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Abstract: The emergence and rapid spread of multidrug-resistant bacteria strains are a public health
concern. This emergence is caused by the overuse and misuse of antibiotics leading to the evolution
of antibiotic-resistant strains. Nanoparticles (NPs) are objects with all three external dimensions in
the nanoscale that varies from 1 to 100 nm. Research on NPs with enhanced antimicrobial activity as
alternatives to antibiotics has grown due to the increased incidence of nosocomial and community
acquired infections caused by pathogens. Machine learning (ML) tools have been used in the field of
nanoinformatics with promising results. As a consequence of evident achievements on a wide range
of predictive tasks, ML techniques are attracting significant interest across a variety of stakeholders.
In this article, we present an ML tool that successfully predicts the antibacterial capacity of NPs
while the model’s validation demonstrates encouraging results (R2 = 0.78). The data were compiled
after a literature review of 60 articles and consist of key physico-chemical (p-chem) properties
and experimental conditions (exposure variables and bacterial clustering) from in vitro studies.
Following data homogenization and pre-processing, we trained various regression algorithms and
we validated them using diverse performance metrics. Finally, an important attribute evaluation,
which ranks the attributes that are most important in predicting the outcome, was performed. The
attribute importance revealed that NP core size, the exposure dose, and the species of bacterium
are key variables in predicting the antibacterial effect of NPs. This tool assists various stakeholders
and scientists in predicting the antibacterial effects of NPs based on their p-chem properties and
diverse exposure settings. This concept also aids the safe-by-design paradigm by incorporating
functionality tools.

Keywords: nanoparticles; antibacterial effect; antimicrobial capacity; biofilm; machine learning

1. Introduction

Antibiotic resistance is increasing to alarmingly high levels, the resistance mechanisms
threatening our ability to treat common infectious diseases which leads to a global health
risk [1]. Antibacterial agents are compounds that can be classified as either bactericidal,
completely inhibiting and eradicating bacteria, or bacteriostatic, which inhibits bacterial
growth [2]. However, several factors may influence this classification, including growth
conditions, bacterial density or test duration [3]. More importantly, the effectiveness of most
compounds depends on the type of bacteria (Gram-positive and Gram-negative bacteria)
exposed to [2,4]. The majority of existing antibacterial agents are chemically modified
natural compounds, e.g., β-lactamines (i.e., penicillin), cephalosporins or carbapenems; or
purely natural products (i.e., aminoglycosides), and purely synthetic antibiotics, such as
sulfonamides [2,5]. As a result of the recurrence of infections, the microorganisms develop
resistance due to inherent genetic changes [6,7]. With the excessive use or misuse of
antibacterial agents, the emergence of resistance to antibacterial drugs has become one of
the most significant public health challenges [8,9].
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While bacteria are normally found in nature in the form of individual cells, they may
also develop multicellular structures called biofilms; densely packed groups of bacteria
that contain one or more species of bacteria [10]. The biofilm provides mechanical stability
and adhesion to a wide variety of surfaces both biotic and abiotic, including human tissues,
surgical devices, implants, and industrial equipment [11,12]. Biofilms are a major issue
in almost all industries, contaminating equipment and the surrounding environment,
resulting in reduced quality of products and economic losses [13,14]. Bacterial biofilms
contribute to microbial resistance and therefore play a significant role in therapeutic failure,
resulting in chronic bacterial infections [15,16]. Considering the role of biofilm in antibiotic
resistance, the elimination of bacteria needs multiple drugs with potential side effects in
humans and environments, as a result of the need for high doses of common disinfectants
and antibiotics there is the increase in toxicity, cost and duration of therapy; therefore, new
treatments are necessary to eliminate bacteria.

Nanoparticles (NPs) are widely used due to their unique and size-dependent physical
and chemical (p-chem) properties. They exhibit enhanced antimicrobial capacities [17],
making them a suitable alternative to antibiotics. NPs have been studied for their capacity
to inhibit microbial infections [18] and prevent bacterial colonization on various surface
devices such as catheters [19] and prostheses [20] by eradicating biofilms [21,22]. Research
into NPs is of great interest as they can be applied in various fields such as medicine, food
industry, and manufacturing, while retaining their original unique functions [23–26]. Over
the past few decades, the search for new antimicrobial substances has been central to many
research areas, both in public and private research centers, for the reduction of nosocomial
and foodborne infections [27–29].

