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1  | INTRODUC TION

Consistent with the large body of work on plant communities 
(Grime, 1997; Hector et al., 1999; Hooper, Adair, & Cardinale, 
2012; Nielsen, Ayres, Wall, & Bardgett, 2011; Tilman, 1997), mi-
crobial diversity can have a positive role in a range of community 
functions, including aerobic respiration, litter decomposition and 
plant growth (Bell, Newman, Silverman, Turner, & Lilley, 2005; 
Delgado-Baquerizo et al., 2016; Handa et al., 2014; Philippot et al., 
2013; Wagg, Bender, Widmer, & van der Heijden, 2014). Strongly 
positive diversity–function relationships imply little functional 

redundancy of community members, and hence, loss of diversity 
resulting from environmental change may have considerable im-
pact on community function (Jax, 2005; Loreau, 1998). One of the 
key microbial ecosystem functions where the role of diversity has 
not been experimentally investigated is methanogenesis: meth-
ane production resulting from the anaerobic conversion of H2, 
CO2 and short chain fatty acids by archaeal methanogens (Ferry, 
2012). Methane is both a potent greenhouse gas and a renewable 
resource from organic waste; therefore, determining causal links 
between microbial community diversity, composition and metha-
nogenesis is important.
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Abstract
Methanogenic communities play a crucial role in carbon cycling and biotechnology 
(anaerobic digestion), but our understanding of how their diversity, or composition in 
general, determines the rate of methane production is very limited. Studies to date 
have been correlational because of the difficulty in cultivating their constituent spe-
cies in pure culture. Here, we investigate the causal link between methanogenesis 
and diversity in laboratory anaerobic digesters by experimentally manipulating the 
diversity of cultures by dilution and subsequent equilibration of biomass. This pro-
cess necessarily leads to the loss of the rarer species from communities. We find a 
positive relationship between methane production and the number of taxa, with little 
evidence of functional saturation, suggesting that rare species play an important role 
in methane-producing communities. No correlations were found between the initial 
composition and methane production across natural communities, but a positive re-
lationship between species richness and methane production emerged following 
ecological selection imposed by the laboratory conditions. Our data suggest metha-
nogenic communities show little functional redundancy, and hence, any loss of diver-
sity—both natural and resulting from changes in propagation conditions during 
anaerobic digestion—is likely to reduce methane production.
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Research investigating the links between methanogenesis and 
microbial diversity has been correlational. Studies of methanogen-
esis in natural soil communities have reported positive correlations 
between methane production (from an incubated soil sample) 
and the diversity of both methanogens and the total bacterial/ar-
chaeal communities (Wagner, Zona, Oechel, & Lipson, 2017; Yavitt, 
Yashiro, Cadillo-Quiroz, & Zinder, 2012). However, any conclusions 
are potentially confounded by other environmental variables, such 
as pH, that can have a major role on community structure (Fierer 
et al., 2012; Hesse et al., 2018) and methanogenesis (Wagner 
et al., 2017). Other studies have focussed on correlations be-
tween community structure and methanogenesis under “com-
mon garden” laboratory conditions, where environmental factors 
are better controlled. The largest of these, involving 150 samples 
(Venkiteshwaran et al., 2017), showed no relationship between di-
versity and function, but in this case, the composition of communi-
ties differed in many ways in addition to diversity, and biomass was 
not controlled for.

As a consequence, there is a clear need to conduct manip-
ulative experiments where causal links between diversity and 
methanogenesis can be determined. Manipulating diversity of 
methanogenic communities is nontrivial: They are typically very 
complex, consisting of varied taxa, most of which cannot be easily 
grown in pure culture or even cultivated at all. This makes the 
factorial manipulation of diversity at ecologically relevant levels 
almost impossible. Diversity can, however, be manipulated by 
dilution (Hernandez-Raquet, Durand, Braun, Cravo-Laureau, & 
Godon, 2013; Philippot et al., 2013; Salonius, 1981), which nec-
essarily results in the loss of rare species relative to common 
species.

