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Abstract
Objective: Shewanella xiamenensis is an emerging zoonotic pathogen commonly found 
in aquatic ecosystem. Clustered regularly interspaced short palindromic repeats  (CRISPR) 
and (CRISPR)‑associated gene systems act as adaptive immune system of prokaryotes. 
Recently, growing evidence suggested their role in bacterial virulence and resistance. 
Despite its medical importance, little is known about the genomic characteristics of S. 
xiamenensis. Materials and Methods: Strain ZYW6 was isolated from Epinephelus 
awoara. We sequenced the 16S rRNA gene and blast against the GenBank bacterial 
database. Antibiotic susceptibility tests and interpretation were performed by automatic 
VITEK 2 system. We extracted the genomic DNA with QIAGEN Genomic‑tip 100/G 
kit and QIAGEN Genomic DNA Buffer Set. Whole‑genome shotgun sequencing was 
performed using the Illumina MiSeq sequencer. To identify the CRISPR‑Cas System in 
the genome of S. xiamenensis ZYW6, the Integrated Microbial Genomes and Microbiomes 
and CRISPRFinder were used. Results: We characterized the genome of a S. xiamenensis 
strain. The genome is 4,765,190 bp in length and encodes 4262 open‑reading frames. Type I 
CRISPR‑Cas system and serine biosynthesis genes were identified. Conclusion: Our results 
demonstrate the genetic structure of CRISPR‑Cas system, l‑serine synthesis, and oxacillinase 
in S. xiamenensis. The report of antibiotics resistance genes in the study might indicate a 
possible reservoir of antimicrobial drug resistance determinants in food animal, resulting in 
potential infection source. The findings provide insights into the structure and composition 
of CRISPR‑Cas system in S. xiamenensis and foundation for future biological validation.
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pathogenesis determinants  [10]. Genomic sequencing allows 
the implementation of study of a broad range of pathogenic 
organisms’ characteristics and is applicable on a wide range of 
pathogens  [11]. In many studies of prokaryotes, such as bacte-
rial and archaeal genomes, clustered regularly interspaced short 
palindromic repeats  (CRISPR) and CRISPR‑associated  (Cas) 
genes are applied. Early studies demonstrated that the 
CRISPR‑Cas system is an adaptive immune system in prokary-
otes. At present, the CRISPR‑Cas systems are classified into 
three distinct types, type I, Type II, and Type III, based on the 
signature cas genes, sequence similarity, and the phylogeny of 
Cas1  [12]. Type  I system consists of six major subtypes  (I‑A 
to I‑F) which utilize a crRNP to identify targets  [13]. Recent 
studies further suggested its role in virulence and resis-
tance [14]. Earlier study demonstrated L-serine production is an 

Introduction

Emerging infection is a severe threat to global health  [1]. 
Most emerging infections are zoonoses or have zoonotic 

origins that warrant novel diagnostic and control strategies [2]. 
Shewanella xiamenensis is an emerging zoonotic pathogen 
first reported in the coastal sea sediment in Xiamen, China [3]. 
The organism has been reported from aquatic ecosystem 
worldwide, including wastewater  [4,5], freshwater  [6], and 
seawater  [7]. It was also found to be the causative organism 
of human intra‑abdominal infection [8] and intestinal colo-
nization  [9]. Identification of S. xiamenensis is difficult, as 
illustrated by Zong  [8], because 16S rRNA gene sequenc-
ing alone is not capable to differentiate S. xiamenensis from 
closely related species. Thus, the true infection rate may be 
underestimated. The pathogenesis determinants in S. xiam‑
enensis are largely unknown.

The rapid advance in sequencing technology changes the 
study of bacterial infections and leads to the discovery of novel 
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important virulent feature in pathogenic bacteria [15]. Although 
L‑serine production was found in Shewanella  [16,17], little is 
known about the genetic background.

Despite its medical importance, little is known about the 
genomic characteristics of S. xiamenensis. To identify the 
CRISPR‑Cas systems and genetic background of the L‑serine 
synthesis, we sequenced and analyzed the genome of S. xiame‑
nensis strain.

Materials and methods
Strain isolation and antimicrobial susceptibility tests

Strain ZYW6 was isolated from Epinephelus awoara on 
trypticase soy agar with 5% sheep blood  (Becton Dickinson, 
San Jose, CA, USA). The isolate was preliminary identified 
by matrix‑assisted laser desorption ionization–time‑of‑flight 
mass spectrometry (bioMérieux, Marcy‑l’Etoile, France) and by 
Sanger sequencing of its 16S rRNA gene sequencing  [18]. For 
amplification of the 16S rRNA gene, we used primers with B27
F  (5’‑AGAGTTTGATCCTGGCTCAG‑3’) and U1492R (5’‑G
GTTACCTTGTTACGACTT‑3’)  [19]. Then, we sequenced the 
PCR product and BLAST against the GenBank bacterial data-
base of the National Center for Biotechnology Information [20]. 
To confirm the L‑serine production in ZYW6, biochemical 
characterization was performed using API ID 32 GN strips 
inoculated and read according to the recommendations of the 
manufacturer  (bioMérieux, Marcy‑l’Etoile, France). Antibiotic 
susceptibility tests and interpretation were performed by the 
VITEK 2 system (bioMérieux, Marcy‑l’Etoile, France) accord-
ing to the manufacturer’s instructions. Escherichia coli ATCC 
25922 and Pseudomonas aeruginosa ATCC 27853 were used as 
quality controls.