Metal and metal oxide NPs (MO-NPs) are promising agents against a broad spectrum
of microorganisms including drug-resistant strains [17,30,31]. The exact mechanisms of
NP toxicity against different bacteria depends on surface modification, intrinsic proper-
ties, composition, and the bacterial species. The main mechanisms of the antibacterial
effects of NPs are: (1) mechanical damage to the cell wall through electrostatic interac-
tion; (2) oxidative stress by means of the generation of reactive oxygen species (ROS);
and (3) disruption of cell and protein structures as a result of metal cation release [32].
Among MO-NPs, the most promising and widely studied ones are Fe3O4 and ZnO [33].
Fe3O4 NPs release Fe2+ ions, which cause the generation of ROS after a reaction with
hydrogen peroxide (H2O2) and induces oxidative stress in the cell, as a result of which the
bacteria cell dies [34,35]. ZnO NPs produce H2O2 and hydroxyl radicals (OH−), but not
superoxide (O−2 ) and have weak mutagenic capability that induces frameshift mutation in
bacterium [36–38]. Metal NPs such as AgNPs have an oligodynamic effect (the biocidal
effects of metals) due to their large surface areas and have the ability to accumulate at the
cell wall and bind with bacterial biomolecules [39] and penetrate the cells [40], generat-
ing ROS and free radicals, and act as modulators in the signal transduction pathways of
microorganisms [41–43].

Antibacterial activities of NPs depend on two main factors: (i) p-chem properties,
such as composition, surface modification and intrinsic properties, and (ii) the type of
bacteria species [2,44–46]. For a better understanding of their properties and effects, a
computational tool can assist in reducing the design space by predicting the characteristics
of desired NPs before synthesis, which helps to decrease the experimental trial and error
work. For example, tools have been employed to predict the three-dimensional structure
of metallic nanoparticles [47,48] in order to determine the functional composition of the
protein corona of NPs [49].

Artificial intelligence (AI) is a branch of computer science that has attracted much
interest in many fields due to its problem-solving, decision-making and trend recognition
capabilities. Machine learning (ML), a subset of AI, focuses on the ability of algorithms
to learn from data while organizing the information they process. ML is a method of
data analysis that automates model building while not requiring deterministic insights,
bypassing in-depth comprehension and bridging input data directly to the outcome [50].
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Moreover, these tools are fast and inexpensive, and they rely on information inputs rather
than physical test materials. In addition, they can predict the impact of materials not
yet synthesized, thereby contributing to safe-by-design approaches [51]. ML has been
effectively employed for the prediction of toxicity profiles of NPs [52–56] and for the
development of new antibiotics [57,58]. Furthermore, models for the prediction of the
antimicrobial resistance for specific bacteria have been demonstrated [59–61]. For example,
Khaledi, Weimann et al. [60] investigated the antimicrobial susceptibility of Pseudomonas
aeruginosa predicted by genomic and transcriptomic markers. Yang, Niehaus et al. [62]
employed algorithms for the identification of Mycobacterium tuberculosis resistance against
several tuberculosis drugs. Her and Wu [59] demonstrated the prediction of antimicrobial
susceptibility of Escherichia coli by using the pangenome-based ML approach.

To the best of our knowledge, there is no study that uses ML to predict the antibacterial
effects of NPs. We propose an ML tool predicting the antibacterial activity of NPs against a
vast range of Gram-positive and Gram-negative bacteria. This tool predicts the antibacterial
effect by exploring p-chem properties, experimental exposure conditions and bacteria
characteristics as inputs. We gathered in vitro experimental data from literature studies and
structured them into a comprehensive dataset (Supplementary Material S1). The present
approach allows the screening of NPs, predicting their capacity to eradicate bacteria, saving
time and reducing costs by reducing the amount of trial and error in the lab. Such an
approach would help scientists to prevent bacterial growth that can be harmful to human
health, environments and industrial components that are subjected to biofilm formation
and bacterial growth [63].