Here, we conduct such a dilution manipulation across six orders 
of magnitude on a methanogenic ancestral community obtained by 
mixing twelve separate communities. We have previously shown 
that mixing multiple communities maximizes the function and di-
versity in the mix (Sierocinski et al., 2017), thus using the mix max-
imized our chance of generating a highly functional community 
in the process. We allowed the biomass of the diluted cultures to 

become re-established over months in laboratory reactors and then 
densities equalized between treatments. Methane production was 
subsequently measured over six weeks in laboratory anaerobic di-
gesters. In an attempt to assess the importance of diversity of rare 
species relative to other differences in community composition, we 
also investigated correlations between diversity and methanogen-
esis in natural communities isolated from a range of industrial an-
aerobic digesters and associated feedstock environments (sewage, 
silage, slurry, etc) over eight weeks. A number of studies suggest that 
novel propagation conditions impose selection pressures can result 
in large changes in the composition of methanogenic communities 
(De Vrieze et al., 2015; Mladenovska, Dabrowski, & Ahring, 2003; 
Regueiro et al., 2012; Vanwonterghem et al., 2014), and hence, we 
determined community composition at the start and end of the 
experiment.

2  | MATERIAL S AND METHODS

2.1 | Natural communities

In order to use samples that varied in diversity and methane pro-
duction, we collected six pseudo-pairs of anaerobic digester and 
feedstock samples. Anaerobic digester samples came from inside 
the fermentation tank, while feedstock samples were either ac-
quired from the fermenter feedstock or fermenter seeding material 
(Table 1). The cultures were grown for eight weeks in 500-mL bot-
tles (total volume with headspace: 600 mL, Duran) using Automated 
Methane Potential Test System (AMPTS, Bioprocess Control Sweden 
AB) to measure CO2-stripped biogas production. We confirmed that 
the resulting stripped gas was >95% methane by comparing the com-
position of the produced gas pre- and poststripping using GC-FID 
(Agilent, 7890A) and comparing these with a standard curve made 
using methane standard (Sigma). Each sample was replicated in four 
fermenters, two of them fed using a synthetic medium displaying a 
C:N ratio of 15:1 and the other two with 30:1 C:N ratio. We used 
C:N ratios of 15 and 30 because they were reported to be close 
to optimal values for slurry (Hills, 1979; Hills & Roberts, 1981) and 

TABLE  1 Description of anaerobic digester samples used in the experiment coupled with their paired natural samples

AD Sample ID Location Feed Temp.
Time since last 
seeding [months] Paired sample ID Feedstock type

AD1 Farm 70% grass and maize 
silage; 30% food waste

42–44°C 14 AD7 Cow slurry

AD3 Farm Maize; cow slurry; chicken 
manure

45°C 12 AD4 Maize; cow slurry; 
chicken manure

AD5 Sewage Sewage sludge 36°C 12 AD14 Sewage sludge  
predigester

AD9 Sewage Sewage slurry  
postdigester

36°C 60 AD8 Thickened sewage sludge

AD10 Farm Food waste 36°C 18 AD11 Cow slurry

AD13 Farm Maize/grass silage; cow 
slurry; chicken manure

40°C 5 AD12 Maize/grass silage; cow 
slurry; chicken manure
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wastewater (Rughoonundun, Mohee, & Holtzapple, 2012)-treating 
anaerobic digesters, respectively. Starting densities were equal-
ized using 1xM9 salts (Na2HPO4•7H2O, 12.8 g L−1, KH2PO4 15 g 
L−1, NaCl, 2.5 g L−1, NH4Cl, 5.0 g L−1) to 2 × 108 [cells mL−1] based on 
qPCR measurements of 16S RNA genes (see below). 300 g of each 
sample was used as an inoculum and fed weekly with 25 mL of de-
fined medium that mimicked the composition of standard anaerobic 
digester feeds composed of slurry and plant matter: meat extract 
111.1 g L−1, cellulose 24.9 g L−1, starch 9.8 g L−1 glucose 0.89 g L−1, xy-
lose 3.55 g L−1 for carbon-to-nitrogen ratio of 15:1 and meat extract 
73.2 g L−1, cellulose 35.5 g L−1, starch 13.9 g L−1 glucose 1.27 g L−1, 
xylose 5.07 g L−1 for C:N ratio of 30:1 (all Sigma). Additionally, before 
the start of the fermentation, 0.3 mL of 1,000× trace metal stock 
(1 g L−1 FeCl2·4H2O, 0.5 g L−1 MnCl2·4H2O, 0.3 g L−1 CoCl2·4H2O,  
0.2 g L−1 ZnCl2, 0.1 g L−1 NiSO4·6H2O, 0.05 g L−1 Na2MoO4·4H2O, 
0.02 g L−1 H3BO3, 0.008 g L−1 Na2 WO4·2H2O, 0.006 g L−1 Na2 

SeO3·5H2O, 0.002 g L−1 CuCl2·2H2O) was added to each fermenter. 
The fermenters were run in two eight-week batches.