DNA extraction and library preparation
We extracted the genomic DNA with QIAGEN Genomic‑tip 

100/G kit and QIAGEN Genomic DNA Buffer Set  (QIAGEN, 
Paisley, UK). The library preparation was conducted using a 
multiplexed high‑throughput sequencing TruSeq DNA Sample 
Preparation Kit (Illumina, San Diego, CA, USA) [19].

Genome sequencing and assembly
We performed sequencing by Illumina MiSeq sequencer 

using a read length of 250  bp. Consequently, 5,154,704 reads 
were obtained. There were 1,551,565,904  bp of sequence 
data. The average read length was 301  bp. The total read 
depth was 326‑fold coverage. The genomic dataset quality 
was trimmed using duk (http://duk.sourceforge.net/) and the 
FASTQX-toolkit fastqTrimmer (https://github.com/agordon/
fastx_toolkit). Sequencing data were first assembled using 
Velvet v. 1.2.07 [21] and ALLPATHS v. R46652 [22].

Whole‑genome average nucleotide identity analysis
We conducted numerous average nucleotide iden-

tity analyses between genomes of ZYT6 and Shewanella 
strains. Pairwise average nucleotide identity between the 
genome of strains ZYW6 and Shewanella strains was cal-
culated using the algorithm proposed by Goris et  al.  [23]. 
A  radial phylogram was constructed using distance matrix 
computations [24].

Genome annotation
We performed the annotation of the strain ZYW6 accord-

ing to the NCBI Prokaryotic Genomes Automatic Annotation 
Pipeline. Besides, functional classification was performed 
using the RPSBLAST version  2.2.15 [25] and Clusters of 
Orthologous Groups of proteins databases. To identify the 
CRISPR‑Cas system in the genome of S. xiamenensis ZYW6, 
the integrated microbial genomes and microbiomes [26] and 
CRISPRFinder [27] were used. All the coding sequences of the 
genomes were subjected to BLASTn analysis.

We predicated the antibiotic resistance gene  (ARG) in 
the genome with a multiple database‑based approach  [28]. 
The comprehensive antibiotic resistance database  [29], 
ResFinder 3.0  [30], and ARG‑ANNOT  [31]. BLASTn 
analysis against the JGIs Integrated Microbial Genomes 
database was used to validate the results  [26]. When mul-
tiple results are overlapped at the same locus in the genome, 
the best‑aligned virulent factor gene was retained. The can-
didate virulent genes were predicted using the virulence 
factor database  [32]. The protein sequences of annotated 
genes were aligned against virulence factor database protein 
sequences, using BLASTX. All BLASTX results were man-
ually curated based on the consistency of annotations among 
different databases.

This whole‑genome shotgun project has been depos-
ited at DDBJ/ENA/GenBank under the accession number 
LVDQ00000000. The version described in this paper is version 
LVDQ00000000.

Results
General genome features

The final assembled genome consisted of forty scaffolds 
with a total size of 4,765,190 bp (GC content of 46.20%). The 
maximum contig size was equal to 429,948  bp, and the N50 
size was 250,841  bp. Among the 4,262 identified open‑read-
ing frames, 4,137 contained protein‑coding genes. In addition, 
15 rRNA genes  (7 5S, 2 16S and 6 23S), 78 tRNA genes, and 
5 noncoding RNAs were identified.

Whole‑genome average nucleotide identity analysis
The pairwise average nucleotide value between ZYW6 and 

Shewanella strains was calculated. The average nucleotide iden-
tity values were 97.6% for ZYW6 and S. xiamenensis BC01, 
72.3% for Shewanella algae YHL, 72.1% for Shewanella ama‑
zonensis SB2B, 79.9% for Shewanella baltica BA175, and 
72.5% for Shewanella loihica PV‑4. As shown in Figure 1, the 
radial phylogram from alignment fraction analysis revealed an 
obvious relationship between strains ZYW6 and BC01, which 
supported the results from the average nucleotide identity 
analyses.

The clustered regularly interspaced short palindromic 
repeats‑Cas system and serABC operon

We identified a Type  I‑E CRISPR‑Cas system, located at 
position 56,931–65,565 of the genome of S. algae ZYW6, 
containing cas2  (ygbF), cas1  (ygbT), casE  (cse3, ygcH), casD 
(cas5e, ygcI), casC  (cse4, ygcJ), casB  (cse2, ygcK), casA 
(cse1, ygcL), and cas3  (ygcB)  [Figure  2]. The S. xiamenensis 
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ZYW6 assimilated l‑serine. We detected serABC operon which 
are required for L‑serine synthesis from 3‑phosphoglycerate.