2. Materials and Methods

Approach
Figure 1 demonstrates the roadmap followed for the model implementation. Ini-

tially, studies related to the antibacterial effect of NPs are collected and data extraction
is performed relating to p-chem properties of NPs, exposure conditions and information
about the exposed bacteria. The original dataset was evaluated for completeness. Data
pre-processing followed, including standardization [64], one hot encoding and one data
split [65]. To find a model with good predictivity, we trained and validated several regres-
sion models. Finally, an analysis of attribute importance [66,67] was conducted to reveal
the attributes that most influence the prediction of the results.
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2.1. Data Collection

A literature search was carried out in January 2021 for studies that investigated the
impact of NPs on the elimination or inhibition of bacteria and consequently the degradation
of biofilm. The articles collected were published between 2010 and 2020 including different
keywords, such as “antibacterial”, “antimicrobial”, “bactericidal”, “biofilm” and “anti-
fungal” effects. We determined to evaluate silver (Ag) [68], iron oxide (IO) and zinc
oxide (ZnO) NPs as they are widely used as bactericidal agents [17,69]. These NPs are
promising candidates, since they demonstrate greater sustainability, reduced toxicity,
greater stability and selectivity compared to organic NPs [70,71]. Their low toxicity against
human cells [72,73], low cost [74], inhibition effect against a broad range of bacteria and
inhibition of biofilm formation [75] makes them fitting for application as antibacterial agents
in biomedical industries [76], food additives [77], fabric [75], and skincare products [78].
Studies using both chemical and green synthesis of NPs have been included. The green
synthesis is a growing domain of bio-nanotechnology due to its low cost and non-toxic
nature [69,79,80].

• Inclusion criteria for the studies include English language, original studies focusing on
the antibacterial properties of NPs, published in the last decade, and in vitro studies.

• Exclusion criteria include reviews, case reports, studies with binary results, studies
that demonstrated results only in figures.

A total of 85 papers were selected and 60 articles were deemed relevant to this
study. We concentrated on in vitro studies due to the significant benefits they offer in
agreement with the three R’s movement (replace, reduce and refine the animal experiments),
reduced costs and allowing direct evaluation without the influence of pharmacokinetic
variables [81].

2.2. Data Extraction
2.2.1. Input Extraction

Each paper was reviewed with a focus on (i) the type of NPs (IONPs, AgNPs,
ZnONPs) [2,82]; (ii) the nano-specific descriptors (core size, shape, zeta potential, surface
area, etc.) [83]; and (iii) the study design experimental parameters (exposure conditions
and bacteria characteristics) [84]. The above variables were acquired as input attributes for
the prediction of the antibacterial efficiency of the investigated NPs.

2.2.2. Outcome Extraction

For the evaluation of the antibacterial efficacy, studies reported different assays and
techniques. Several outcomes based on antibacterial measurements were documented,
such as bacteria viability, zone of inhibition (ZOI), minimum inhibitory concentration
(MIC), minimum bactericidal concentration (MBC), colony-forming unit (CFU), optical
density (OD), and inhibition in biofilm formation. Different metrics and expressions were
shown in output values which stressed the fact that a standardized method and reporting
of scientific data is required.

2.3. Data Pre-Processing
2.3.1. Missing Values

In the initial raw dataset (Dataset I), missing data occurred in all the extracted at-
tributes. Following the selection of the outcome, we created the final dataset (Dataset II).
Our final data had few missing values among the inputs. As regression models cannot
perform well with null data, we deleted the rows with missing values [85].

2.3.2. One Hot Encoding

In regression models, categorical variables (nominal attributes) must be converted
into integers (numerical dummy variables). There are several conversion methods [65];
we created dummy variables for each of the categorical columns and integrated the new
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columns into the main data frame. The value 0 or 1 was used to denote the absence or
presence of the original attributes.

2.3.3. Normalization

Data normalization was conducted on the numeric inputs to enhance model perfor-
mance. Normalization is achieved by different techniques such as Z-score, min-max, mean
and median absolute deviation scaling [86]. Normalization was done by applying a z-score
that standardizes a feature to have zero mean unit variance [87].

x′i, n = (x(i, n)− µi)/σι (1)

where x represents the features in the dataset, µ the mean and σ the standard deviation of
the i, n features.

2.3.4. Data Split

For a supervised computational algorithm to predict outputs of an unknown target
function, a training set is provided initially. We randomly split the data into two sets, one
to train the model (training set) containing 70% of the dataset and the rest ones (30%) for
testing the performance (test set) [88].