2.2 | Dilution experiment

Initial inoculum was diluted by putting 3 ml into 100-mL serum flasks 
with butyl rubber stoppers, containing 2.5 g of 15:1 C:N sugar mix-
ture, 3 mL of 10x M9 salts (also see above), 21.47 g of sterile deion-
ized water and 0.03 mL of 1,000× minerals solution (see above).  The 
process has been serially repeated till the dilution of 10−6. Anaerobic 
conditions were ensured by filling the flasks with oxygen-free ni-
trogen, and 1 mg/L resazurin was added to the medium to identify 
possible oxygen contamination. Six flasks of 10-fold diluted culture 
were established and each independently serially diluted five times 
in ten-fold steps by transferring 3 mL to produce dilutions ranging 
from 10−1 to 10−6. These dilutions have been incubated for three 
months at 35°C in order to regain the lost biomass. After that time, 
we measured the number of cells in each flask using optical den-
sity measurements at 600 nm (OD600) to make sure that they have 
regrown to measurable values, therefore showing that the diluted 
communities were still functional. Consequently, we transferred 
the cultures to AMPTS II system at equal densities. Cultures were 
fed weekly with the C:N 15:1 carbon source for 6 weeks, after 
which samples were isolated for the analysis of composition and 
cell density

2.3 | DNA extractions

DNA was extracted using FastDNA™ SPIN Kit for Soil (MP) for the 
sequencing and Qiagen QiAamp DNA Stool Mini Kit for all the qPCR 
assays. The quality and quantity of the extractions were confirmed 
by 1% agarose gel electrophoresis and dsDNA BR (Qubit), respec-
tively. We extracted DNA from one out of four replicates per com-
munity (a 15:1 C:N replicate) at the start and end of the experiment 
(pre- and postexperiment) involving the natural samples and from all 
samples at end of the experiment (postexperiment) in the dilution 
experiment.

2.4 | Real-time PCR assay

We used real-time PCR followed by dilution to standardize starting 
microbial densities in the natural communities, because OD600 es-
timates of density would have been confounded by differences in 
the environments from which communities were sampled from. To 
ensure the method was accurate, we carried out a ten-fold dilution 
series, confirmed by plating of a control bacterium, Pseudomonas 
fluorescens SBW25. We then extracted DNA of each dilution using 
the QiAamp DNA Stool Mini Kit. The DNA was amplified by qPCR 
using 16S rRNA primers 338f and 518r (Øvreås & Torsvik, 1998). The 
extracted dilution series (Y = −3.359 x log(X) + 44.65; PCR efficiency 
= 98.5%; r2 = 0.99) was compared to a curve of a DNA sample from 
slurry diluted after extraction (Y = −3.353*log(X) + 13.52; PCR effi-
ciency = 98.7%; r2 = 1.0), indicating that the efficiency of the stand-
ard was comparable to the efficiency of the samples. PCR efficiency 
relates to the amplification per cycle efficiency, with 100% meaning 
doubling of DNA every cycle, the theoretical maximum.

For the postexperimental samples, we used a genomic DNA stan-
dard extracted from P. fluorescens for the Bacteria and Halobacterium 
salinarum for Archaea. The genome mass was calculated (Dolezel, 
Bartos, Voglmayr, & Greilhuber, 2003) and divided by the 16S gene 
copy number. DNA content (pg) = genome size (bp)/(0.978 × 109) 
per copy number per gene of interest. The DNA quantity was mea-
sured using a Qubit dsDNA BR Assay Kit on a Qubit 2.0 Fluorometer, 
with the DNA diluted to concentrations containing 106 16S rRNA 
gene copies per μl and 107 copies per μl for Archaea.

All pre-experiment samples were run on a Stratagene MX3005P 
thermal cycler with 95°C for 3 min, followed by 40 cycles of 95°C for 
15 s, 60°C for 20 s finalized by a melt curve of 95°C for 1 min and 
55°C ramping up to 95°C (15 s for each step). All postexperiment sam-
ples were run on an Applied Biosystems StepOnePlus thermal cycler 
95°C (3 min) 40 cycles 95°C (5 s), 60°C (10 s) flowed by a melting 
curve of 95°C (15 s) 60°C ramping up to 95°C in steps of 0.3°C (15 s 
for each step). The primers (Øvreås & Torsvik, 1998) used to identify 
Bacteria were 16S rRNA 338f—ACT CCT ACG GGA GGC AGC AG 
and 518r—ATT ACC GCG GCT GCT GG For Archaea, we used 931f—
AGG AAT TGG CGG GGG AGC A and m1100r—BGG GTC TCG CTC 
GTT RCC. The following protocol was used: 1x Brilliant III Ultra-Fast 
SYBR® Green QPCR Master Mix, 150 nM 338f and 300 nM 518r or 
300 nM 931f and 300 nM m1100r, ROX (30 nM for the MX3005P or 
300 nM for the StepOnePlus), BSA 100 ng μL−1 final concentration. 
All samples were run in triplicates. The samples were compared to 
the standards using the software: MXPro MX3005P v4.10 Build 389 
(Agilent) for the ancestral and stepone Software 2.3 for the descen-
dant samples. Note slightly different methods were used because 
of a necessary change in equipment and that there were no direct 
comparisons between pre- and postexperiment samples.

