after the start of CytoSorb®

treatment, especially in patients with septic shock and extremely elevated IL-6 levels.
Despite rapid shock reversal, a significant hepatic improvement was evident 24 h after
the end of CytoSorb®. Thus, the SALD recovered significantly at the subcellular level
approximately in a median of 106 h (=4.4 days) after the onset of this life-threatening
disease. The metabolic function of the liver was still compromised at T4. A return to normal
biotransformation capacity (>315 µg/kg/h) was not detectable even 4–5 days after the start
of therapy.

Kaffarnik et al. came to a similar conclusion: after the onset of sepsis, the LiMAx®

value decreased until the 2nd day, followed by a hepatic recovery on the 5th and 10th
day [24]. Comparing Kaffarnik et al. and our cohort, the severity of the disease is
higher in the current project, as indicated by the SOFA score: 11.4 and 6.9 [24] vs. 14.3
and 13.9 (Table 1) [24].
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In general, a LiMAx® value < 100 µg/kg/h indicates critical liver failure or terminal
liver failure [109] and predicts mortality with a sensitivity of 100% in sepsis [24]. Study
results prove that LiMAx® can detect early SALD [24].

After the onset of sepsis, 95% (n = 20) had a reduced CYP 1A2 activity, either
an impaired hepatic function (38%, n = 8) or a severe liver damage (57%, n = 12). A similar
study had comparable LiMAx® readouts [24]. The main reason for SALD is considered to
be decreased hepatic blood flow due to a hemodynamic destabilization [110]. Additionally,
another trigger of SALD appears to be abnormal hepatobiliary transport and impaired
biotransformation of detoxification, particularly in the cytochrome P450 enzyme family,
based on a rodent model [111]. The compromised detoxification of different Cytochrome
P enzymes could be confirmed in patients with sepsis. As a result, the drug metabolism
mediated by CYP P450 was reduced [112]. CYP1A2 and CYP2C19 are negatively cor-
related with levels of IL-6. High Il-6 levels decrease the drug metabolism of CYP1A2.
There may exist a higher risk for augmentation of adverse drug reactions and variability
in drug response [113]. These findings give evidence that hepatic impairment might be
multifactorial. The hypotension, high IL-6 levels, especially in septic shock, followed by
biotransformed changes and dysfunction of hepatobiliary transport may cause SALD. It is
also an explanation of the low LiMAx® values in this study, which refer to hepatic damage
or failure.

We show that the biotransformation capacity of the liver is extremely affected at the
onset of sepsis and septic shock. Despite CytoSorb®, the hepatic metabolism measured
by LiMAx® recovers hesitantly 24 h after the end of hemoadsorption. It is conceivable
that a faster decrease in inflammation parameters such as IL-6 and a quick hemodynamic
stabilization due to CytoSorb® has a positive impact on the liver, especially on the hepatic
metabolism and the functional capacity of CYP1A2. For this purpose, a clinical study with
a control group should be designed.

Currently, there is no specific therapy established for SALD, but based on evidence
of hepatic impairment and compromised CYP1A2 metabolism, intensive care strategies
should strive for liver-protective therapies whenever possible. In clinical practice, surrogate
parameters such as IL-6 and vasopressor requirements are commonly used to assess the
clinical course of SALD, but they do not fully reflect the conditions at the subcellular level
and the impaired biotransformation of detoxification. This fact should be considered when
making therapeutic decisions. The LiMAx® can serve as a guide and help to correctly
assess the severity of SALD at an early stage. This diagnostic tool could make an important
contribution to minimizing additional liver cell damage, e.g., by adjusting and monitoring
liver toxic drugs such as antibiotics and antimycotics [24,27–29,31,92,114,115].

4.4. LiMAx® Is Superior to Assess Dysfunction Compared to Static Hepatic Parameters

The median values of all static hepatic biomarkers, except INR, remained within the
normal range at almost all points of measurement. Individual patients showed elevated
static liver parameters (Table 3).