2.4. Regression Models

The regression technique constructs a model with the ability to predict new numeric
values from the input variables. Regression modeling is the task of approximating a
mapping function from inputs to a continuous output [89,90]. The ML algorithm maps
functions from NP’s p-chem properties and experimental conditions to the inhibition
of bacteria and enables the prediction of the antibacterial capacity of NPs. We used
several supervised regression algorithms as potential candidates for developing our model
to explore which model can provide the most accurate prediction. The Least Absolute
Shrinkage and Selection Operator (LASSO) Regression, Ridge Regression (RR), Elastic Net
Regression (ENR), Random Forest (RF) and Support Vector Machine (SVM) are examined
in this study. Models were built in Python version 3.7.6, Scikit-learn version 0.24.1.

LASSO regression is a popular variable selection and shrinkage estimation method [91]
which finds the variables and corresponding regression coefficients that lead to a model
with higher accuracy. This is accomplished by imposing a restriction on model parameters,
which then ‘shrinks’ the regression coefficients close to zero. Variables with a regression
coefficient of zero after shrinkage are excluded from the model [92].

RR is a simple approach [93] that addresses the collinearity challenge arising in
multiple linear regression [94–96]. When the covariates are super-collinear, two or multiple
covariates are strongly related. When there is multicollinearity, least squares estimates
are unbiased and their differences are larger, so they may be far from the real value. By
adding a scale of bias to the estimates, RR decreases the standard errors. The RR model
gives different importance weights to the features but does not drop unimportant features
in comparison with LASSO [97].

ENR applies the penalties from both the LASSO and RR methods to regularize regres-
sion models [98]. ENR often outperforms LASSO, which is particularly useful when the
number of predictors is much bigger than the number of observations [98]. This method
aims to improve predictions by performing variable selection by forcing the coefficients of
“non-significant” variables towards zero (shrinkage) [92].

RF comprises various decision trees that are trained independently on a random
subset of data. RF can work with thousands of variables without deletion or reduction
in accuracy, while preventing overfitting [99,100]. As a classifier, RF performs an implicit
feature selection, using a small subset of “strong variables” for the classification, which is
the reason for its superior performance on high dimensional data [101].

SVM learns by assigning labels to objects and is widely used in biological fields. It is
used for both classification and regression challenges [102,103]. In SVM, each data item
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is plot as a point in an n-dimensional space with the value of each feature related to the
value of a specific coordinate. It performs classification by finding the hyper-plane that
differentiates the two classes.

2.5. Model Validation

The primary objective of ML is to generate an effective computational model with a
high predictive capacity. Cross-validation is used to guarantee a stable assessment of the
model performance and to avoid overfitting [104,105]. In cross-validation, the model is
trained using parts of the training set by leaving one subset for later testing.

To produce an optimal model, a balance to avoid both underfitting and overfitting
by adjusting hyperparameters is critical. In LASSO, RIDGE, and EN models, several
statistical techniques were used to evaluate the model (data not shown) by using different
sets of alpha values. To tune LASSO, RR and ENR models, we performed a “grid search”
approach. The approach reduces the model’s complexity by keeping the most important
features. The higher the alpha value, the more the regularization parameter influences
the final model, hence decreasing the error due to variance (overfit). Alpha in regression
models takes various values, however, when α = 0, the model gets same coefficients as in
simple linear regression (no regularization).

The models were evaluated by mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE) and Coefficient of Determination or R-squared (R2).

MAE is a popular metric, calculated as follows:

MAE = 1/n
n

∑
i=1

∣∣∣yi − ŷi

∣∣∣ (2)

where yi is the i’th expected value in the dataset, ŷi is the i’th predicted value.
MSE is a standard and common error metric for regression model problems. The

MSE is analyzed as the mean or average of the squared differences between predicted and
expected target values in a dataset. It can be calculated by

MSE = 1/n
n

∑
i=1

(
yi − ŷi

)2
(3)

where yi is the i’th expected value in the dataset and ŷi is the i’th predicted value.
The RMSE of expected and predicted values can be calculated through the

√
MSE.

Although a good RMSE value is relative to a dataset, the smaller the value, the better the
predictive model.

R2 is a statistical measure of fit that suggests how much variation of the output is
supported by the inputs. R2 explains to what degree the variance of one variable describes
the variance of the second variable. For instance, if R2 is 0.70, then approximately 70 percent
of the observed variation can be explained by the model’s inputs, and the greater the
R2 value, the better is the model.