2.5 | Amplicon library construction and sequencing

16S rRNA gene libraries were constructed using primers designed 
to amplify the V4 region (Kozich, Westcott, Baxter, Highlander, & 
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Schloss, 2013) (Table S1) and multiplexed. Amplicons were gener-
ated using a high-fidelity polymerase (Kapa 2G Robust) and purified 
using the Agencourt AMPure XP PCR purification system and quan-
tified using a fluorometer (Qubit, Life Technologies). The purified 
amplicons were then pooled in equimolar concentrations by hand 
based on Qubit quantification. The resulting amplicon library pool 
was diluted to 2 nM with sodium hydroxide and 5 μl transferred into 
995 μl HT1 (Illumina) to give a final concentration of 10 pM. 600 μl 
of the diluted library pool was spiked with 10% PhiX Control v3 and 
placed on ice before loading into Illumina MiSeq cartridge following 
the manufacturer’s instructions. The sequencing chemistry utilized 
was miseq reagent kit v2 (500 cycles) with run metrics of 250 cycles 
for each paired-end read using miseq control Software 2.2.0 and 
RTA 1.17.28.

2.6 | Analyses of sequenced samples

Overlapping 250-bp paired-end MiSeq amplicon reads were quality-
filtered and merged via the Illumina-utils software (Eren et al., 2013) 
to generate high-quality sequences spanning the V4 region. Quality 
filtering was only carried out on mismatches in the overlapping re-
gion between read pairs using a minimum overlap (–min-overlap-
size) of 200 nt, a minimum quality Phred score (–min-qual-score) of 
Q20 and allowing a maximum of 5 mismatches per 100 nt (−p 0.05) 
over the 200-nt overlapping region.

Read pairs passing the filtering criteria were merged and anal-
ysed using the Quantitative Insights Into Microbial Ecology (QIIME 
v.1.7) pipeline (Caporaso et al., 2010). Chimera checking and removal 
were done via the QIIME script identify_chimeric_seqs.py using the 
UCHIME reference “Gold” database. This step along with the OTU 
selection utilized USEARCH (Edgar, 2010; Edgar, Haas, Clemente, 
Quince, & Knight, 2011). OTU taxonomy assignment was performed 
via QIIME’s pick_open_reference_otus.py function using the 13.8 ver-
sion of the Greengenes database (McDonald et al., 2012), a 97% sim-
ilarity threshold for OTU formation and a minimum cluster size of 2 
(i.e., each OTU must contain at least two sequences). Technical rep-
licates were collapsed, low abundance OTUs (<0.01% total) removed 
via filter_otus_from_otu_table.py (–min_count_fraction = 0.001) and 
samples rarefied to an even depth equivalent to the number of se-
quences present in the sample with the fewest number of reads 
(14,683 reads in total). The raw sequences are available online at 
the European Nucleotide Archive under Accession number ENA: 
PRJEB28621

2.7 | Data analyses

Statistical analyses of community composition were performed in R 
(version 3.1.2; R Core Team, 2013) using the vegan (Oksanen, Kindt, 
& Legendre, 2007) and phyloseq (McMurdie & Holmes, 2013) pack-
ages. Following calculation of rarefaction curves in MacQIIME, 
a range of alpha diversity metrics were calculated: Simpson 
index (Simpson, 1949), OTU counts, Pielou evenness (Pielou, 
1966) and phylogenetic diversity (Faith, 1992) were determined. 