We observed pathological INR with an incidence of up to 57% (n = 7) in the total cohort.
Elevated INR levels are associated with coagulopathy, a common symptom of sepsis, which
occurs in up to 70% of patients with sepsis [116–118]. INR is a reliable diagnostic tool for
the definition of acute liver failure [119–121]. The incidence of hepatic pathological values
is about 38% lower with INR (57%, n = 12) than with LiMAx® (95%, n = 20).

A similar result occurs with ALT. The hepatic integrity parameter was increased in up
to 38% (n = 8) of the patients in our study. ALT tended to indicate a possible deterioration
of liver function, but it does not correlate with the extent of hepatocellular damage [122].
Therefore, it is impossible to deduce the exact hepatic dysfunction or damage based on ALT.

Furthermore, Bilirubin, a biomarker for cholestatic dysfunction, may indicate bile duct
impairment [123]. Under treatment with CytoSorb®, the serum bilirubin concentration
is neither suitable to assess liver function nor to calculate the SOFA or the MELD score,
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because it does not correctly reflect the hepatic excretory function. Bilirubin levels are falsely
determined to be low because CytoSorb® is able to adsorb this molecule irreversibly [38,55].

Our data clearly show that liver function is early and often severely impaired in sepsis
and septic shock according to the LiMAx® (Tables 2 and 3). Our data also confirm the
fact that paraclinical static “liver values” are very limited in assessing hepatic function
in the early stage of sepsis and septic shock [100]. Moreover, the validity of biochemical
parameters could be limited due to an interfering influence of inflammation, tissue damage,
or renal failure [87,104].

In summary, static liver parameters do not adequately reflect the hepatic dysfunction
and the impaired hepatic metabolism at the onset of sepsis and during hemoadsorption
with CytoSorb®. It can be assumed that there is a clear advantage of the LiMAx® test in
diagnosing SALD, as previously described by Kaffarnik et al. [24,26]. This also applies to
hemoadsorption with CytoSorb® as demonstrated in the current research project.

5. Limitations

The present study was planned as an observational trial and should provide results
regarding the feasibility and interpretability of the dynamic liver function test (LiMAx®)
under hemoadsorption with CytoSorb® in sepsis and septic shock. The intention was to
create an approach for future research and to generate new hypotheses.

The number of patients included is too small to draw definitive conclusions regarding
other outcome parameters, e.g., mortality, or to generate clinical guidelines or strategies.

The usability of the LiMAx® test is significantly limited by the personnel, structural
and financial efforts. Therefore, the metabolic necessity of a minimum interval of 24 h
between two measurements and the breaks in CRRT treatment for the duration of the
measurement interval (about 1 h) require extra organizational efforts in order to avoid
any interference.

Despite the prospective study design, certain limitations must be considered. All
measurements were performed after the onset of sepsis. Earlier comparative values are
missing. Longer-term influences of adjuvant hemoadsorption with CytoSorb® on hepatic
biotransformation cannot be excluded with certainty because the study period was about
5 days.

6. Conclusions and Perspectives

This is the first prospective study to measure LiMAx® in combination with hemoad-
sorption by CytoSorb® in mechanically ventilated critically ill ICU patients. It appears that
the hepatic biotransformation capacity measured by LiMAx® is massively and significantly
impaired at the onset of sepsis. A significant hepatic improvement of metabolic capacity
occurred 24 h after the end of hemoadsorption but the liver function was still compro-
mised. It is of utmost importance to choose a liver-protective treatment regime to avoid
further damage. Hepatic recovery was paramount during rapid shock reversal facilitated
by CytoSorb® with a significant decrease in IL-6 and vasopressor support. Whereas static
liver parameters do not adequately reflect the hepatic dysfunction and the impaired hepatic
metabolism at the onset of sepsis and during hemoadsorption with CytoSorb®. In addition,
due to bilirubin removal with CytoSorb®, common liver function assessments such as
the SOFA or MELD score cannot be used. The LiMAx® test can reliably help to assess
the severity and the course of hepatic dysfunction at the subcellular level and to make
therapeutic decisions faster, individualized, and thus optimized.
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