2.6. Important Attribute Analysis

Attribute importance is a supervised event that distinguishes and ranks the attributes
that are most important in predicting the outcome in a relative manner [106]. Attribute im-
portance was derived through random forest optimization (built-in function). The analysis
is based on the Gini importance, an all-nodes accumulating quantity that indicates how
often a particular attribute was selected for a split, and how large its overall discriminative
effect was in the regression [100]. Information values range from 0 to 1, with 1 representing
maximum information gain.
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3. Results
3.1. Data Pre-Processing

The primary dataset comprised 1176 rows and 18 columns (11 inputs, 7 outputs)
extracted from 60 studies investigating the antibacterial properties of the NPs.

Input selection and transformation: The input data consisted of specific surface
area (m2/g), hydrodynamic size (nm), zeta potential (measured in water and medium)
(mV), core size (nm), exposure dose (µg/mL), and duration (h) reported in numeric
values. Variables with nominal values included shape, type of NPs, coating, bacterium and
aggregation as summarized in Table 1. As can be seen from Figure 2 (left), specific surface
area, hydrodynamic size and zeta potential had approximately more than 90% missing
values and were therefore excluded. The aggregation potential had 39% missing data and
therefore was discharged. The different types of NPs, coating, duration, and bacteria had
no missing values. The dose, shape, and core size had 17.3%, 13.5%, and 9.6% missing
values, respectively.

Table 1. The primary and final Input variables in Dataset I and Dataset II.

DATASET I Data
Transformation DATASET II

Category Variables Type Min Max or Labels

P-
ch

em
pr

op
er

ti
es

Sp_Surf_Area

Numeric

1.2–96 (m2/g), NA

Eliminated due to
high NA

−

Hydro_size 11.5–993 nm, NA −
Zeta_Medium −40–90 (mV), NA −

Zeta_Water −40–80 (mV), NA −
Core_size 2–1000 (nm), NA Selected 4–546 (nm), NA

Aggregation

Nominal

Yes, None, NA Eliminated due to
high NA −

Shape Spherical, Hexagonal, Rod, Spindle,
Disc, Cubic, NA Selected

Spherical,
Hexagonal, Rod,

Cubic, NA

NPs type AgNPs, Fe3O4, ZnO AgNPs, Fe3O4, ZnO

Coating

Iron Oxide, dextran, pullulan,
Taraxacum officinale, Aspergillus,
Emericella nidulans, Tannic acid,
quercetin, TXT_100, SDBD, SDS,
Tween 81, PEG, PVP, Crataeva

nurvala, PMC, PG, Moringa
oleifere, Oleic acid, Zinc oxide,

Gold, Chitosan, APTES, Flaxseed
oil, silver, CES, alginate, PVA,

Carbon, Alow vera, Titanium, SiO2,
starch, Magnesium

Simplified:
Transformed into

Binary
Coated, Uncoated

Ex
po

su
re Dose

Numeric
0.01–10.000 (µg/mL), NA

Selected

0.01–10.000
(µg/mL), Na

Duration 17–1440 (h) 17–1440 (h)
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Table 1. Cont.

In
vi

tr
o

In
fo

.

Bacteria Nominal

Acetomicrobium faecale,
Acidaminococcus fermentans,

Actinomyces denticolens, Aspergilus
(niger, terreus strain), Bacillus brevis,

Bacillus cereus, Bacillus subtilis,
Bacteroides (eggerthii, stercoris,

thetaiotaomicron, uniformis, vulgatus,
xylanolyticus), Bifidobacterium

(adolescentis, bifidum, longum, suis,
thermophilum), Campylobacter jejuni,

Candida (albicans, parapsilosis,
tropicalis), Citrobacter freundii,

Clostridium (butyicum, cellulovorans,
coccoides, histolyticum, leptum,

perfringens, thermocellum),
Corynebacterium glutamicum,

Enterobacter (aerogenes, cloacae),
Enterococcus (cecorum, durans,

faecalis, faecium, hirae), Escherichia
coli, Eubacterium eligens, Fusarium

solani, Ganoderma, Klebsiella
(aerogenes, oxytoca, pneumoniae),

Lactobacillus (acidophilus, amylovorus,
casei, fermentum, johnsonii,

plantarum, reuteri, salivarius),
Leuconostoc (citreum, fallax, lactis,

mesenteroides), Listeria
monocytogenes, Microbacterium

hominis, Neisseria canis, Olsenella
(profusa, uli), Proteus (mirabilis,

vulgaris), Pseudomonas aeruginosa,
Putida vulgaris, Ralstonia

solanacearum, Salmonella (Enteritidis,
paratyphi, typhi, typhimurium),

Serratia marcescens, Shigella
(dysenteriae, sonnei), Staphylococcus
(aureus, epidermidis), Streptococcus