Between-community diversity was calculated using Bray–Curtis 
dissimilarity (Bray & Curtis, 1957), Jaccard Index (Jaccard, 1912) 
and UniFrac (weighted and unweighted), a phylogeny-based dis-
similarity matrix (Lozupone & Knight, 2005). The homogeneity 
of sample group dispersions (i.e., comparison of the magnitude 
of within-community diversity) was determined using the vegan 
function betadisper and significance assessed using permutation 
tests (PERMDISP). Statistical significance of the sample group-
ings (i.e., ancestral–descendant communities) was determined via 
permutational multivariate analysis of variance (PERMANOVA) im-
plemented in vegan as the adonis function (Oksanen et al., 2007). 
Mantel tests (Mantel, 1967) were used to assess the influence of 
community dissimilarity on difference in biogas production. For 
composition analysis, sequencing data were prefiltered to include 
only OTUs present at a frequency of more than 0.1% of total reads 
to avoid interferences from very rare OTUs, which may be errors. 
To determine whether there were any groups of organisms abun-
dant in only one type of samples, communities were analysed at 
the phylum level using group_significance.py in MacQIIME. LefSE 
(Segata et al., 2011) was then used to determine differences in the 
frequency at the genus level between ancestral–descendant sam-
ples, as well as endpoint samples from good–bad gas producers (cu-
mulative production of respectively more, or less than 3,000-mL 
gas in the experiment). We also looked at the abundances of the 
archaeal reads, looking at the differences between the two types of 
methanogens: acetoclastic, that use acetate to produce methane, 
and hydrogenotrophic, that produce methane using carbon dioxide 
and hydrogen as substrate.

To determine how community composition affected gas pro-
duction, cumulative gas production was independently regressed 
against diversity and density metrics. To determine functional sat-
uration, the natural logarithm of cumulative gas production was 
regressed against the natural logarithm of species richness (Reich, 
Tilman, & Isbell, 2012). The value of the exponent (b) of this function 
is an indicator of the functional saturation.

We determined whether between-community diversity was 
significantly different than null communities randomly generated 
from the data sets, after controlling for within-community diver-
sity (Chase, 2010). For the purpose of this comparison, we gener-
ated 1,000 null communities and used their mean as a community 
formed by pure stochastic process. We compared it with real-life 
data, testing the null hypothesis that there is no difference be-
tween expected and observed between-community diversity using 
the “oecosimu” function in vegan package for R (Oksanen et al., 
2007).

In order to assess which factors are likely to be the main direct 
and indirect drivers of gas production in our correlational study, 
we applied path analysis (Grace et al., 2012; Yvon-Durocher et al., 
2015), where we use structural model equations using variables 
that had significant relationships with gas production (species rich-
ness, and archaeal and bacterial densities). We employed simpli-
fying multiple hierarchical linear mixed effects models based on 
all combinations of plausible hypotheses (17, in total) about how 



     |  4645SIEROCINSKI et al.

the variables affect each other and gas production. Models were 
fitted using lme function in nmle package in R. We calculated the 
Akaike information criterion (AIC) scores of the models that were 
statistically significant using “lavaan” package for R (Rosseel, 2012) 
and used them to pick the model that best fitted the data. We com-
pared the importance of particular paths in the final model using 
standardized coefficients that indicate a percentage change in gas 
production.

3  | RESULTS

3.1 | Natural communities

3.1.1 | Compositional changes through time

Community composition converged after eight weeks of cultivation 
as shown by the decrease in between-community (beta) diversity of 
postexperiment communities comparing to pre-experiment commu-
nities (Figure 1a; Permdisper, F1,22 = 12.38; p = 0.002). There was also 
a moderate but significant separation between descendant and an-
cestral communities (Figure 1a; Bray–Curtis distance; PERMANOVA: 
R2 = 0.19, p < 0.001). Note that this convergence was also robust to 
different distance measures: unweighted and weighted UniFrac and 
Jaccard index (p < 0.01 in all cases). Net alpha diversity (OTU read 
counts and reciprocal Simpson’s index) decreased between ances-
tral and descendant communities (F1,11 = 6.24, p = 0.03; F1,11 = 6.97, 
p = 0.02; Figure 1b), but community convergence was not simply the 
result of this loss of diversity, shown with a permutation test com-
paring observed beta diversity of descendant communities against 
null communities (p < 0.01). The major change in community com-
position through time with respect to specific taxa was an increase 
in the frequency of Firmicutes reads (37.9%–68.0%), a decrease in 
the frequency of Bacteriodetes reads (30.1%–7.75%) and a decrease 
in the frequency of Proteobacteria reads (9.85%–0.86%) (Figure 1c). 
In general, we observed large changes in composition through time. 
A high proportion of OTUs were lost through time (between 34 and 
72%). Similarly, a large proportion (between 17 and 65%) of OTUs 
that were present in the descendant samples were below detec-
tion levels in the ancestral samples. These changes had a significant 
impact on the community composition as shown by the difference 
between the pre- and postexperiment beta diversity when looking 
when using community distance is based on the presence/absence 
of taxa rather than relative frequency.