Resistance profile and related antibiotic resistance 
gene

The S. xiamenensis ZYW6 was susceptible to ampicil-
lin/sulbactam, piperacillin/tazobactam, imipenem, third‑  and 
fourth‑generation cephalosporin [Table 1]. In our study, blaOXA‑48 
was identified from the genome of S. xiamenensis ZYW6.

Discussion
There are increasing reports of S. xiamenensis worldwide, 

raising concern of its pathogenic potential. The emergence 
of the organism poses threat to both human and animals. 
Better understanding of the key genomic features is essential 
for the development of strategies for diagnostic and control 
measures of this zoonotic infection  [33,34]. In the study, we 
use a genomic approach to characterize the possible genetic 
background of important antimicrobial resistance and viru-
lence‑associated traits [35].

The CRISPR immune system in prokaryotic organisms is 
a key defense element in neutralizing invading viruses and 
plasmids  [36]. Current evidence revealed that a number of 
important pathogens harbor Type  II CRISPR‑Cas system, 
including Streptococcus pyogenes, Neisseria meningitidis, 
and Haemophilus influenzae  [14]. CRISPR‑Cas system‑medi-
ated sialylation of the cell envelope was suggested to be 
one of the underlying mechanisms  [37]. The S. xiamenen‑
sis ZYW6 CRISPR‑Cas Type  I‑E system consists of a gene 
cluster including cas2, cas1, the Cascade genes  (casABCDE), 
and cas3. Complete functionally essential cascade complex 
is encoded in the system. Type  I‑E CRISPR‑Cas system can 
be found in many pathogenic bacteria and is associated with 
their virulence. In enterohemorrhagic E.  coli, polymorphisms 

in Type  I‑E CRISPR‑Cas system are correlated with the pres-
ence of key virulence genes encoding Shiga toxin [38]. Animal 
study of Salmonella and Campylobacter also demonstrated that 
Type  I‑E CRISPR‑Cas system is involved in the pathogen-
esis  [13]. The discovery of Type  I‑E CRISPR‑Cas system in 
S. xiamenensis warrants further studies to elucidate its role in 
fitness and pathogenesis.

We identified the essential genes of de novo L‑serine 
biosynthetic pathway. The biosynthesis of L‑serine from 
D‑3‑phosphoglycerate includes three reactions, which 
is catalyzed by D‑3‑phosphoglycerate dehydrogenase, 
D‑3‑phosphoserine aminotransferase, and phosphoserine 
phosphatase. These are encoded by serA, serC, and serB, respec-
tively. In the study, we identified genes involved in the L-serine 
biosynthesis pathway, serA, serC, and serB, which is consisted 
with the biochemical testing results. Overexpressing serABC 
results in improvement of cell growth. Large‑scale genomic 
study has demonstrated the difference of amino acid biosyn-
thesis capabilities between Staphylococcus  aureus strains and 
suggested the association with the virulence  [39]. Further 
large‑scale pangenomic study is needed to build genome‑scale 
models of S. xiamenensis.

Chromosome‑encoded carbapenem‑hydrolyzing β‑lactamase 
OXA‑48 gene was detected in ZYW6. Genes encoding Ambler 
Class D β‑lactamase have been detected in various Shewanella 
species regardless of phenotypic resistance pattern  [40]. Our 
data further suggest that aquaculture‑associated S. xiamenensis 

Table 1: Antimicrobial susceptibility profiles of the Shewanella 
xiamenensis ZYW6
Antibiotic(s) MIC (μg/mL)a Susceptibilityb,c

Penicillin
Ampicillin/sulbactam ≤2 S
Piperacillin/tazobactam ≤16/4 S

Cephalosporins
Ceftriaxone ≤1 S
Ceftazidime ≤1 S
Cefepime ≤1 S

Carbapenems
Imipenem 0.5 S

Aminoglycosides
Gentamicin ≤1 S
Amikacin ≤2 S

Fluoroquinolones
Ciprofloxacin ≤0.25 S
Trimethoprim/sulfamethoxazole ≤20 S

aBreakpoint testing only, bR: Resistant; S: Susceptible, cSusceptible 
interpretation based on CLSI M100‑S27 guidelines for other 
non‑Enterobacteriaceae, except for ampicillin/sulbactam, where the U.S. 
Food and Drug Administration breakpoints were applied. MIC: Minimal 
inhibitory concentration

Figure 1: Radial phylogram based on the genomic data from Shewanella strains

Figure 2: Genetic structure of the clustered regularly interspaced short palindromic 
repeats‑cas locus in Shewanella xiamenensis
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could be a potential source of Class  D β‑lactamase gene  [41]. 
Ambler Class  D β‑Lactamase OXA‑48 has been found in 
human intestinal carriage S. xiamenensis  [29]. The variants 
of blaOXA detected in S. xiamenensis also included blaOXA‑181, 
blaOXA‑416, blaOXA‑204, blaOXA‑514, blaOXA‑252, and blaOXA‑199 [42].

Conclusion
Our results demonstrate the genetic structure of CRISPR‑Cas 

system, l‑serine synthesis, and oxacillinase in S. xiamenen‑
sis. The work also highlights the need to conduct large‑scale 
genomic study to fully understand the zoonotic potential and 
evolutionary changes in S. xiamenensis.
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