(aureus, epidermidis, bovis,
gallolyticus, hyointestinalis, porcinus,
pyogenes, salivarius), Veillonella ratti,

Vibrio cholerae, Weissella (confusa,
hellenica), Xanthomonas oryzae

Simplified: Data
transformed into
general Species

categories

A. niger, A. terreus,
Aspergillus, B. brevis,

B. cereus, B.
licheniformis, B.

subtilis, C. albicans, C.
tropicalis, E. aerogenes,

E. coli, E. faecalis,
Enterococcus, F. solani,
Fusarium, Ganoderma,

K. pneumoniae, L.
monocytogenes, P.

aeruginosa, P.
mirabilis, P. multocida,
P. putida, P. vulgaris,

Penicillium, S. aureus,
S. dysenteriae, S.
epidermidis, S.
marcescens, S.

paratyphi, S. typhi,
Salmonella,

Scedosporium,
Shigella, V. cholerae, X.
oryzae, Xanthomonas

The coating and bacteria variables were very dispersed (as illustrated in Figure 3). To
prevent model overfitting, we transformed coating into coated and uncoated (binary format).
The studies were conducted on several strains of bacteria for which we collected the class,
family, and species information. To avoid overloading the model we only kept species as a
subcategory of class and family, grasping general (Gram-positive or negative bacteria) and
specific information. In the final dataset (Dataset II), we included shape with 11%, dose
with 9.8% and core-size with 5% missing values. The other variables had no missing values.
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Outcome Selection: We gathered all the evaluations used to determine the antibacterial
efficacy of the NPs. Each of the outcomes has different unit metrics. For example, the
bacteria viability/growth is expressed in the number of bacteria cells and cell viability is
reported as a percentage of live bacteria. ZOI is given in mm, representing the diameter
of the area of media where bacteria are unable to grow [107]. MIC is extracted in µg/mL
as the minimum concentration of NPs that inhibit the growth of bacterium [107]. MBC is
expressed in µg/mL as the lowest concentration of antibacterial agent required to kill a
bacterium [108]. OD measurements represent growth analysis by measuring the optical
density at different settings of 580, 600 and 572 nm. The biofilm formation is reported in a
percentage and change in biofilm growth is reported in colony-formed unit (CFU) [109].

Due to the high occurrence of missing data and diversity in the outcomes (as shown
in Figure 2), we chose the outcome with the least missing value, the inhibition zone
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measurement (ZOI) in mm, with 60% missing values. Hence, the rest of the outcomes were
dismissed in Dataset II. ZOI testing, also known as the disk diffusion method (DDM), is a
fast and inexpensive assay compared to the other laboratory tests [110,111]. The diameter
of the ZOI illustrates the antimicrobial activity present in the sample or product—a larger
zone of inhibition means that the antimicrobial is more potent. In summary, the final dataset
of 436 rows consists of seven inputs (shape, dose, size, coating, type of NPs, bacteria species,
and duration as inputs) and one output (ZOI) derived from 60 studies.

3.2. Validation of Models and Attribute Analysis

Following data homogenization and pre-processing, we trained various regression
models. Model performance results are presented in Figure 4a. The results suggest that
the RF model exhibits the lowest error and the highest R2 score compared to the other
algorithms employed (LASSO, RR, ENR, SVM), with R2, RMSE, MAE and MSE of 0.78,
4.30, 2.78 and 18.56 values, respectively. The outcome of attribute importance analysis is
shown in Figure 4b. Core-size is the most important attribute that determines the efficacy
of the antibacterial effect of NPs. The dose, species, and type of NPs are identified as
comparatively important, followed by coating, shape, and duration. Further data analysis
such as correlation and batch effects are presented in Supplementary Materials (S2).
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4. Discussion

In the present study, we implemented an ML tool from data collection to model vali-
dation, to predict the bactericidal effects induced by NPs in in-vitro systems. The model is
consistent with the OECD principles [112] addressing the selection of (i) a defined endpoint
(zone of inhibition as a metric to evaluate the susceptibility of the bacteria to NPs); (ii) an
explicit algorithm (RF, https://github.com/mahsa-mirzaei/RFR_ABA.git, accessed on
6 July 2021); (iii) a well-defined domain of applicability (data ranges and nominal cate-
gories are provided, Table 1); and (iv) appropriate measures of goodness-of-fit; robustness
and predictability.