3.1.2 | Linking community composition with 
biogas production

We investigated how the characteristics of communities pre- and 
postexperiment affect total gas production. We used the cumulative 
gas production (averaged across replicates) value as the proxy for 
community performance for the tests, as there was little variabil-
ity in terms of gas production ranks between weeks. For example, 
Spearman rank correlation coefficients between total, week one 
and week eight gas production ranged from 0.75 to 0.93, p < 0.01 in 
all cases. Cumulative gas production was not affected by feed type 
(F1,33 = 1.33, p = 0.3).

For starting communities, we found no significant correlations 
between gas production and either archaeal copy number, alpha di-
versity metrics (p > 0.2 in all cases) or pairwise beta diversity (Mantel 
test: r = 0.2; p = 0.09). Note that bacterial copy number was equal-
ized at the start of the experiment. By contrast, after eight weeks 
of propagation, there was a positive relationship between archaeal 

F IGURE  1  (a)  Nonmetric multidimensional scaling (NMDS) plot 
of unweighted Bray–Curtis distances between ancestral (blue) and 
descendant (red) communities; (b) OTU number of ancestral (blue) 
and descendant (red) communities; (c) Mean frequency of the most 
common phyla in ancestral and descendant communities [Colour 
figure can be viewed at wileyonlinelibrary.com]
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copy number and gas production (Figure 2a; F1,10 = 14.9, p = 0.003; 
83% of archaeal amplicon sequence reads were methanogens). 
There was no additional effect of bacterial copy number (F1,9 = 0.2, 
p > 0.2). There were also no relationships between biogas produc-
tion and alpha diversity metrics except for a positive relationship 
between gas production and species (OTU) richness (Figure 2b; 
F1,10 = 12.5, p < 0.005). Unsurprisingly, communities that showed the 
greatest relative loss of OTUs through time produced the least gas 
(Spearman R = −0.67, p < 0.05). The slope of the natural logarithms 
of gas production and OTU number was 4.07, suggesting an accel-
erating effect of increasing OTUs on methane production. Finally, 
pairwise beta diversity correlated with differences in gas production 
(Mantel r = 0.54, p = 0.001); the greater the difference in gas produc-
tion, the bigger the difference in community composition.

We used path analysis to infer the likely causal relationships be-
tween gas production, species richness, and bacterial and archaeal 
densities. Comparisons of AIC scores (Table S3) of 17 hypothetical 
paths suggest that the interaction of bacterial biomass and species 
richness drives archaeal abundance, which leads to higher gas pro-
duction (Figure S1).

3.1.3 | Linking biogas production to specific taxa

We also investigated how the frequencies of specific taxa might be 
associated with gas production (Table S2). Of particular note, there 
was a positive correlation between gas production and the pro-
portion of Methanosarcina, a genus of acetoclastic methanogenic 
Archaea (F1,10 = 3.9, p < 0.001; Figure 3).

3.2 | Diluted communities

3.2.1 | Linking community composition with 
biogas production

To experimentally manipulate diversity, we diluted a mixed commu-
nity over six orders of magnitude followed by a period of regrowth 
to allow equal numbers of cells to be inoculated across treatments. 
The manipulation worked: There were fewer OTUs detectable with 
increasing dilution (F1,35 = 21.8; p < 0.001). Crucially, we found a 
positive relationship between biogas production and number of 

OTUs found in sample (F1,35 = 38.1; p < 0.001). The slope of the nat-
ural logarithms of gas production and OTU number (F1,35 = 12.57, 
p = 0.0012; R2 = 0.27; Figure 4a) was 0.43, suggesting an accelerat-
ing effect of increasing OTUs on methane production, suggesting 
little saturation of function with increasing OTU number. There 
were no significant relationships between biogas and other meas-
ures of diversity (p > 0.1, in all cases) nor a relationship between 
biogas production and the number of bacteria present (p > 0.1), as 
would be expected given that densities were equalized between 
dilution treatments. There was a positive relationship between bi-
ogas production and the number of total archaeal cells (F1,35 = 12.0; 
p = 0.0015; Figure 4b), suggesting that increasing dilution reduced 
the equilibrium densities of archaeal cells. The dilution treatments 
show a small, but significant degree of separation (adonis, R2 = 0.09, 
p = 0.01, Figure 4c), but this was most likely a result of an increase 
in beta diversity with increasing dilution (Permdisp; F5,30 = 5.87; 
p < 0.001), a limitation of multivariate ANOVA-type analyses. These 
results held for other distance measures (p < 0.001, in all cases).