Recent studies have demonstrated that p-chem properties such as core-size [113],
shape [114], surface area [115], zeta potential [116], aggregation [117], and hydrodynamic
size [115] play an important role in determining the antibacterial activity of NPs [116,118].

https://github.com/mahsa-mirzaei/RFR_ABA.git
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Exposure conditions such as dose play an important role as well [119]. For the above
reasons, we gathered information regarding the p-chem properties of NPs and exposure
conditions. However, the appearance of missing data among our input was significant.
For instance, specific surface area, hydrodynamic size, and zeta potential were absent in
more than 90% of our data, aggregation information was 39% missing. Although this is
essential information, regression tools do not perform well with missing data. P-chem
properties are important factors and should be mentioned in future studies. Another point
is the appearance of multiple diverse coatings found in the literature. In our dataset we
found thirty-seven coatings (less than 4% each and 43% uncoated). For the moment, the
dataset is not sufficiently large to distinguish the influence and variance of each coating to
the antibacterial capacity since the models overfit (reduction in predictive power).

In the studies reviewed, different methods to determine the NP size and morphology,
such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dif-
ferential Mobility Analyzer (DMA), Dynamic Light Scattering (DLS), X-ray scattering, and
UV–vis absorption spectrum, were reported. The presence of coating was assessed using
electron microscopy combined with X-ray (energy-dispersive X-ray spectroscopy, EDX) or
X-ray fluorescence spectroscopy (XRF) measurements. The specific surface area was mea-
sured by N2-BET, Ultra X-ray photoelectron spectroscopy technique, and NMR. The zeta
potential was measured in different media (water and culture media) by electrophoretic mo-
bility using Henry’s Equation and the Schmolukowski approximation. The above summary
signifies the need for a standardized characterization workflow to obtain homogenized
data across different studies.

The reviewed studies captured the antibacterial effects of NPs by using different
protocols. To create a consistent dataset, the experimental data should be generated by a
single protocol, but this is impractical. For the outcome we focused on one antibacterial
evaluation method to obtain uniform data, which represented only 40% of the gathered
data. Subsequently, it demonstrates the need for harmonized and rigorous methods used to
evaluate the antibacterial activity of NPs to accomplish reproducibility as well as reliability.

RF has been effectively utilized in various domains, e.g., in microbiology and genetics,
and has become a major data analysis tool due to its superior performance on high dimen-
sional data [101,120,121]. Our results show that RF predicts the antibacterial effect more
acutely compared to other models due to the determination of the non-linear relationship
between input and output variables. The second-best model was LASSO. The key challenge
with LASSO is correlated variables, in that it retains one variable and sets the other to zero.
This will lead to some loss of information resulting in lower accuracy. In order to evaluate
the reliability and performance of the resulting models, we assessed the goodness-of-fit,
robustness and predictivity by MSE, MAE, RMSE, and R2 statical methods. The closer the
value of R2 (measures of goodness-of-fit) to 1, the better the model is fitted [122]; smaller
values of MSE, RMSE, and MAE verified model performance [123,124].

Several techniques exist for pre-processing data to make them suitable for use in com-
putational tools, such as normalization, one hot encoding, and feature selection handling of
missing values. One technique worth noting is the description of molecular structures [125].
The most common methods to codify structures are (i) the chemical graph; (ii) the nota-
tions as Simplified Molecular Input-Line Entry System (SMILES); and iii) the de-facto
standard chemical formats. Experimental and exposure conditions are vital variables in
the representation of antibacterial capacity since the same type of NPs may exhibit diverse
effects in different experimental conditions. This makes the development of classic QSAR
difficult [126]. Toropova et al. [127] suggested a quasi-SMILES approach to represent
molecular structures, p-chem properties, and experimental conditions (eclectic data) with
NPs [126,128].