3.2.2 | Linking biogas production to specific taxa

Three OTUs belonging to family Coriobacteriaceae, Ruminococcaceae 
and Peptococcacea were significantly overrepresented in the less di-
luted samples (Kruskal–Wallis test, Bonferroni p < 0.05).

F IGURE  2  (a) Relationship between 
the counts of Archaea and biogas 
production; (b) Power curve of natural 
logarithms of gas production and richness 
of the descendant sample (OTU). b (slope) 
of the fitted linear trend = 4.07, R2 = 0.47, 
F1,11 = 8.8; p = 0.0012 [Colour figure can 
be viewed at wileyonlinelibrary.com]
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F IGURE  3 Relationship between the percentage of acetoclastic 
methanogen reads in total methanogen reads and gas production of 
a sample [Colour figure can be viewed at wileyonlinelibrary.com]
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4  | DISCUSSION

We investigated the link between microbial diversity and the rate of 
methane production in natural and manipulated communities. We 
found no correlations between any aspect of community composi-
tion at the start of the experiment and methane production across 
the 12 natural communities. However, after eight weeks of propaga-
tion in laboratory anaerobic digesters, there was a loss of diversity 
within communities and communities had converged. At this point, 
we found a positive relationship between methane production, spe-
cies (OTU) richness, bacteria and methanogen density. We obtained 

the same qualitative results in communities where diversity was 
manipulated by dilution over six orders of magnitude. This suggests 
that decreasing species richness in methanogenic communities will 
reduce methane production and that this effect is robust to variation 
in species composition present in natural communities.

Manipulating diversity by dilution has limitations. Most obvi-
ously, it confounds diversity with species identity to some extent, in 
that dilution of communities results in the loss of predominantly rare 
taxa. As a consequence, the results suggest that methane produc-
tion decreases with the increasing loss of rare species, rather than 
the loss of random taxa. To put this into context, the loss of half 

F IGURE  4  (a) Power curve of ln of cumulative biogas production [mL] and ln of the number of OTUs in the diluted communities. b 
exponent = 0.43, R2 = 0.27, linear fit: F1,35 = 12.5, p < 0.001. (b) Relationship between the biogas production and Archaea [cells/g sample]. 
Archaeal cell numbers plotted on log10 scale; (c) NMDS plots of Bray–Curtis based on the dilution treatment (see legend). Stress score is 0.14 
[Colour figure can be viewed at wileyonlinelibrary.com]
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of the community made up by the rarest species results in approxi-
mately 50% reduction in gas production. Dilution also had the effect 
of increasing within-treatment beta diversity, which could limit the 
interpretation of analyses. This increase in beta diversity is presum-
ably the result of increased stochasticity in community assembly 
when taxa are at lower frequencies as a result of dilution.

The relationship between gas production and species richness 
in the dilution experiment showed little functional saturation (an 
exponent of 0.43 for the relationship) compared to most diver-
sity–function studies (O’Connor et al., 2017). By contrast, the ex-
ponent of the gas production-species richness relationship in the 
correlational study was extremely high (~4), suggesting an acceler-
ating relationship. However, this very high value likely reflects an  
overestimation of species richness of the poorer-performing commu-
nities. Specifically, poor-performing communities had the greatest 
net loss of OTUs through time, and this loss may be underestimated 
because of residual DNA of dead cells and the presence of OTUs 
that were not yet driven to extinction. Our study supports the grow-
ing body of evidence that rare species play an important role in the 
community function (Lynch & Neufeld, 2015; Mouillot et al., 2013).

Both our studies that suggest large numbers of rarer species 
support higher densities of acetoclastic methanogens: methane-
producing Archaea locked into mutualisms with acetate-producing 
bacteria (Ferry, 2012)), which are locked into syntrophic cross-
feeding interactions with acetate-producing bacteria. Precisely why 
this might be is unclear, but recent theory suggests that growth 
under low energy conditions (as is the case under anaerobic con-
ditions when oxygen is not used as the final electron receptor) is 
typically thermodynamically constrained, and results in a high di-
versity of metabolic niche specialists. This is because there a selec-
tive advantage to use a substrate in different way to competitors 
(negative frequency-dependent selection (Clarke, 1979), to avoid 
thermodynamic inhibition of metabolism resulting from the build up 
of waste products (Großkopf & Soyer, 2016). More generally, ther-
modynamic constraints may help to explain why diversity seems 
less important for aerobic (Nielsen et al., 2011) than anaerobic (e.g., 
methanogenesis and denitrification; Philippot et al., 2013) functions 
in communities approaching natural levels of diversity. Finally, it is 
also possible that genetic variation within species, which would have 
been reduced by dilution and perhaps during propagation of the nat-
ural communities, could have contributed to the results. For exam-
ple, recent work suggests that within-species diversity associated 
with rapid adaptation can play a major role in the structure of natural 
soil microbial communities (Gómez et al., 2016).

The composition of the communities we investigated was 
broadly typical of methanogenic communities (Nelson, Morrison, & 
Yu, 2011; Yang et al., 2014; Yu, Lee, & Hwang, 2005), with Firmicutes, 
Bacteroides and Proteobacteria being the main phyla. However, con-
sistent with other studies (De Vrieze et al., 2015; Demirel & Yenigün, 
2006; Elbeshbishy, Nakhla, & Hafez, 2012; Mladenovska et al., 
2003; Regueiro et al., 2012; Town, Links, Fonstad, & Dumonceaux, 
2014; Vanwonterghem et al., 2014), we observed a convergence of 
communities through time. This was associated with an increase in 

Firmicutes and a decline in Bacteriodetes reads through time in the 12 
natural communities. The most predominant group in the Firmicutes, 
Clostridia, is known for their cellulolytic and amylolytic activity 
(Nelson et al., 2011). Our medium was based on starch and cellu-
lose, making Clostridia perfect candidates for the hydrolysis steps of 
fermentation within the system. Another reason for the increase in 
Firmicutes could simply be selection against them during sampling: 
Firmicutes have low oxygen tolerance (Kampmann et al., 2012), and 
while every care was taken during sampling, initial communities were 
inevitably exposed to air in the field. It is less clear why Bacteriodetes 
were selected against in the laboratory-scale anaerobic digesters, 
but their reduction in frequency is consistent with increased biogas 
production: Bacteroidetes are associated with the production of pro-
pionate and other short fatty acids, which can lead to disturbances 
in anaerobic digester system (Gallert & Winter, 2008).

It was difficult to draw any firm conclusions about the role 
of specific taxa in gas production, beyond the positive effect of 
acetoclastic methanogens. However, in the natural converged 
communities, poor gas production was associated with the pres-
ence of Pseudoramibacter, Oscillospira, Bacteroides uniformis and 
Enterobacteriaceae. These species are typically associated with ani-
mal gut microbiomes, where they putatively are responsible for fer-
mentation of glycans to butyrate (Benítez-Páez, Gómez del Pulgar, 
& Sanz, 2017). It is possible that our medium, rich in meat extract, 
contributed to the enrichment of these species. The lack of ani-
mal host able to metabolize butyrate may have to its accumulation, 
detrimental to the functioning of the communities not capable of 
coping with it. OTUs that were overrepresented in the more di-
verse communities in the dilution experiment could plausibly have 
important roles: Coriobacteriacea have been suggested before to 
play a role in breaking down aromatic compounds in (Noguchi, 
Kurisu, Kasuga, & Furumai, 2014); Ruminococcus are involved in 
cellulolytic and xylolytic activity (Jia, Wilkins, Lu, Cai, & Lee, 2016); 
and Peptococcus are speculated to be acetate-producing syntro-
phic partners of acetoclastic methanogens (Tang, Shigematsu, 
Morimura, & Kida, 2005).

The importance of rare species in determining the productivity 
of methanogenic communities has potentially important implica-
tions. First, communities may take a relatively long time to achieve 
maximal levels of methane production following environmental 
changes, given that key beneficial rare species may not be pres-
ent. This is in contrast to aerobic communities where function is 
typically restored to high levels following environmental change 
because of functional redundancy within communities (Martiny 
et al., 2006; Strickland, Lauber, Fierer, & Bradford, 2009). Second, 
from a biotechnological perspective, we demonstrate, like re-
search before us, that the starting inoculum plays a crucial role 
(De Vrieze et al., 2015; Elbeshbishy et al., 2012). Unfortunately, 
our results show that knowledge of the starting inoculum a priori 
may prove uninformative as the importance of community compo-
sition only becomes apparent after ecological selection imposed 
by the specific anaerobic digester conditions. This problem can be 
circumvented by inoculating multiple communities in the starting 
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culture (Sierocinski et al., 2017). In summary, our results suggest 
that there is little functional redundancy in methanogenic commu-
nities, and hence, any loss of diversity will likely reduce methane 
production. Moreover, given that microbes appear to be dispersal-
limited to some extent (Bell, 2010), the potential for methanogenic 
communities to adapt to changing conditions is likely to be con-
strained by their starting composition.
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