There was no ML study to compare with as to which parameters are the most im-
portant to predict the antibacterial activity of NPs on the model performance. We based
our evaluation on the attributes that are investigated by researchers in the lab [129]. For
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example, according to the literature, various parameters such as core size, dose, shape, and
special surface area of the NPs affect the antibacterial activity of NPs [118,130].

• Size: The smaller the particle size, the higher the antibacterial activity [118]. This can
be explained by the fact that NPs can easily cross the bacteria membrane and reach
the nuclear; secondly, because of a larger surface/volume ratio [131–134].

• Species: Type of bacteria is important in determining the antibacterial activity of the
NPs [135–137]. Depending on their cell wall composition, bacteria are divided into
two groups: Gram-negative and Gram-positive [138]. Various NPs with different
surface charges can act distinctly depending on what the differentiation is in the
bacteria cell wall composition [132,135].

• Dose: A dose-dependent reduction of bacterial growth and biofilm biomass is ob-
served following exposure to metal and metal oxide NPs [139,140]. Remarkably, our
findings, according to the attribute important analysis, confirm that the core size, dose,
and bacteria species are the most important attributes affecting the prediction of the
antibacterial activity of NPs.

More systematic data are needed to enable building models accounting accurately for
the all the possible in vitro determinant combinations. Without agreement on standard
characterization workflow of NPs or defined key properties that define their efficacy and
a lack of reference bacteria and defined assays, there is still a long way to go to unravel
systematically the antibacterial properties of NPs. In addition to precise protocols and
standardization of methods, there should be further harmonized outlines in how to report
p-chem properties of NPs or experimental conditions and to make those measurements
more comparable to improve the reporting data. The absence of comprehensive metadata
description for related bioassays may have an impact on the clarity and comprehension
and therefore the quality of the results [141]. Several different initiatives are currently
working on defining frameworks, methods, and criteria for evaluating the quality of the
reported data based on the FAIR (Findable, Accessible, Interoperable, Reusable) data
principles [142].

5. Conclusions

Antibiotic resistance of bacteria has become one of the major concerns in human
healthcare. NPs represent a valuable and innovative technology to build alternatives to
antibiotics. In this study, we investigate the performance of various ML tools to predict the
effects of NPs as an antibacterial agent on vast groups of Gram-positive and Gram-negative
bacteria, with RF being the best model. This study is a first step and the first tool to
assist researchers towards screening NPs with potentially high antibacterial effects and
could help fine-tune their properties. With this interdisciplinary approach we combine
knowledge of the underlying science with computer science tools. This is a valuable
activity as it allows those working in the laboratories to leverage development in the
AI space and thus improve timeliness, reducing the number of experiments performed
and the costs involved. Due to the inconsistency of reporting NP p-chem properties in
antibacterial studies, the resulting dataset has large data gaps. We highlight the need for
standardized measurements to evaluate the properties of NPs, allowing more consistent
metadata. The majority of data in the literature revolves around the toxicity of NPs. This
paper stresses the need for more data, raising awareness to the scientific community of the
lack of comprehensive datasets regarding the antimicrobial capacity of NPs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11071774/s1, Supplementary Material S1: Dataset. Supplementary Material S2: Data
analysis, Figure S1: Seaborn pairplot correlation analysis of input variables with the outcome,
Figure S2: Batch/experimental effect in modeling training. Each experiment signifies one study. The
x axis demonstrates the data points that each study provided. The y axis demonstrates the actual and
predicted zone of inhibition values. Experiment with Data points > 10, Figure S3: Batch/experimental
effect in modeling training. Each experiment signifies one study. The x axis demonstrates the data
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points that each study provided. The y axis demonstrates the actual and predicted zone of inhibition
values. Experiment with Data points < 10.
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Abbreviations

NPs Nanoparticles
NMs Nanomaterials
AL Artificial Intelligence
ML Machine Learning
MO NPs Metal Oxide nanoparticles
ZnO NPs Zinc Oxide nanoparticles
Fe2O3 NPs Iron Oxide nanoparticles
Ag NPs Silver nanoparticles
ROS Reactive Oxygen Species
ECP ExtraCellular Polymers
OD Optical Density
ZOI Zone Of Inhibition
MIC Minimum Inhibitory Concentration
MBC Minimum bactericidal Concentration
CFU Colony Forming Unit
RF Random Forest
ENR Elastic Net Regression
SVM Supervised Vector Machine
LASSO Least Absolute Shrinkage and Selection Operator
RR Ridge Regression
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